5.1.4 定积分的性质[共2页]
定积分的性质

定积分可以表示为黎曼和的形式,即将区间[a,b]分成若干小区间,每个小区间的长度为$\Delta x$,并取小区间 的左端点$x_{i-1}$和右端点$x_i$作为积分的下限和上限,然后对每个小区间上的函数值$f(x_i)$进行求和,最后 将所有小区间的和再乘以$\Delta x$得到定积分的值。
对于任意实数$k_1, k_2$,有$\int (k_1f(x) + k_2g(x)) dx = k_1 \int f(x) dx + k_2 \int g(x) dx$
常数倍
对于任意实数$k$,有$\int kf(x) dx = k \int f(x) dx$
区间可加性
区间可加
对于任意分割$a = x_0 < x_1 < \ldots < x_n = b$,有$\int_{a}^{b}f(x) dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}}f(x) dx$
利用定积分的性质
如果$f(x) \geq g(x)$,则 $\int_{a}^{b}f(x)dx \geq
\int_{a}^{b}g(x)dx$。
利用定积分的性质
如果$f(x) = g(x)$,则$\int_{a}^{b}f(x)dx = \int_{a}^{b}g(x)dx$。
04
定积分的极限性质
定积分的性质
线性性质
定积分具有线性性质,即对于常数$c$和$d$,有$\int_{a}^{b} (c\varphi_1(x) + d\varphi_2(x)) dx = c\int_{a}^{b} \varphi_1(x) dx + d\int_{a}^{b} \varphi_2(x) dx$。
高等数学自考5.1定积分的概念与性质

a b
b
b
b
a
说明: 可积性是显然的. 在区间 说明: | f ( x ) |在区间[a , b]上的可积性是显然的
23 上一页 下一页
性质6 性质6
设 M 及 m 分别是函数
f ( x ) 在区间[a , b]上的最大值及最小值, 上的最大值及最小值,
性质3 性质3
b
假设a < c < b
c b
∫a f ( x )dx = ∫a f ( x )dx + ∫c
例 若 a < b < c,
f ( x )dx .
补充: 的相对位置如何, 上式总成立. 补充:不论 a , b, c 的相对位置如何 上式总成立
∫a f ( x )dx = ∫a f ( x )dx + ∫b f ( x )dx
§1
定积分的概念与性质
一、定积分概念的引入 二、定积分的定义 三、定积分的几何意义 四、定积分的性质 五、小结
1 上一页 下一页
一、定积分概念的引入
实例1 实例1 (求曲边梯形的面积)
y
y = f (x)
曲边梯形由连续曲线 y = f ( x ) ( f ( x ) ≥ 0) 、
x 轴与两条直线 x = a 、
n
2
1 1 1 = 1 + 2 + , 6 n n
λ →0 ⇒n→∞
2
∫0 x
1
2
dx = lim ∑ ξ i ∆xi
λ → 0 i =1
n
1 1 1 1 = lim 1 + 2 + = . n→ ∞ 6 n n 3
高等数学-定积分的概念与性质

= σ=1 ( ) .
→0
其中()称为被积函数,()称为被积表达式,称为积分变量,
[, ]称为积分区间,称为积分下限,称为积分上限.
15
02 定积分的定义
注(1)定积分)( 是一个数值,它只与被积函数()
和积分区间[, ]有关,而与积分变量的符号无关,即
(2)近似(“以直代曲”)
在区间 [−1 , ] 上任取一点 ,以 ( ) 为高,
y
y=()
以 为底,作小矩形.小矩形的面积为
( ) ,用该结果近似代替[−1 , ]上的小
O
a
x i -1 ξ i x i
b
x
曲边梯形的面积 ,即
≈ ( ) ( = 1, 2, ⋯ , ).
)(
=
)(
=
)( .
(2)定积分存在,与区间的分法和每个小区间内 的取法无关.
Hale Waihona Puke (3)按照定积分的定义,记号)( 中的, 应满足关系
< ,为了研究的方便,我们补充规定:
① 当 =
② 当 >
时, = )( = )( 0;
在区间 [1,2] 内, 0 ≤ < 2 < 1 ,
则( )3 < .由性质5.5的推论1,得
2
1
>
2
1 ( )3 .
28
极限,得 σ=1 ( ) .
→0
如果对于[, ]的任意分法及小区间[−1 , ]上点 的任意
取法,上述极限都存在,则称函数()在区间[, ]上可积,
§5.1 定积分的概念与性质

