新人教版八年级数学上册14.2.2完全平方公式公开课教案
八年级数学上册14.2.2完全平方公式教案(新人教版)

完全平方公式
一、教学目标
用完全平方公式分解因式。
二、过程与方法
1、理解完全平方公式的特点。
2、能较熟悉地运用完全平方公式分解因式。
3、会用提公因式、完全平方公式分解因式,并能说出提公因式在这类因式分解中的作用。
4、能灵活应用提公因式、公式法分解因式。
三、情感、态度与价值观
通过综合运用提公因式、完全平方公式分解因式,进一步培养学生的观察和联想能力,通过知识结构图培养学生归纳总结的能力。
四、重点、难点
重点:用完全平方公式分解因式
难点:灵活应用公式分解因式
五、教学过程
(1)2
222)3(33296+=+∙∙+=++x x x x x。
14.2.2 完全平方公式 教学设计

14.2.2 完全平方公式教学设计一、教学目标:1.理解并掌握完全平方公式的运算法则.2.从广泛意义上理解公式中的字母含义,会运用完全平方公式进行计算.二、教学重、难点:1.理解并掌握完全平方公式的运算法则.2.从广泛意义上理解公式中的字母含义,会运用完全平方公式进行计算.三、教学过程:一、创设情境,导入新知明明订购了一个6寸的大披萨,不久店员打电话告知6寸的披萨卖完了,问能否换购一个4寸和一个2寸的小披萨(披萨近似看作圆). 你认为明明应该同意吗?你发现了什么?教师引导学生发现 (2 + 1)2≠ 22 + 12,并引出后续探究.二、小组合作,探究概念和性质知识点一:完全平方公式探究 1:计算下列多项式的积,你能发现什么规律?(1) ( p + 1 )2 =(2) ( m + 2 )2 =(3) (p-1)2 = (p-1)(p-1) = .(4) (m-2)2 = (m-2)(m-2) = .定义总结:完全平方公式:(a + b)2 = a2 + 2ab + b2(a–b)2 = a2– 2ab + b2文字说明:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.这两个公式叫做(乘法的)完全平方公式.猜想验证:你能几何的形式证明公式成立吗?问题1:你有几种方法求边长为 (a + b) 的正方形的面积?问题2:你有几种方法求边长为 (a−b) 的正方形的面积?想一想:问题:观察这两个公式,回答下列问题.师生活动:学生观察公式并填写表格(如下)典例精析例1 运用完全平方公式计算:(1) (4m + n)2;(2) .例2.运用完全平方公式计算:(1)1022; (2)992.=10404 =9801方法总结:运用完全平方公式进行简便计算,要熟记完全平方公式的特征,将原式转化为能利用完全平方公式的形式。
例3.已知x-y=6,xy=-8.求:(1)x2+y2的值; (2)(x+y)2的值.=20 =4方法总结:本题要熟练掌握完全平方公式的变式:x2+y2=(x-y)2+2xy=(x+y)2-2xy,(x-y)2=(x+y)2-4xy.三、课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?【设计意图】培养学生概括的能力。
人教版数学八年级上册《14.2.2 完全平方公式》教案设计

14.2.2 完全平方公式教学目标1.完全平方公式的推导及其应用.2.了解公式的几何意义.3.熟练运用公式进行计算.教学重点难点重点:完全平方公式的推导过程、结构特征、几何意义及灵活应用.难点:理解完全平方公式的结构特征,并能灵活应用公式进行计算.课前准备多媒体课件教学过程导入新课导入一:高菲同学做作业时,把一滴墨水滴在一道数学题上,题目变成了■x+1,看不清x前面的数字是什么,只知道这个二次三项式能写成一个整式的平方,急得她抓耳挠腮,你能帮助她吗?学习了完全平方公式之后,问题将迎刃而解.导入二:有一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给一块糖;来两个孩子,老人就给每个孩子两块糖;来三个,就给每人三块.(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?