高考数学理一轮总复习必修部分开卷速查42空间点、直线、平面之间的位置关系(含解析)新人教A版
高中数学总复习:空间点、直线、平面之间的位置关系

练后悟通
共面、共线、共点问题的证明方法
目录
高中总复习·数学(提升版)
空间两条直线的位置关系
考向1 空间两条直线位置关系的判断
【例1】 (1)已知α,β,γ是三个平面,α∩β= a ,α∩γ= b ,β∩γ
= c ,且 a ∩ b = O ,则下列结论正确的是(
)
A. 直线 b 与直线 c 可能是异面直线
1, F 四点共面.
目录
高中总复习·数学(提升版)
(2) CE , D 1 F , DA 三线共点;
证明:∵ EF ∥ CD 1, EF < CD 1,
∴ CE 与 D 1 F 必相交,
设交点为 P ,如图所示.
则由 P ∈ CE , CE ⊂平面 ABCD ,
得 P ∈平面 ABCD .
同理 P ∈平面 ADD 1 A 1.
D. 没有公共点
解析: 直线 m 与平面α平行,且直线 a ⊂α,则直线 m 和直线 a 的
位置关系可能平行,可能异面,即没有公共点,但不可能相交,故
选C.
目录
高中总复习·数学(提升版)
2. 如果直线 a ⊂平面α,直线 b ⊂平面β,且α∥β,则 a 与 b (
)
高中总复习·数学(提升版)
2. 在三棱锥 A - BCD 的边 AB , BC , CD , DA 上分别取 E , F , G , H
四点,如果 EF ∩ HG = P ,则点 P (
)
A. 一定在直线 BD 上
B. 一定在直线 AC 上
C. 在直线 AC 或 BD 上
D. 不在直线 AC 上,也不在直线 BD 上
)
目录
高中总复习·数学(提升版)
2022年高考数学总复习:空间点、直线、平面之间的位置关系

第 1 页 共 16 页 2022年高考数学总复习:空间点、直线、平面之间的位置关系
1.四个公理
公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
公理2:过不在一条直线上的三点,有且只有一个平面.
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理
4:平行于同一条直线的两条直线互相平行.
2.直线与直线的位置关系
(1)位置关系的分类
⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行直线相交直线异面直线:不同在任何一个平面内,没有公共点
(2)异面直线所成的角
①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).
②范围:⎝⎛⎦
⎤0,π2. 3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.
4.平面与平面的位置关系有平行、相交两种情况.
5.等角定理
空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
知识拓展
1.唯一性定理
(1)过直线外一点有且只有一条直线与已知直线平行.
(2)过直线外一点有且只有一个平面与已知直线垂直.
(3)过平面外一点有且只有一个平面与已知平面平行.
(4)过平面外一点有且只有一条直线与已知平面垂直.
2.异面直线的判定定理
经过平面内一点的直线与平面内不经过该点的直线互为异面直线.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)。
2025年高考数学一轮复习-7.2-空间点、直线、平面之间的位置关系【课件】

1.(多选)如图,在正方体或四面体中, , , , 分别是所在棱的中点,则这四个点共面的图是( )
不在一条直线上
两个点
一条
基本事实4:平行于同一条直线的两条直线______.
平行
(2)“三个”推论 推论1:经过一条直线和这条直线外一点,有且只有______平面.推论2:经过两条______直线,有且只有一个平面.推论3:经过两条______直线,有且只有一个平面.[提醒] 三点不一定能确定一个平面.当三点共线时,过这三点的平面有无数个,所以必须是不在一条直线上的三点才能确定一个平面.
7.2 空间点、直线、平面之间的位置关系
课标要求
考情分析
1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义.2.了解四个基本事实和一个定理、三个推论,能运用四个基本事实和一个定理、三个推论判断有关命题的真假,并解决一些简单的证明问题.
考点考法:高考命题常考查异面直线的判断问题、平面与平面的交线问题、共点与共面问题.多以选择题的形式出现,也可以作为解答题第(1)问出现.核心素养:数学抽象、逻辑推理、直观想象
相等或互补
3.空间中直线、平面的位置关系
位置关系
符号
直线和平面
直线在平面内
直在平面外
直线与平面相交
直线与平面平行
平面和平面
两平面平行
两平面相交
[提醒] 直线 和平面 相交、直线 和平面 平行统称为直线 在平面 外,记作 .
必备知识 自主排查
核心考点 师生共研
必备知识 自主排查
01
1.平面
(1)四个基本事实基本事实1:过________________的三个点,有且只有一个平面.基本事实2:如果一条直线上的________在一个平面内,那么这条直线在这个平面内.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有________过该点的公共直线.
高考数学(理科)一轮复习:单元八 立体几何 8.3 空间点、直线、平面之间的位置关系

正确;命题④中没有说清三个点是否共线,∴④不正确.
