杆梁结构的有限元分析原理

合集下载

杆梁结构的有限元分析原理

杆梁结构的有限元分析原理

e
下面考察该简单问题的FEA求解过程。 (1) 离散化
两个杆单元,即:单元①和单元②
(2) 单元的特征及表达
对于二结点杆单元,设该单元的位移场为 么它的两个结点条件为
,那
设该单元的位移场具有模式(考虑两个待定系数)
利用结点条件,可以确定系数a0和a1,即
将系数a0和a1代入
,可将
表达成结点位移(u1, u2)的关系,即
其中, 为整体坐标系下的单元刚度矩阵, 为 整体坐标系下的结点力,即
由最小势能原理(针对该单元),将 对待定的 结点位移向量 取一阶极小值,有整体坐标系中 的刚度方程
对于本节给出的杆单元,具体有
4.3.3 空间问题中杆单元的坐标变换
就空间问题中杆单元,局部坐标系下的结点位移还 是 而整体坐标系中的结点位移为
这时由全部结点位移[0 u2 u3]分段所插值 出的位移场为全场许可位移场。
由最小势能原理(即针对未知位移u2和u3求 一阶导数),有
可解出
(5) 计算每个单元的应变及应力
在求得了所有的结点位移后,由几何方程
可求得各单元的应变
由方程 可求得各单元的应力
(6) 求结点1的支反力
就单元 ①的势能,对相应的结点位移求极值,可以 建立该单元的平衡方程,即
其中
由一维问题几何方程和物理方程,则该单元 的应变和应力为
其中
单元的势能
其中 叫做单元刚度矩阵。
叫做单元结点外载。
在得到“特征单元”的单元刚度矩阵和单元 结点外载后,就可以计算该单元的势能,因 此,计算各单元的矩阵 和 是一个关 键,下面就本题给出了个单元的 和 。
具体就单元①,有 单元①的结点位移向量
(5) 单元的刚度方程

2_杆系结构有限元分析1

2_杆系结构有限元分析1

( x) Nii N j j
x x N 1 , N 其中 i 为形函数。 j l l
由材料力学扭转可知
d dN e e M GI p GI p θ GI p B θ dx dx
其中 B
dN 1 1 dx l l
§1-2 扭转杆单元
e
外力势能 V u
e

e T
fe
e
1 e T e e e T 总势能 U V u K u u f e 2
e e
§1-1 拉(压)杆单元
1 e T e e e T U V u K u u f e 2
e e e
根据最小势能原理,势能泛函取驻值的必要条件
空间杆单元坐标变换矩阵
0 T 0
单元在两个坐标系中刚度矩阵转换关系同样有
K e T T K ' T
e
矩阵中仅仅包含有坐标的倾角,仅平行移动坐标轴,刚度矩阵 中元素值不变,矩阵的阶数也不改变。
§1-2 扭转杆单元
结点位移向量θe i , j
T
结点力向量
平衡关系
杆单元结点力向量
f U i
e
Uj
T
单元在外力和内力作用下处于平衡状态,反映单元平衡状态 的关系式就是刚度方程。下面利用最小势能原理推导单元的 刚度方程。 最小势能原理:在满足连续条件和边界条件的位移中,满足 平衡条件的位移其总势能最小,反之亦然。 单元总势能
e U e V e
M e Mi , M j
T
杆件发生自由扭转时,待求位移是截面的扭转角 ( x) 在局部坐标系中,每一个点将具有一个基本未知位移,最简单 的单元位移函数可以设为

2 杆系结构有限元法

2 杆系结构有限元法

{F } = [K ]{δ }
[K ]
称为对应于施加在系统上各节点力的刚度矩阵。
问题: 1、复杂结构其刚度矩阵是多少阶的? 2、如何求出? 3、为什么着重讨论系统的刚度矩阵? 系统的整体刚度矩阵-求出所受外力作 用下各杆件节点处的位移-计算各杆件的 受力和应力
2-2 弹簧系统的刚度矩阵
一、单个弹簧的刚度矩阵
0 u1 = 0 − kb u 2 k b u3
从而可得到定解。通过解上述方程可得到各个节点的位移,利用已求得的位 移就可计算出每个弹簧所受力的大小。
弹簧1-2受力 pa=ka×(弹簧1-2长度的变化量) pa=ka×(u2-u1)
有限元方法求解弹簧系统受力问题的基本步骤: ①形成每个单元的刚度矩阵
(b) F1c
u1=0
2-3 有压力kbu2 F2b = (k a + kb )u2 分别对两弹簧求静力平衡,有 F1b = −k a u 2 , F3b = − kbu2
ka
F2c
u2=0
kb
u3,F3c
3) 只允许节点3有位移u3,类似于情况1),有
F3c = kb u3 , F2 c = − F3c = −kbu3
0 0 0 k 2 22 2 0 k32
0 2 k 23 2 k33
三、方程求解(约束条件的引入)
由式(2-6)和式(2-8)可知,刚度矩阵是一个奇异阵,即它的行列 式的值为零,矩阵的逆不存在。 对应线性代数方程组式(2-7)和式(2-9)无定解。 物理概念解释:对整个系统的位移u1、 u2和 u3,没有加以限制,从而在 任何外力的作用下系统会发生刚体运动。
− ka k a + kb − kb