(3)第三天共有(a+b)个孩子去了老人家,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?导入三:问题:知识回顾学生完成下列题目:(1)合并同类项法则:.ab+ba=(1+1)ab=2ab;2xy-5xy+xy=(2-5+1)xy.(2)多项式与多项式相乘的法则:.(a+b)(m+n)=am+an+bm+bn.(3)根据乘方的定义,我们知道:=a·a,那么应该写成什么样的形式呢?= .探究新知问题1:计算下列多项式的积,你能发现什么规律?=(p+1)(p+1)= ;= ;=(p-1)(p-1)= ;= .师生活动教师用多媒体展示题目,学生完成计算,然后观察计算结果都有哪些规律,再以小组为单位进行交流,说出有什么发现.追问1:你还能计算,吗?学生计算,老师进行巡视了解各位学生的计算情况,并做适当引导,学生交流后归纳出完全平方公式如下:,.追问2:你能用语言叙述完全平方公式吗?师生活动学生思考、交流后回答,最后归纳得出:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.追问3:观察公式的左、右两边,公式的结构有何特征?师生活动学生观察后,进行讨论、交流总结得出:①公式左边是两项(数)的和(或差)的平方.②公式的右边有三项,两个平方项,且符号相同,一个两项乘积的两倍或其相反数.(首平方,尾平方,乘积的两倍放中央,中间符号同前方)问题2:你能根据图1和图2中图形的面积说明完全平方公式吗?图1图2(1)如图1所示,可以看出大正方形的边长是,面积是;还可以看出大正方形是由个小正方形和个长方形组成的.所以大正方形的面积与这四个图形面积之和.阴影部分的正方形边长是,面积是;另一个小正方形的边长是,它的面积是;另外两个长方形的长都是,宽都是,所以每个长方形的面积都是.于是就可以得出:,这正好符合完全平方公式.(2)如图2所示,大正方形的边长是,它的面积是;长方形DCGE与长方形BCHF是全等图形,长都是,宽都是,所以它们的面积都是;正方形HCGM的边长是,它的面积是;正方形AFME的边长是,它的面积是.从图中可以看出正方形AFME的面积等于正方形ABCD的面积减去两个长方形DCGE和BCHF的面积,再加上正方形HCGM的面积,也就是:,这正好符合完全平方公式.教师提出问题,学生先独立思考,然后小组交流,学生代表展示求解过程.若学生感到有困难,教师可以引导学生回答分解的问题.新知应用例1 运用完全平方公式计算:;(2);;.师生活动师生共同分析解答,教师板书(1),学生板书(2)(3)(4).在解答(1)的过程中,教师引导学生明确本题中的哪一个数或式子相当于公式中的a,b,然后依照公式展开,再化简得出结果;在解答(2)(3)(4)的过程中,同样注意上述问题,并关注学生是否有其他解法.解:+2·(4m)·;(2)-2·y·+-y+;-2·(-a)·;.问题4:通过对(3)(4)两个小题的计算,你发现与相等吗?与相等吗?师生活动教师提出问题,学生思考后回答:都相等.教师追问:与相等吗?师生活动教师出示问题,学生通过计算、思考、讨论后回答,根据回答情况,教师做具体的解析:将作差,得-2ab.若两式相等,则有-2ab=0,=ab.因此,只有在a=b或b=0的情况下,两式才相等.例2 运用完全平方公式计算:;.师生活动师生共同分析,得出:本例中的102接近100,99接近100,故可化成两个数的和或差,从而运用完全平方公式计算,即;.解:==10 000+400+4=10 404;(2)==10 000-200+1=9 801.课堂练习(见导学案“当堂达标”)参考答案1.(1)×(2)√(3)×(4)×2.D-12y+36 -16y+16(3)249 001 (4)40 4014.解:(1)原式=-2xy).(2)原式+2x+1=2x+10.把x=2代入,得2x+10=2×2+10=14.5.解:∵a+b=5,∴,∴=25,∴=25,∴=25-12,∴=13.6.课堂小结教师和学生一起回顾本节课所学内容,并请学生回答以下问题:(1)本节课学了哪些内容?(2)完全平方公式是怎么探究并推导出来的?在运用时要注意什么?布置作业教材第112页习题14.2第2题.