2
解析
关闭
答案
第八章
考点1 考点2 考点3
8.3
空间点、直线、平面之间的位置关系
关键能力
必备知识
-11-
考点 1
平面的基本性质及应用
例1
(1)如图所示,四边形ABEF和ABCD都是直角梯形,∠BAD= 1 1 ∠FAB=90°,BC= 2AD,BE= FA ,G,H分别为FA,FD的中点. 2 ①四边形BCHG的形状是 ; ②点C,D,E,F,G中,能共面的四点是 . (2)在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点 O,AC与BD交于点M,则点O与直线C1M的关系是 . 答案: (1)①平行四边形 ②C,D,E,F
关闭
只有B1C1与EF在同一平面内,是相交的.选项A,B,C中直线与EF都是异面 直线,故选D.
关闭
D
解析 答案
第八章
知识梳理 考点自测
8.3
空间点、直线、平面之间的位置关系
关键能力
必备知识
-8-
1
2
3
4
5
3.已知a,b是异面直线,直线c平行于直线a,则c与b ( A.一定是异面直线 B.一定是相交直线 C.不可能是平行直线 D.不可能是相交直线
)
关闭
由已知得,直线c与b可能为异面直线,也可能为相交直线,但不可能为平行 直线,若b∥c,则a∥b,与已知a,b为异面直线相矛盾.
关闭
C
解析 答案
第八章
知识梳理 考点自测
8.3
空间点、直线、平面之间的位置关系
关键能力
必备知识
-9-
1
高考数学大一轮复习 7.3空间点、直线、平面之间的位置关系 理

4.公理 2 的三个推论 推论 1:经过一条直线和这条直线外一点有且只有一个 平面; 推论 2:经过两条 相交 直线有且只有一个平面; 推论 3:经过两条 平行 直线有且只有一个平面.
整理ppt
公理中“有且只有”一个平面的含义是什么? 提示:平面存在且唯一,“有且只有”有时说成“确 定”.
3 连接 AO,在 Rt△AOD 中,cos∠ADO=DADO=22=34.
整理ppt
求异面直线所成的角常采用“平移线段 法”,平移的方法一般有三种类型:利用图中已有的平行线 平移;利用特殊点(线段的端点或中点)作平行线平移;补形 平移.计算异面直线所成的角通常放在三角形中进行.
整理ppt
(2014·大纲全国卷)已知正四面体 ABCD 中,E 是 AB 的
整理ppt
3.定理 空间中如果两个角的两边分别对应平行,那么这两个角 相等或互补.
整理ppt
(1)不相交的两条直线是异面直线吗? (2)不在同一平面内的直线是异面直线吗? 提示:(1)不一定,不相交的两条直线可能平行,也可能 异面. (2)不一定,不在同一平面内的直线可能异面,也可能平 行.
整理ppt
整理ppt
(2)∵EF 綊12CD1,
∴直线 D1F 和 CE 必相交. 设 D1F∩CE=P.延长 D1F、CE 交于点 P. ∵P∈D1F 且 D1F⊂平面 AA1D1D,∴P∈平面 AA1D1D. 又 P∈EC 且 CE⊂平面 ABCD,∴P∈平面 ABCD,即 P 是平面 ABCD 与平面 AA1D1D 的公共点,而平面 ABCD∩ 平面 AA1D1D=AD,∴P∈AD. ∴CE、D1F、DA 三线共点.
整理ppt
(2)已知空间四边形 ABCD 中,E,H 分别是边 AB,AD 的中点,F,G 分别是边 BC,CD 的中点.
2023版高考数学一轮总复习:空间空间点直线平面之间的位置关系课件理

公理4
平行于同一条直线的两
条直线__________
平行 .
续表
P∈α∩β⇒α (1)证明“三点共线
∩β=l,且
“三线共点”;(2)
P∈l .
________
确定两平面的交线.
若直线
a∥b,b∥c,
a∥c.
判断直线平行.
考点1
平面的基本性质
2. 公理2的推论
推论1
经过一条直线和 直线 外一点,有且只有一个平面.
③¬p2∨p3 ④¬p3∨¬p4
①③④
.
考向1
解析
平面的基本性质及应用
对于p1,由题意设直线l1∩l2=A,l2∩l3=B,l1∩l3=C,则A,B,C三点不
共线,所以此三点确定一个平面α,则A∈α,B∈α,C∈α,所以
AB⊂α,BC⊂α,CA⊂α,即l2⊂α,l3⊂α,l1⊂α,所以p1是真命题.对于p2,当
A.α内的所有直线与a异面
B.α内不存在与a平行的直线
C.α内存在唯一的直线与a平行
D.α内的直线与a都相交
3.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,
则γ与β的交线必通过
A.点A
B.点B
C.点C但不过点M D.点C和点M
( D )
考向扫描
考向1
题,p1∧p2为假命题,¬p2∨p3为真命题,¬p3∨¬p4为真命题.综上可知,真命
题的序号是①③④.