杆梁结构的有限元分析原理[详细]

杆梁结构的有限元分析原理[详细]

le
EAe
le
EAe
u1 u2
P1
le
P2
u1 u2
1 qeTK eqe PeTqe 2
刚度矩阵
节点力列阵
3)离散单元的装配
在得到各个单元的势能表达式后,需要进行离散单元的装配,以
求出整个系统的总势能,对于该系统,总势能包括两个单元部分
e 1 2
1 q1T K1q1 q2T K 2q2 P1Tq1 P2Tq2 2
第4章 杆系结构的有限元分析原理
杆梁单元概述
讨论杆梁单元和由它们组成的平面和空间杆梁结构系统. 从构造上来说其长度远大于其截面尺寸的一维构件 承受轴力或扭矩的杆件成为杆 杆梁问题都有精确解 承受横向力和弯矩的杆件称为梁 平面桁架 平面刚架 连续梁 空间刚架 空间桁架等 承受轴力或扭矩的杆件称为杆 将承受横向力和弯矩的杆件称为梁 变截面杆和弯曲杆件
单元节点条件:u(0)=u1, u(l)=u2
从而得
a0 ui ,
a1
uj
le
ui
i
1,
j
2
回代得
u(x) a0 a1x
ui
u j ui le
x
1
x le
ui
x le
u
j
Niui N ju j
其中Ni,Nj是形函数。
写成矩阵形式为
q Niu Nqe
N
ju
ui u j
1 2
u1
EA1
u2
l1 EA1
l1
EA1
l1
EA1
u1 u2
R1
l1
0
u1 u2
1 2
u2
EA2

杆梁结构有限元分析

杆梁结构有限元分析

3.1 杆梁结构的直接解法
机械分社
(1)平面压杆有限元法的直接法
由节点平衡有: 即有:
U1(1)u1 U1(1)u2 N1
U
u (1)
21
(U
(2 2
)
U
(1) 2
)u2
U
(2 2
)u3
F1
U
(2 3
)
u2
U
(2 3
)
u3
F2
EA1 l1
u1
EA1 l1
u2
N1
EA1 l1
u1
( EA1 l1
3.1 杆梁结构的直接解法
机械分社
杆梁结构是指长度远大于其横截面尺寸的构件组成的杆 件系统,例如机床中的传动轴,厂房刚架与桥梁结构中的梁 杆等,可以用杆单元或梁单元来进行离散化。
空间杆系:平面杆系是指各杆轴线和外力作用线位于一 个平面内,若各杆轴线和外力作用线不在一个平面内。 (1)平面压杆有限元法的直接法
单元刚度矩阵每一列元素表示一组平衡力系,对于平面 问题,每列元素之和为零。
3.1 杆梁结构的直接解法
机械分社
(2)平面梁单元有限元法的直接法 2)节点位移与节点力之间的关系
Ui
Vi
k11
k21
M i U j
k31
k41
V
j
M j
k51
k61
他们在轴和轴的投影之和等于零:
vi
6EI l2
i
12EI l3
vj
6EI l2
j
M
j
6EI l2
vi
2EI l
i
6EI l2
vj
4EI l

第五章杆系结构的有限元法

第五章杆系结构的有限元法

第五章 杆系结构的有限元法 5.1 引言杆系结构是工程中应用较为广泛的结构体系,包括平面或空间形式的梁、桁架、刚架、拱等。

其组成形式虽然复杂多样,但用计算机进行分析时却较为简单。

杆系结构中的每个杆件都是一个明显的单元。

杆件的两个端点自然形成有限元法的节点,杆件与杆件之间则用节点相连接。

显然,只要建立起杆件两端位移与杆端力之间的关系,则整体平衡方程的建立与前几章完全相同。

杆端位移与杆端力之间的关系,可用多种方法建立,包括前面几章一直采用的虚功原理,但是采用材料力学、结构力学的某些结论,不仅物理概念清晰、直观,而且推导过程简单明了。