板书设计14.2.2 完全平方公式(第1课时)完全平方公式:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即,.教学反思1.完全平方公式的推导可类比平方差公式的推导方法:①多项式乘多项式;②几何意义.可先充分发挥学生自主学习、探究的能力,再借助学生与学生之间的合作交流学习来完成学习任务.2.教学过程中,教师要渗透数学思想方法,如数形结合思想、化归思想等.3.在教学过程中,有意识地安排公式的推导过程与的相统一,但又把它与同等对待.最后练习中,对于两者的联系与区别再加以说明,让学生领会到数学中的辩证统一思想.。
新人教版初中数学八年级上册14.2.2完全平方公式1公开课优质课教学设计

14.2.2 完全平方公式1.会推导完全平方公式,并能运用公式进行简单的运算.(重点)2.灵活运用完全平方公式进行计算.(难点)一、情境导入1.教师引导学生复习平方差公式.学生积极举手回答.平方差公式:(a+b)(a-b)=a2-b2.2.教师肯定学生的表现,并讲解:这节课我们学习另一种特殊形式的多项式与多项式相乘——完全平方公式.二、合作探究探究点一:完全平方公式【类型一】直接运用完全平方公式进行计算利用完全平方公式计算:(1)(5-a)2;(2)(-3m-4n)2;(3)(-3a+b)2.解析:直接运用完全平方公式进行计算即可.解:(1)(5-a)2=25-10a+a2;(2)(-3m-4n)2=9m2+24mn+16n2;(3)(-3a+b)2=9a2-6ab+b2.方法总结:完全平方公式:(a ±b )2=a 2±2ab +b 2.可巧记为“首平方,末平方,首末两倍中间放”.【类型二】 构造完全平方式如果36x 2+(m +1)xy +25y 2是一个完全平方式,求m 的值.解析:先根据两平方项确定出这两个数,再根据完全平方公式确定m 的值.解:∵36x 2+(m +1)xy +25y 2=(6x )2+(m +1)xy +(5y )2,∴(m +1)xy =±2·6x ·5y ,∴m +1=±60,∴m =59或-61.方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.【类型三】 运用完全平方公式进行简便运算 利用乘法公式计算:(1)982-101×99;(2)20162-2016×4030+20152.解析:原式变形后,利用完全平方公式及平方差公式计算即可得到结果. 解:(1)原式=(100-2)2-(100+1)(100-1)=1002-400+4-1002+1=-395; (2)原式=20162-2×2016×2015+20152=(2016-2015)2=1.方法总结:运用完全平方公式进行简便运算,要熟记完全平方公式的特征,将原式转化为能利用完全平方公式的形式.【类型四】 灵活运用完全平方公式求代数式的值已知x -y =6,xy =-8. (1)求x 2+y 2的值;(2)求代数式12(x +y +z )2+12(x -y -z )(x -y +z )-z (x +y )的值.解析:(1)由(x -y )2=x 2+y 2-2xy ,可得x 2+y 2=(x -y )2+2xy ,将x -y =6,xy =-8代入即可求得x 2+y 2的值;(2)首先化简12(x +y +z )2+12(x -y -z )(x -y +z )-z (x +y )=x 2+y 2,由(1)即可求得答案.解:(1)∵x -y =6,xy =-8,∴(x -y )2=x 2+y 2-2xy ,∴x 2+y 2=(x -y )2+2xy =36-16=20;(2)∵12(x +y +z )2+12(x -y -z )(x -y +z )-z (x +y )=12(x 2+y 2+z 2+2xy +2xz +2yz )+12[(x -y )2-z 2]-xz -yz =12x 2+12y 2+12z 2+xy +xz +yz +12x 2+12y 2-xy -12z 2-xz -yz =x 2+y 2,又∵x 2+y 2=20,∴原式=20.