考向1
平面的基本性质及应用
2.典例 [截面交线问题]已知ABCD-A1B1C1D1是正方体,在图 (1)中,E,F分
别是D1C1,B1B的中点,画出图 (1)(2)中有阴影的平面与平面ABCD的交线,
高考数学一轮复习2 第2讲 空间点、直线、平面之间的位置关系

第2讲 空间点、直线、平面之间的位置关系最新考纲考向预测借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义,了解公理1~4及其相关定理.命题趋势主要考查与点、线、面位置关系有关的命题真假判断和求解异面直线所成的角,主要以选择题和填空题的形式出现,主要为中低档题. 核心素养 直观想象、逻辑推理1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行. 2.空间直线的位置关系 (1)位置关系的分类⎩⎨⎧共面直线⎩⎨⎧平行相交异面直线:不同在任何一个平面内 (2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝ ⎛⎦⎥⎤0,π2. (3)等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系 (1)空间中直线和平面的位置关系位置关系图形表示符号表示公共点直线a在平面α内a⊂α有无数个公共点直线在平面外直线a与平面α平行a∥α没有公共点直线a与平面α斜交a∩α=A有且只有一个公共点直线a与平面α垂直a⊥α(2)空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点两平面相交斜交α∩β=l有一条公共直线垂直α⊥β且α∩β=a常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.常见误区1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线即不平行,也不相交.2.在判断直线与平面的位置关系时最易忽视“线在平面内”.1.判断正误(正确的打“√”,错误的打“×”)(1)若P∈α∩β且l是α,β的交线,则P∈l.()(2)三点A,B,C确定一个平面.()(3)若直线a∩b=A,则直线a与b能够确定一个平面.()(4)若A∈l,B∈l且A∈α,B∈α,则l⊂α.()(5)分别在两个平面内的两条直线是异面直线.()答案:(1)√(2)×(3)√(4)√(5)×2.(多选)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系可能是()A.垂直B.相交C.异面D.平行解析:选ABC.依题意,m∩α=A,n⊂α,所以m与n可能异面、相交(垂直是相交的特例),一定不平行.3.若∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1的方向相同,则下列结论中正确的是()A.OB∥O1B1且方向相同B.OB∥O1B1C.OB与O1B1不平行D.OB与O1B1不一定平行解析:选D.两角相等,角的一边平行且方向相同,另一边不一定平行,故选D.4.(易错题)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为________.解析:连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求角,又B1D1=B1C=D1C,所以∠D1B1C=60°.答案:60°5.如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.解析:(1)因为四边形EFGH为菱形,所以EF=EH,故AC=BD.(2)因为四边形EFGH为正方形,所以EF=EH且EF⊥EH,因为EF綊12AC,EH綊12BD,所以AC=BD且AC⊥BD.答案:(1)AC=BD(2)AC=BD且AC⊥BD平面的基本性质如图所示,在正方体ABCD-A1B1C1D中,E,F分别是AB和AA1的中点,求证:E,C,D1,F四点共面.【证明】如图所示,连接CD1,EF,A1B,因为E,F分别是AB和AA1的中点,所以EF∥A1B且EF=12A1B.又因为A1D1綊BC,所以四边形A1BCD1是平行四边形,所以A1B∥CD1,所以EF∥CD1,所以EF与CD1确定一个平面α,所以E,F,C,D1∈α,即E,C,D1,F四点共面.【引申探究】(变问法)若本例条件不变,如何证明“CE,D1F,DA交于一点”?证明:如图,由本例知EF∥CD1,且EF=12CD1,所以四边形CD1FE是梯形,所以CE与D1F必相交,设交点为P,则P∈CE且P∈D1F,又CE⊂平面ABCD,且D1F⊂平面A1ADD1,所以P∈平面ABCD,且P∈平面A1ADD1.又平面ABCD∩平面A1ADD1=AD,所以P∈AD,所以CE,D1F,DA三线交于一点.共面、共线、共点问题的证明方法(1)证明点或线共面:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定的直线上.(3)证明线共点:先证其中两条直线交于一点,再证其他直线经过该点.[提醒]点共线、线共点等都是应用公理3,证明点为两平面的公共点,即证明点在交线上.1.(多选)如图,在长方体ABCD -A1B1C1D1中,O是DB的中点,直线A1C交平面C1BD于点M,则下列结论正确的是()A.C1,M,O三点共线B.C1,M,O,C四点共面C.C1,O,A1,M四点共面D.D1,D,O,M四点共面解析:选ABC.连接A1C1,AC,则AC∩BD=O,又A1C∩平面C1BD=M,所以三点C1,M,O在平面C1BD与平面ACC1A1的交线上,所以C1,M,O三点共线,所以选项A,B,C均正确,选项D错误.2.