f (i )xi lim x 0
i 1
n
1 3
8
6
5.1.3 定积分的基本性质
( 线 性 性 质 性质1.
b
a b
kf ( x)dx k f ( x)dx
a
b
性质2.
a
[ f ( x) g ( x)]dx f ( x)dx g ( x)dx
a a
3
2
1
解(1)因为在[1, 2]上, x x ,
x dx
2 1
2
2
x dx
2
3
1
(2)因为在[1, 2]上, ln x (ln x) ,
ln xdx (ln x) dx
2 1 1
2
2
14
1i n
n
若极限 lim
x 0
f ( )x 存在,
i i i 1
n
则称函数 f (x) 在[a,b]上可积,
此极限值为函数f (x)在[a,b]上的定积分. 记作: 即
b
f ( x)dx
a
b
f ( x)dx lim
a
x 0
f ( )x
i i 1
n
i
5
1. 曲边梯形的面积
y
a f ( x)dx
c
b
c
a
f ( x)dx f ( x)dx
c
b
(2)若 a b c , 由(1)知
a b
f ( x)dx f ( x)dx f ( x)dx
a b
b
c
o a
5.1 定积分的概念与性质

lim ( )Δ =
→0
=1
则称这个极限为函数()在区间[, ]上的定积分,记为
න ()d
第一节 定积分的概念与性质
定积分
第五章
即
积分上限
定积分
积分和
න ()d = = lim ( )Δ
积分下限
→0
=1
被积被
积分积
[, ]积分区间 函 变 表
[, ]
[, ]
( − )≤ න ()d ≤( − ) ( < )
证
∵ ≤()≤,
∴ න d≤ න ()d≤ න d ,
( − )≤ න () d≤( − ).
第一节 定积分的概念与性质
此性质可用于
估计积分值的
第五章
8. 定积分中值定理
如果 () 在区间[, ]上连续, 则至少存在一点 ∈ [, ], 使
න ()d = ( )( − )
证
设()在[, ]上的最小值与最大值分别为 , ,
1
න ()d≤
则由性质7可得 ≤
−
根据闭区间上连续函数介值定理, ∃ ∈ [, ], 使
= lim ( )
=
lim ( ) ⋅
→∞
− →∞
故它是有限个数的平均值概念的推广.
第一节 定积分的概念与性质
把区间[, ]分成个小区间,
[0 , 1 ], [1 , 2 ], ⋯ , [−1 , ], ⋯ , [−1 , ]
各个小区间的长度依次为
定积分的性质和基本定理

第二节 定积分的性质和基本定理用求积分和式的极限的方法来计算定积分不是很方便,在很情况下难以求出定积分的值。
因此,我们在定积分定义的基础上,讨论它的各种性质,揭示定积分与微分的内在联系,寻找定积分的有效§2.1一、定积分的基本性质 性质 1b a1dx=∫b adx=b-a证 0lim →λ∑=n1i f(ξi )Δx i =lim →λ∑=n1i 1·Δx i =0lim →λ(b-a)=b-aba 1dx=∫badx=b-a性质2(线性运算法则),设f(x),g(x)在[a,b ]上可积,对任何常数α、β,则αf(x)+βg(x)在[a,b ]ba [αf(x)+βg(x)]dx=α∫ba f(x)dx+β∫b ag(x)dx证:设F(x)=αf(x)+βg(x),lim →λ∑=n1i F(ξi )Δx i =0lim →λ[αf(ξi )+βg(ξi )]Δxi =0lim →λ[α∑=n1i f(ξi )Δx i +β∑=n1i g(ξi )Δxi=αbaf(x)dx+β∫bag(x)dxαf(x)+βg(x)在[a,bba [αf(x)+βg(x)]dx=α∫b a f(x)dx+β∫b ag(x)dx特别当α=1,β=±1ba [f(x)±g(x)]dx=∫b a f(x)dx ±∫b ag(x)dx当β=0ba αf(x)dx=α∫b af(x)dx性质 2性质3 对于任意三个实数a,b,c ,若f(x)在任意b af(x)dx=∫c a f(x)dx+∫bcf(x)dx证a,b,c(i)当a<c<b ,按定义,定积分的值与区间分法无关,在划分区间[a,b ]时,可以让点C是一个固定的b af(x)dx= 0lim →λ∑],[b a f(ξi )Δx i∑],[c a=0lim →λ[∑],[c a f(ξi )Δx i +∑],[b c f(ξi )Δxi=0lim →λ∑],[c a f(ξi )Δx i +0lim →λ∑],[b c f(ξi )Δxica f(x)dx+∫bcf(x)dx(ii)当c<b<a由(i)a cf(x)dx=∫bc f(x)dx+∫abf(x)dx-∫c a f(x)dx=∫b c f(x)dx-∫b af(x)dx, ∫b a f(x)dx=∫c a f(x)dx+∫b cf(x)dx 对于其它4种位置与(ii)性质3主要用于分段函数的计算及定积分说明。
定积分的概念及性质课件