方法总结:通过本题要熟练掌握完全平方公式的变式:(x -y )2=x 2+y 2-2xy ,x 2+y 2=(x -y )2+2xy .【类型五】 完全平方公式的几何背景我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积解释一些代数恒等式.例如图甲可以用解释(a +b )2-(a -b )2=4ab .那么通过图乙面积的计算,验证了一个恒等式,此等式是( )A .a 2-b 2=(a +b )(a -b ) B .(a -b )(a +2b )=a 2+ab -2b 2C .(a -b )2=a 2-2ab +b 2 D .(a +b )2=a 2+2ab +b 2解析:空白部分的面积为(a -b )2,还可以表示为a 2-2ab +b 2,所以,此等式是(a -b )2=a 2-2ab +b 2.故选C.方法总结:通过几何图形之间的数量关系对完全平方公式做出几何解释.探究点二:添括号后运用完全平方公式计算:(1)(a -b +c )2; (2)(1-2x +y )(1+2x -y ).解析:利用整体思想将三项式转化为二项式,再利用完全平方公式或平方差公式求解,并注意添括号的符号法则.解:(1)原式=[(a-b)+c]2=(a-b)2+c2+2(a-b)c=a2-2ab+b2+c2+2ac-2bc=a2+b2+c2-2ab+2ac-2bc;(2)原式=[1+(-2x+y)][1-(-2x+y)]=12-(-2x+y)2=1-4x2+4xy-y2.方法总结:利用完全平方公式进行计算时,应先将式子变成(a±b)2的形式.注意a,b可以是多项式,但应保持前后使用公式的一致性.三、板书设计完全平方公式1.探究公式:(a±b)2=a2±2ab+b2;2.完全平方公式的几何意义;3.利用完全平方公式计算.本节的探讨方式和上节类似,都是通过“做一做”和“试一试”让学生在代数和几何两方面理解完全平方公式.完全平方公式分为两数和的平方和两数差的平方两种形式,教学中可以将两个公式写作一个公式:(a±b)2=a2±2ab+b2,有助于学生的记忆.在探究两数差的平方公式时,因为学生通过前面的学习已经掌握了几何的说明方法,因此可以让学生自己画图证明.。
人教版八年级数学上册优秀教学案例:14.2.2完全平方公式

(一)导入新课
1.利用生活实例导入:以一个实际问题为例,如计算一个矩形的面积,引导学生发现矩形的面积可以通过完全平方公式来简化计算。引发学生对完全平方公式的兴趣和好奇心。
2.利用多媒体手段:通过动画或图片展示完全平方公式的推导过程,帮助学生直观地理解公式。激发学生的学习兴趣和动机。
2.教师需要给予学生及时的反馈和评价,鼓励他们积极改进和提高。例如,可以设置一些评价指标,如准确性、速度、创新性等,对学生在学习完全平方公式过程中的表现进行评价和反馈。
3.鼓励学生进行自我评价和反思,培养他们的自我监控和自我调整能力。例如,可以让学生定期进行自我评估,反思自己在学习完全平方公式过程中的进步和不足,然后制定相应的改进计划。
3.设计一些小组活动,让学生通过合作完成任务,提高学生的团队协作能力。例如,可以让学生分组进行数学竞赛,每组需要运用完全平方公式解决一些实际问题,通过合作取得更好的成绩。
(四)反思与评价
1.教师需要对自己的教学进行反思,及时调整教学策略和方法,以满足学生的学习需求。例如,可以定期回顾学生的学习情况,了解他们在学习完全平方公式过程中的困惑和问题,然后针对性地进行指导和帮助。
2.问题导向教学策略:通过设计具有挑战性和实际意义的问题,引导学生进行思考和探究,激发学生的求知欲和问题解决能力。这种教学策略能够培养学生的逻辑思维和批判性思维能力,使他们能够独立思考和解决问题。
3.小组合作学习:通过组织学生进行小组合作,鼓励学生进行讨论和交流,促进学生的合作能力和团队意识。这种学习方式能够培养学生的沟通能力和协作能力,同时也能够提高学生的学习效果和满意度。
三、教学策略
(一)情景创设
1.通过生活实例的引入,创设真实的学习情境,激发学生的学习兴趣和好奇心。例如,可以以实际问题为背景,让学生思考如何计算一个矩形的面积,引导学生发现矩形的面积可以通过完全平方公式来简化计算。
人教版八年级数学上册:14.2.2 完全平方公式 教案设计