如图,空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E ,F ,G ,H 四点共面;(2)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线.证明:(1)因为E ,F 分别为AB ,AD 的中点,所以EF ∥BD .在△BCD 中,BGGC =DH HC =12,所以GH ∥BD ,所以EF ∥GH ,所以E ,F ,G ,H 四点共面.(2)因为EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC , 所以P ∈平面ABC .同理P ∈平面ADC . 所以P 为平面ABC 与平面ADC 的公共点, 又平面ABC ∩平面ADC =AC , 所以P ∈AC ,所以P ,A ,C 三点共线.空间两直线的位置关系(2019·高考全国卷Ⅲ)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线【解析】 如图,取CD 的中点F ,连接EF ,EB ,BD ,FN ,因为△CDE 是正三角形,所以EF⊥CD.设CD=2,则EF=3.因为点N是正方形ABCD的中心,所以BD=22,NF=1,BC⊥CD.因为平面ECD⊥平面ABCD,所以EF⊥平面ABCD,BC ⊥平面ECD,所以EF⊥NF,BC⊥EC,所以在Rt△EFN中,EN=2,在Rt△BCE中,EB=22,所以在等腰三角形BDE中,BM=7,所以BM≠EN.易知BM,EN是相交直线.故选B.【答案】 B1.已知a,b是异面直线,A,B是a上的两点,C,D是b上的两点,M,N分别是线段AC,BD的中点,则MN和a的位置关系是()A.异面B.平行C.相交D.以上均有可能解析:选A.若MN与AB平行或相交,则MN与AB共面,设该平面为α.因为C∈直线AM,D∈直线BN,所以C∈α,D∈α,所以b⊂α.又因为A∈α,B∈α,所以a ⊂α.这与a,b异面矛盾.故选A.2.(多选)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,下列说法正确的有()A.直线AM与CC1是相交直线B.直线AM与BN是平行直线C.直线BN与MB1是异面直线D.直线AM与DD1是异面直线解析:选CD.因为点A在平面CDD1C1外,点M在平面CDD1C1内,直线CC1在平面CDD1C1内,CC1不过点M,所以AM与CC1是异面直线,故A错;取DD1的中点E,连接AE(图略),则BN∥AE,但AE与AM相交,故B错;因为B1与BN都在平面BCC1B1内,M在平面BCC1B1外,BN不过点B1,所以BN与MB1是异面直线,故C正确;同理D正确,故选CD.异面直线所成的角(1)如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.(2)四面体ABCD中,E,F分别是AB,CD的中点.若BD,AC所成的角为60°,且BD=AC=1,则EF的长为________.【解析】(1)取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C 是圆柱下底面弧AB 的中点,所以AD ∥BC ,所以直线AC 1与AD 所成的角即为异面直线AC 1与BC 所成的角,因为C 1是圆柱上底面弧A 1B 1的中点,所以C 1D 垂直于圆柱下底面,所以C 1D ⊥AD .因为圆柱的轴截面ABB 1A 1是正方形, 所以C 1D =2AD ,所以直线AC 1与AD 所成角的正切值为2, 所以异面直线AC 1与BC 所成角的正切值为2. (2)如图,取BC 的中点O ,连接OE ,OF ,因为OE ∥AC ,OF ∥BD ,所以OE 与OF 所成的锐角(或直角)即为AC 与BD 所成的角,而AC ,BD 所成角为60°,所以∠EOF =60°或∠EOF =120°.当∠EOF =60°时,EF =OE =OF =12.当∠EOF =120°时,取EF 的中点M ,则OM ⊥EF , EF =2EM =2×34=32. 【答案】 (1)2 (2)12或32平移法求异面直线所成角的步骤具体步骤如下:1.直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°解析:选C.如图,可补成一个正方体,所以AC1∥BD1.所以BA1与AC1所成的角为∠A1BD1.又易知△A1BD1为正三角形.所以∠A1BD1=60°.即BA1与AC1所成的角为60°.2.(2021·济南市学习质量评估)如图,在正方形ABCD中,点E,F分别为BC,AD的中点,将四边形CDFE沿EF翻折,使得平面CDFE⊥平面ABEF,则异面直线BD与CF所成角的余弦值为________.解析:如图,连接DE交FC于点O,取BE的中点G,连接OG,CG,则OG∥BD且OG=12BD,所以∠COG为异面直线BD与CF所成的角或其补角.设正方形ABCD的边长为2,则CE=BE=1,CF=DE=CD2+CE2=5,所以CO=12CF=5 2.易得BE⊥平面CDFE,所以BE⊥DE,所以BD=DE2+BE2=6,所以OG=12BD=6 2.易知CE⊥平面ABEF,所以CE⊥BE,又GE=12BE=12,所以CG=CE2+GE2=52.在△COG中,由余弦定理得,cos∠COG=OC2+OG2-CG22OC·OG=⎝⎛⎭⎪⎫522+⎝⎛⎭⎪⎫622-⎝⎛⎭⎪⎫5222×52×62=3010,所以异面直线BD与CF所成角的余弦值为3010.答案:3010[A级基础练]1.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面解析:选D.依题意,直线b和c的位置关系可能是相交、平行或异面.