06
定积分的进一步应用
积分变换
积分变换的定义
积分变换是一种将函数在某一区间内的行为转化为另一种函数的方法,常见的积分变换包括傅里叶变换和拉普拉斯变 换等。
积分变换的性质
积分变换具有一些重要的性质,例如线性性质、时间平移性质和微分性质等,这些性质在解决实际问题中具有广泛的 应用。
积分变换的应用
积分变换在信号处理、图像处理和控制系统等领域有着广泛的应用,通过积分变换可以将复杂的信号或 系统转换为易于分析和处理的函数形式。
傅里叶变换
傅里叶变换的定义
傅里叶变换是一种将时间域函数转换为频域函数的方法, 它可以将一个时间函数分解成一系列不同频率的正弦和余 弦函数的线性组合。
傅里叶变换的性质
傅里叶变换具有一些重要的性质,例如线性性质、对称性 质和微分性质等,这些性质在解决实际问题中具有广泛的 应用。
傅里叶变换的应用
傅里叶变换在信号处理、图像处理和控制系统等领域有着 广泛的应用,通过傅里叶变换可以将复杂的信号或系统转 换为易于分析和处理的频域函数形式。
反常积分
反常积分的定义
反常积分是一种在无穷区间上定 义的积分,它通常用于处理一些 在无穷远处收敛的函数。
符号的意义
定积分的符号表示一个函 数在一个区间上的总值, 其中“∫”表示积分号。
计算公式
定积分可以通过一个公式
来计算x,其中a和b
是区间的端点。
02
定积分的性质
连续函数的积分性质
积分区间可加性
对于任意两个不相交的区间[a,b]和[b,c],有$\int_{a}^{c}f(x)dx = \int_{a}^{b}f(x)dx + \int_{b}^{c}f(x)dx$。
第五章 积分 5-1 定积分的概念与基本性质

b
b
|
a
f (x)d
x|
|
a
f (x)|d
x.
证明 由于 | f (x) | f (x) | f (x) |, 应用性质 3
b
b
b
a | f (x)|d x | a f (x) d x a | f (x)|d x,
43
4
1
1
1
2
7 1 sin 2
1 sin 2 x 1 sin 2
, 3
3
4
所以
21
3
4
4 7
d
x
3
4
dx 1 sin 2
x
3
4
2 3
d
x
.
18
《高等数学》课件 (第五章第一节)
推论 2 设 f R [a, b], 且在 [a, b] 上 f (x) 0, 则
b
a f ( x) d x 0.
性质 2 (积分对区间的可加性) 设 a c b, f R [a, b], 则 f R [a, c], f R [c, b],
且
b
c
b
f (x) d x f (x) d x f (x) d x.
a
a
c
一般, 当上式中三个积分都存在时, 无论 a, b, c 之间具有怎样 的大小关系, 等式都成立.
当 f (x) R [a, b] 时, 可在积分的定义中, 对 [a, b] 作特殊的分
划, 并取特殊的 i [x i 1, x i] , 计算和式. 如等分区间 [a, b], 并取 点 i 为 [x i 1, x i] 的右端点 x i 或左端点 x i 1 或中点.