完全平方公式【教学目标】1.知识与技能:(1)完全平方公式的推导及其应用。
(2)完全平方公式的几何解释。
2.过程与方法:(1)经历探索完全平方公式的过程,进一步发展符号感和推理能力。
(2)重视学生对算理的理解,有意识地培养学生的思维条理性和表达能力。
3.情感、态度与价值观:在灵活应用公式的过程中激发学生学习数学的兴趣,培养创新能力和探索精神。
【教学重点】完全平方公式2)(b a ±= a 2±2ab+b 2的推导及应用。
【教学难点】理解完全平方公式的结构特征。
【教学准备】多媒体投影。
【教学过程】一、问题与情境。
问题:1.请你叙述平方差公式并用字母表示。
2.哪位同学能说一下平方差公式是怎样得到吗?探究:计算下列各式,你能发现什么规律?(1)(p+1)2 =(p+1)(p+1)=_______(2)(m+2)2 =__________(3)(p-1)2 = (p-1) (p-1)= __________(4)(m-2)2= ___________验证:(a+b)2 =(a-b)2 =师生行为:引导学生用语言叙述,学生补充,并指出公式的特征。
学生独立思考并回答老师关注学生的公式形式,并指出字母a. b 的意义。
学生独立完成,交流结果请学生概括自己发现的规律。
概括:完全平方公式:(a+b )2=a 2+2ab+b 2(a-b )2=a 2-2ab+b 2两数和(或差)的平方等于它们的平方和,加(或减)它们的积的2倍。
特征:左边:两个数和或差的平方,是两项式右边:二次三项式,首末是这两数的平方,中间是这两项积的2倍,符号与前面相同。
讨论:你能根据下图中的面积说明完全平方公式吗?应用:例题3:用完全平方公式计算:(1)(4m+n )2 (2) 2)21(-y 解:(1)(4m+n )2是 与 和的平方(4m+n )2=( )2+2( )( )+( )2(a +b )2= a 2 +2 a ∙ b + b 2(2)2)21(-y =( )2-2( )( )+( )2(a -b )2= a 2 -2 a ∙ b + b 2例题4 用完全平方公式计算:(1)1022 ; (2)992 。
人教版数学八年级上册14.2.2完全平方公式教案

(五)总结回顾(用时5分钟)
今天的学习,我们了解了完全平方公式的概念、推导过程、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对完全平方公式的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式的结构及其推导过程这两个重点。对于难点部分,如公式推导和应用,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与完全平方公式相关的实际问题,如计算正方形面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠纸张或使用模型,演示完全平方公式在几何图形中的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10ห้องสมุดไป่ตู้钟)
1.讨论主题:学生将围绕“完全平方公式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
最后,通过这次教学,我认识到教学反思的重要性。在今后的工作中,我将不断总结经验,针对学生的实际情况,调整教学策略,以提高教学效果。同时,我也将关注学生的反馈,了解他们在学习过程中的困难和需求,努力让每位学生都能掌握完全平方公式这一知识点。
(2)完全平方公式的推导:通过多项式乘法展开,验证完全平方公式的正确性;
人教版数学八年级上册14.2.2.1《完全平方公式》教学设计2

人教版数学八年级上册14.2.2.1《完全平方公式》教学设计2一. 教材分析《人教版数学八年级上册》第14章是关于二次根式的,而14.2节开始介绍完全平方公式。
本节课的重点是让学生理解并掌握完全平方公式的推导过程及其应用。
完全平方公式是初中学段数学的重要知识点,也是后续学习更高阶数学的基础。