故选D.2.(多选)下列命题正确的是()A.梯形一定是平面图形B.若两条直线和第三条直线所成的角相等,则这两条直线平行C.两两相交的三条直线最多可以确定三个平面D.若两个平面有三个公共点,则这两个平面重合解析:选AC.对于A,由于两条平行直线确定一个平面,所以梯形可以确定一个平面,故A正确;对于B,两条直线和第三条直线所成的角相等,则这两条直线平行或异面或相交,故B错误;对于C,两两相交的三条直线最多可以确定三个平面,故C正确;对于D,若两个平面有三个公共点,则这两个平面相交或重合,故D错误.3.(2021·安徽蚌埠第二中学期中)在四面体ABCD中,点E,F,G,H分别在直线AD,AB,CD,BC上,若直线EF和GH相交,则它们的交点一定() A.在直线DB上B.在直线AB上C.在直线CB上D.都不对解析:选A.直线EF和GH相交,设其交点为M.因为EF⊂平面ABD,HG⊂平面CBD,所以M∈平面ABD且M∈平面CBD.因为平面ABD∩平面BCD=BD,所以M∈BD,所以EF与HG的交点在直线BD上.故选A.4.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()A.直线AC B.直线ABC.直线CD D.直线BC解析:选C.由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.5.如图,在三棱柱ABC-A1B1C1中,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是()A.CC1与B1E是异面直线B.C1C与AE共面C.AE与B1C1是异面直线D.AE与B1C1所成的角为60°解析:选C.由于CC1与B1E都在平面C1B1BC内,故C1C与B1E是共面的,所以A错误;由于C1C在平面C1B1BC内,而AE与平面C1B1BC相交于E点,点E不在C1C上,故C1C与AE是异面直线,B错误;同理AE与B1C1是异面直线,C正确;而AE与B1C1所成的角就是AE与BC所成的角,E为BC中点,△ABC为正三角形,所以AE⊥BC,D错误.6.已知棱长为a的正方体ABCD-A′B′C′D′中,M,N分别为CD,AD的中点,则MN 与A ′C ′的位置关系是________.解析:如图,由题意可知MN ∥AC .又因为AC ∥A ′C ′,所以MN ∥A ′C ′.答案:平行7.(2020·高考全国卷Ⅰ)如图,在三棱锥P -ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =________.解析:依题意得,AE =AD =3,在△AEC 中,AC =1,∠CAE =30°,由余弦定理得EC 2=AE 2+AC 2-2AE ·AC cos ∠EAC =3+1-23cos 30°=1,所以EC =1,所以CF =EC =1.又BC =AC2+AB2=1+3=2,BF =BD =AD2+AB2=6,所以在△BCF 中,由余弦定理得cos ∠FCB =BC2+CF2-BF22BC×CF =22+12-(6)22×2×1=-14.答案:-148.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,则异面直线AP 与BD 所成的角为________.解析:如图,将原图补成正方体ABCD -QGHP ,连接AG ,GP ,则GP ∥BD ,所以∠APG 为异面直线AP 与BD 所成的角,在△AGP 中,AG =GP =AP ,所以∠APG =π3. 答案:π39.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是AA 1,D 1C 1的中点,过D ,M ,N 三点的平面与正方体的下底面相交于直线l .(1)画出l 的位置;(2)设l ∩A 1B 1=P ,求PB 1的长.解:(1)如图,延长DM 与D 1A 1交于点O ,连接NO ,则直线NO 即为直线l .(2)因为l ∩A 1B 1=P ,则易知直线NO 与A 1B 1的交点即为P .所以A 1M ∥DD 1,且M ,N 分别是AA 1,D 1C 1的中点,所以A 1也为D 1O 的中点.由图可知A1P D1N =OA1OD1=12,所以A 1P =a 4,从而可知PB 1=3a 4. 10.如图所示,A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角.解:(1)证明:假设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A,B,C,D在同一平面内,这与A是△BCD所在平面外的一点相矛盾.故直线EF与BD是异面直线.(2)取CD的中点G,连接EG,FG,则AC∥FG,EG∥BD,所以相交直线EF与EG所成的角,即为异面直线EF与BD所成的角.又因为AC⊥BD,则FG⊥EG.在Rt△EGF中,由EG=FG=12AC,求得∠FEG=45°,即异面直线EF与BD所成的角为45°.[B级综合练]11.已知直线l⊄平面α,直线m⊂平面α,给出下面四个结论:①若l与m不垂直,则l与α一定不垂直;②若l与m所成的角为30°,则l与α所成的角也为30°;③l∥m是l∥α的必要不充分条件;④若l与α相交,则l与m一定是异面直线.其中正确结论的个数为()A.1B.2C.3D.4解析:选 A.对于①,当l与m不垂直时,假设l⊥α,那么由l⊥α一定能得到l⊥m,这与已知条件矛盾,因此l与α一定不垂直,故①正确;对于②,易知l与m所成的角为30°时,l与α所成的角不一定为30°,故②不正确;对于③,l∥m可以推出l∥α,但是l∥α不能推出l∥m,因此l∥m是l∥α的充分不必要条件,故③不正确;对于④,若l与α相交,则l与m相交或异面,故④不正确.故正确结论的个数为1,选A.12.如图,在正方体ABCD-A′B′C′D′中,平面α垂直于对角线AC′,且平面α截得正方体的六个表面得到截面六边形,记此截面六边形的面积为S,周长为l,则()A .S 为定值,l 不为定值B .S 不为定值,l 为定值C .S 与l 均为定值D .S 与l 均不为定值 解析:选 B.设平面α截得正方体的六个表面得到截面六边形ω,ω与正方体的棱的交点分别为I ,J ,N ,M ,L ,K (如图).将正方体切去两个正三棱锥A A ′BD 和C ′-B ′CD ′,得到一个几何体V ,则V 的上、下底面B ′CD ′与A ′BD 互相平行,每个侧面都是等腰直角三角形,截面六边形ω的每一条边分别与V 的底面上的每一条边平行.设正方体的棱长为a ,A′K A′B′=γ,则IK =γB ′D ′=2a γ,KL =(1-γ)A ′B =2a (1-γ),故IK +KL =2a γ+2a (1-γ)=2a .同理可证LM +MN =NJ +IJ =2a ,故六边形ω周长为32a ,即周长为定值.当I ,J ,N ,M ,L ,K 都在对应棱的中点时,ω是正六边形.其面积S =6×12×⎝ ⎛⎭⎪⎫22a 2×32=334a 2,△A ′BD 的面积为12×(2a )2×32=32a 2,当ω无限趋近于△A ′BD 时,ω的面积无限趋近于32a 2,故ω的面积一定会发生变化,不为定值.故选B.13.如图,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC 綊12AD ,BE 綊12F A ,G ,H 分别为F A ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?解:(1)证明:由已知FG =GA ,FH =HD 可得GH 綊12AD .又BC 綊12AD ,所以GH綊BC .所以四边形BCHG 为平行四边形.(2)C ,D ,F ,E 四点共面,理由如下:由BE 綊12AF ,G 为F A 的中点知,BE 綊FG ,所以四边形BEFG 为平行四边形,所以EF ∥BG .由(1)知BG ∥CH ,所以EF ∥CH ,所以EF 与CH 共面,又D ∈FH ,所以C ,D ,F ,E 四点共面.14.如图,E ,F ,G ,H 分别是空间四边形ABCD 各边上的点,且AE ∶EB =AH ∶HD =m ,CF ∶FB =CG ∶GD =n .(1)证明:E ,F ,G ,H 四点共面;(2)m ,n 满足什么条件时,四边形EFGH 是平行四边形?(3)在(2)的条件下,若AC ⊥BD ,试证明:EG =FH .解:(1)证明:因为AE ∶EB =AH ∶HD ,所以EH ∥BD .又CF ∶FB =CG ∶GD ,所以FG ∥BD .所以EH ∥FG .所以E ,F ,G ,H 四点共面.(2)当m =n 时,四边形EFGH 为平行四边形,理由如下:当EH ∥FG ,且EH =FG 时,四边形EFGH 为平行四边形.因为EH BD =AE AE +EB =m m +1,所以EH =m m +1BD . 同理可得FG =nn +1BD ,由EH =FG ,得m =n .故当m =n 时,四边形EFGH 为平行四边形.(3)证明:当m =n 时,AE ∶EB =CF ∶FB ,所以EF∥AC,又EH∥BD,所以∠FEH是AC与BD所成的角(或其补角),因为AC⊥BD,所以∠FEH=90°,从而平行四边形EFGH为矩形,所以EG=FH.[C级创新练]15.平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A.32 B.22 C.33 D.13解析:选A.如图所示,设平面CB1D1∩平面ABCD=m1,因为α∥平面CB1D1,则m1∥m,又因为平面ABCD∥平面A1B1C1D1,平面CB1D1∩平面A1B1C1D1=B1D1,所以B1D1∥m1,所以B1D1∥m,同理可得CD1∥n.故m,n所成角的大小与B1D1,CD1所成角的大小相等,即∠CD1B1的大小.又因为B1C=B1D1=CD1(均为面对角线),所以∠CD1B1=π3,得sin∠CD1B1=32,故选A.16.(2020·新高考卷Ⅰ)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,5为半径的球面与侧面BCC1B1的交线长为________.21 / 21 解析:如图,连接B 1D 1,易知△B 1C 1D 1为正三角形,所以B 1D 1=C 1D 1=2.分别取B 1C 1,BB 1,CC 1的中点M ,G ,H ,连接D 1M ,D 1G ,D 1H ,则易得D 1G =D 1H =22+12=5,D 1M ⊥B 1C 1,且D 1M =3.由题意知G ,H 分别是BB 1,CC 1与球面的交点.在侧面BCC 1B 1内任取一点P ,使MP =2,连接D 1P ,则D 1P = D1M2+MP2=(3)2+(2)2=5,连接MG ,MH ,易得MG =MH =2,故可知以M 为圆心,2为半径的圆弧GH 为球面与侧面BCC 1B 1的交线.由∠B 1MG =∠C 1MH =45°知∠GMH =90°,所以GH ︵的长为14×2π×2=2π2.答案:2π2。
高考数学第一轮知识点总复习 第三节 空间点、直线、平面之间的位置关系

(2)EF∥GH,但EF≠GH,故EFHG是梯形. 如图,设FH与EG交于O点,
则O∈FH 平面DAC,O∈EG 平面BAC,
∴O∈(平面DAC∩平面BAC)=AC, 即直线AC过O点, 故三直线FH、EG、AC共点.
易错警示
【例】过已知直线a外一点P,与直线a上的四个 点A、B、C、D分别画四条直线. 求证:这四条直线在同一平面内.