它不仅在解决实际问题中有着广泛的应用,而且在学习代数式的恒等变形、函数的图像等高级内容时也会用到。
二. 学情分析八年级的学生已经掌握了有理数的运算、整式的乘法等基础知识,具备一定的逻辑思维能力和探索精神。
但是,对于完全平方公式的推导和理解,部分学生可能会感到困难,特别是对于完全平方公式的灵活运用,需要学生在实际问题中找到合适的切入点。
三. 教学目标1.知识与技能目标:学生能够理解完全平方公式的推导过程,掌握完全平方公式的结构特征及其应用。
2.过程与方法目标:通过小组合作、探究活动,培养学生的团队协作能力和问题解决能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:完全平方公式的推导过程及应用。
2.难点:完全平方公式的灵活运用,解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究完全平方公式的推导过程。
2.运用小组合作学习,培养学生的团队协作能力。
3.利用多媒体辅助教学,提高教学效果。
六. 教学准备1.多媒体教学设备。
2.教学课件。
3.练习题。
七. 教学过程导入(5分钟)通过一个实际问题引入:一个正方形的边长增加了1cm,求新的正方形的面积。
让学生尝试解决这个问题,从而引出完全平方公式的需求。
呈现(10分钟)呈现完全平方公式的推导过程,通过多媒体动画展示,让学生直观地理解公式是如何得出的。
操练(10分钟)给学生发放练习题,让学生独立完成。
题目包括填空题、选择题和解答题,涵盖完全平方公式的各个方面。
巩固(10分钟)学生分小组进行讨论,用完全平方公式解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.2.2 完全平方公式(一)
教学目标
1、完全平方公式的推导及其应用;
2、完全平方公式的几何解释。
重点难点
重点:完全平方公式的推导过程、结构特点、几何解释,灵活应用。
难点:理解完全平方公式的结构特征并能灵活应用公式进行计算。
教学设计
一、板书标题,揭示教学目标
教学目标
1、完全平方公式的推导及其应用;
2、完全平方公式的几何解释。
二、指导学生自学
自学内容与要求
看教材:课本第153页------第155页,把你认为重要部分打上记号,完成第155页练习题。
想一想:1、完全平方公式实质是什么运算?
2、第154页思考中的图形是用什么来说明完全平方公式?
3、第155页的思考说明了什么?
8分钟后,检查自学效果
三、学生自学,教师巡视
学生认真自学,并完成P155练习,老师巡视,并指导学生完成练习。
四、检查自学效果
1、计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;
(2)(m+2)2=_______;
(3)(p-1)2=(p-1)(p-1)=________;
(4)(m-2)2=________;
(5)(a+b)2=________;
(6)(a-b)2=________.
2、你能根据图(1)和图(2)中的面积说明完全平方公式吗?
3、学生板演
课本第155页,练习1。
请四位同学到黑板上来计算,其它同学在草稿纸上计算。
五、归纳,矫正,指导运用
1、概念归纳:
文字叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.
符号叙述:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2
2、利用完全平方公式计算:
(1)(-x+2y)2(2)(-x-y)2
(3)(x+y-z)2(4)(x+y)2-(x-y)2
六、随堂练习
1、下面各式的计算是否正确?如果不正确,应当怎样改正?
(1)(x+y)2=x2 +y2
(2)(x -y)2 =x2 -y2
(3) (x -y)2 =x2+2xy +y2
(4) (x+y)2 =x2 +xy +y2
2、运用完全平方公式计算:
(1) (6a+5b)2
(2) (4x-3y)2
(3) (2m-1)2
(4) (1) 1042
(5) 99.992
七、布置作业
课本第156页 2 4 5。