(3)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互 补.
(4)异面直线的夹角 ①定义:已知两条异面直线a、b,经过空间任意一点O作直线a′∥a,b′∥b, 我们把两相交直线a′、b′所成的角叫做异面直线a、b所成的角(或夹 角).
②两范条直围线:垂θ∈直(,0记, 作2].特a⊥别b地. ,如果两异面直线所成的角是
交点分别是M,N,P,Q,R,G,由直线a∩b=M,知直线a和
b确定平面α.由a∩c=N,b∩c=Q,知点N、Q都在平面
α内,故c α.同理可证d α,故直线a,b,c,d共面于α.
由(1)、(2)可知,两两相交且不共点的四条直线必在同
一平面内.
学后反思 证多线共面的方法: (1)以公理、推论为依据先证两直线共面,然后再由公理1证第三条也 在这个平面内.同理其他直线都在这个平面内. (2)先由部分直线确定平面,再由其他直线确定平面,然后证明这些平 面重合.
如果不重合的两个平面 有一个公共点,那么它们 有且只有一条过这个点
的公共直线
若P∈α,P∈β,则 α∩β=a,且P∈a
公理4
公推 理 论1 2 的推 推 论2 论
推 论3
平行于同一条直 线的两条直线互 相平行 经过一条直线和 直线外一点,有且 只有一个平面 两条相交直线确 定一个平面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开卷速查(四十二) 空间点、直线、平面之间的位置关系
A级基础巩固练
1.平面α∩β=l,点A∈α,点B∈α,且C∉l,C∈β,又AB∩l=R,如图所示,过A、B、C三点确定的平面为γ,则β∩γ是( )
A.直线AC
B.直线BC
C.直线CR
D.直线AR
解析:由已知条件可知,C∈γ,AB∩l=R,AB⊂γ,
∴R∈γ.又∵C,R∈β,故CR=β∩γ.
答案:C
2.如图所示,A BCDA1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是( )
A.A、M、O三点共线
B.A、M、O、A1不共面
C.A、M、C、O不共面
D.B、B1、O、M共面
解析:连接A1C1,AC,则A1C1∥AC,
∴A1、C1、C、A四点共面.
∴A1C⊂平面ACC1A1.
∵M∈A1C,∴M∈平面ACC1A1.
又M∈平面AB1D1,
∴M为平面ACC1A1与AB1D1的公共点.
同理OA为平面ACC1A1与平面AB1D1的公共点.
∴A、M、O三点共线.
答案:A
3.正方体AC1中,E、F分别是线段BC、CD1的中点,则直线A1B与直线EF的位置关系是( )
A.相交B.异面C.平行D.垂直
解析:如图所示,直线A1B与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交.
答案:A
4.设P表示一个点,a、b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是( )
①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P∈α⇒b ⊂α;④α∩β=b,P∈α,P∈β⇒P∈b
A.①② B.②③ C.①④D.③④
解析:当a∩α=P时,P∈a,P∈α,但a⊄α,∴①错;a∩β=P时,②错;
如图,∵a∥b,P∈b,∴P∉a,
∴由直线a与点P确定唯一平面α,
又a∥b,由a与b确定唯一平面β,但β经过直线a与点P,∴β与α重合,∴b⊂α,故③正确;
两个平面的公共点必在其交线上,故④正确.
答案:D
5.在正四棱锥VABCD中,底面正方形ABCD的边长为1,侧棱长为2,则异面直线VA 与BD所成角的大小为( )
A.π
6
B.
π
4
C.π
3
D.
π
2
解析:如图所示,设AC∩BD=O ,连接VO ,由于四棱锥VABCD 是正四棱锥,所以VO⊥平面ABCD ,故BD⊥VO.又四边形ABCD 是正方形,所以BD⊥AC,所以BD⊥平面VAC.所以BD⊥VA,即异面直线VA 与BD 所成角的大小为π2
. 答案:D
6.已知l ,m ,n 是空间中的三条直线,命题p :若m⊥l,n⊥l,则m∥n;命题q :若直线l ,m ,n 两两相交,则直线l ,m ,n 共面,则下列命题为真命题的是( ) A .p∧q
B .p∨q
C .p∨(綈q)
D .(綈p)∧q
解析:命题p 中,m ,n 可能平行、还可能相交或异面,所以命题p 为假命题;命题q 中,当三条直线交于三个不同的点时,三条直线一定共面,当三条直线交于一点时,三条直线不一定共面,所以命题q 也为假命题.所以綈p 和綈q 都为真命题,故p∨(綈q)为真命题.选C .
答案:C
7.下列如图所示是正方体和正四面体,P 、Q 、R 、S 分别是所在棱的中点,则四个点共面的图形是______.
①②③④
解析:在④图中,可证Q点所在棱与面PRS平行,因此,P、Q、R、S四点不共面.可证①中四边形PQRS为梯形;③中可证四边形PQRS为平行四边形;②中如图所示取A1A与BC的中点为M、N可证明PMQNRS为平面图形,且PMQNRS为正六边形.
答案:①②③
8.如图,在正方体ABCDA1B1C1D1中,M、N分别是棱CD、CC1的中点,则异面直线A1M与DN所成的角的大小是__________.
解析:如图,连接D1M,可证D1M⊥DN.
又∵A1D1⊥DN,A1D1,MD1⊂平面A1MD1,A1D1∩MD1=D1,∴DN⊥平面A1MD1,
∴DN⊥A1M,即夹角为90°.
答案:90°
9.如图所示,在正三棱柱ABCA 1B 1C 1中,D 是AC 的中点,AA 1∶AB=2∶1,则异面直线AB 1与BD 所成的角为________.
解析:在平面ABC 内,过A 作DB 的平行线AE ,过B 作BH⊥AE 于H ,连接B 1H ,则在Rt △AHB 1中,∠B 1AH 为AB 1与BD 所成角.设AB =1,则A 1A =2,∴B 1A =3,AH =BD =
32
, ∴cos ∠B 1AH =AH AB 1=12
, ∴∠B 1AH =60°.
答案:60°
10.如图,四边形ABEF 和ABCD 都是直角梯形,∠BAD=∠FAB=90°,BC 綊12
AD ,BE 綊12
FA ,G 、H 分别为FA 、FD 的中点.
(1)证明:四边形BCHG 是平行四边形.
(2)C 、D 、F 、E 四点是否共面?为什么?
解析:(1)由已知FG =GA ,FH =HD ,
可得GH 綊12
AD. 又BC 綊12
AD ,∴GH 綊BC. ∴四边形BCHG 为平行四边形.
(2)方法一:由BE 綊12
AF ,G 为FA 中点知,BE 綊FG , ∴四边形BEFG 为平行四边形.
∴EF∥BG.由(1)知BG∥CH,
∴EF∥CH,∴EF 与CH 共面.
又D∈FH,∴C、D 、F 、E 四点共面.
方法二:如图,延长FE ,DC 分别与AB 交于点M ,M′,
∵BE 綊12
AF , ∴B 为MA 中点.
∵BC 綊12
AD , ∴B 为M′A 中点.
∴M 与M′重合,即FE 与DC 交于点M(M′).
∴C、D 、F 、E 四点共面.
B 级 能力提升练
11.一个正方体的展开图如图所示,A 、B 、C 、D 为原正方体的顶点,则在原来的正方体
中( )
A.AB∥CD
B.AB与CD相交
C.AB⊥CD
D.AB与CD所成的角为60°
解析:如图,把展开图中的各正方形按图1所示的方式分别作为正方体的前、后、左、右、上、下面还原,得到图2所示的直观图,可见选项A,B,C不正确.∴正确选项为D.图2中,BE∥CD,∠ABE为AB与CD所成的角,△ABE为等边三角形,∴∠ABE=60°.
图1
图2
答案:D 12.[2014·课标全国Ⅱ]直三棱柱ABC -A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )
A .110
B .25
C .3010
D .22
解析:建立如图所示的空间直角坐标系C -xyz ,设BC =2,则B(0,2,0),A(2,0,0),
M(1,1,2),N(1,0,2),所以BM →=(1,-1,2),AN →=(-1,0,2),故BM 与AN 所成角θ的余弦
值cos θ=|BM →·AN →||BM →|·|AN →|=36×5=3010. 答案:C
13.设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是( )
A .(0,2)
B .(0,3)
C .(1,2)
D .(1,3)
解析:如图所示的四面体ABCD 中,设AB =a ,则由题意可得CD =2,其他边的长都为1,故三角形ACD 及三角形BCD 都是以CD 为斜边的等腰直角三角形,显然a>0.取CD 中点E ,连接AE ,BE ,则AE⊥CD,BE⊥CD 且AE =BE =
1-⎝ ⎛⎭⎪⎫222=22,显然A ,B ,E 三点能构成三角形,应满足任意两边之和大于
第三边,可得2×
22>a ,解得0<a< 2. 答案:A
14.(1)已知异面直线a 与b 所成的角θ=60°,P 为空间一点,则过P 点与a 和b 所成角φ=45°的直线有几条?
(2)已知异面直线a 与b 所成的角θ=60°,P 为空间一点,则过P 点与a 和b 所成角φ=60°的直线有几条?
(3)已知异面直线a 与b 所成的角θ=60°,P 为空间一点,则过P 点与a 与b 所成角φ=70°的直线有几条?
解析:过点P 作直线a′∥a,b′∥b,且a′与b′所确定的平面为α.
(1)过P 点在平面α外存在两条直线与a 、b 所成的角为45°.
(2)过P点在平面α内存在一条直线(120°的角平分线)与a、b所成的角为60°;过P 点在平面α外存在两条直线与a、b所成的角为60°,则与a、b所成的角为60°的直线有3条.
(3)过P点在平面α外a′、b′成60°夹角平分线上、下存在两条直线与a、b所成的角为70°,过P点在平面α外a′、b′成120°夹角平分线上、下存在两条直线与a、b所成的角为70°,则与a、b所成的角为70°的直线有4条.。