因此,本章将采用这种方法进行单元分析。

至于整体平衡方程的建立,则和前面几章所讲的方法一样,即借助于单位定位向量,利用单元集成法进行。

5.2 平面桁架的有限元分析平面桁架在计算上有以下几个特点: 1. 杆件的每个节点仅有两个线位移; 2. 杆件之间的连接为理想铰,即在节点处各杆件可相对自由转动,且杆件轴线交于一点。

3. 外载荷均为作用于节点的集中力。

由于以上特点,所以在理论上各杆件只产生轴向拉、压力,截面应力分布均匀,材料可得到充分利用,因此桁架结构往往用于大跨结构。

5.2.1 局部坐标系下的单元刚度矩阵从平面桁架中任取一根杆件作为单元,称作桁架单元,单元长为L ,横截面面积为A ,图5.1。

两端节点分别用i 和j 表示,规定从i 到j 的连线方向为局部坐标x 轴,垂直于x 的方向为y 轴。

图5.1由于桁架中各杆只产生轴向力和轴向变形,所以节点i 和j 只发生沿x 方向的位移,用i u 和j u 表示,相应的杆端轴力分别用xi F 和xj F 表示。

由虎克定律可推得)()()(j i i j xj j i xi u u L EA u u L EA F u u LEAF --=-=-=将这两个式子写成矩阵形式,就是e j i exj xi u u L EA LEA L EA L EA F F ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ (5.1)显然,在局部坐标系下,i 、j 两节点沿y 轴方向的位移0==j i v v ,在y 轴方向的节点力0==yj yi F F 。

有限元-梁系结构的有限元法

有限元-梁系结构的有限元法

4x l
3x 2 l2
) i
x l
(3x l
2)
j
容易验证 : x 0: u ui v vi i x l: u u j v v j j
(3-1a),(3-1b)或(3-2a),(3-2b)称为平面梁单元的位移插值 函数
二、建立节点位移与节点力关系
1、 轴向节点力
E Fx A
拉压杆问题的回顾
1、杆的基本概念:
杆--轴线为直线的细长构件,沿轴线承受 拉(压)载荷; 杆模型--平面假设将杆简化为一维问题, 可由杆轴线代表; 杆变形特点--只与轴向位移相关;
拉压杆问题的回顾
2、杆有限元的基本概念
节点位移—轴向位移,每节点1个自由度; 节点力—轴力; 结构离散:轴线划分为若干直线段; 单元分析:建立节点力与节点位移关系; 节点平衡:对每一节点,建立相关节点力与 外力的平衡关系,得到一线性方程组; 约束处理:引入已知节点位移,使方程组可解
梁系结构实例
2、平面梁系
1、节点力平衡的需求--单元节点力(在 局部坐标系中)向整体坐标系的变换; 2、单元分析的需求--节点位移(在整体 坐标系中)向局部坐标系的变换; 3、结构对称性的利用(练习,作业3)。
l2 2EI
l
0
Vi
i
u
j
(3-4)
6EI l2
4EI
V
j j
l
(3-4)式是用矩阵表示的梁节点力与节点位移的关系
式(3-4)还可写成:
F
e
K e
e
(3-5)
e
F
——称为局部坐标下的节点力列向量
e ——称为局部坐标下的节点位移列向量
e
K

第5章 杆、梁结构有限元分析

第5章 杆、梁结构有限元分析

Q1l 2 M 1l 转角: i 0 2EI EI 6EI M i 2 a21 l M j Qi l M i a41
即求得了单元刚度矩阵[K]中第一列的四个元素:(分别等于上述四个结点力)
12EI a11 3 l
6EI a21 2 l
12EI a31 3 l
5.2 平面梁单元
5.2.4 铰结点的处理
在杆件系统中会遇到一些杆件通过铰结点和其它杆件相联结。 如图的框架结构,4根杆件汇交于结点4,杆件②与结点4铰接,其它杆则为 在这种结点(结点4)上应该注意到: 刚接。 (1) 结点4上各杆具有相同的线位移, 但截面转动不相同。
刚接于结点上的各杆具有相同的截面转动, 而与之铰接的杆件却具有另外的截面转动。 例如在图示结构中,在受载后,在结点4,杆 件③,④,⑥将具有相同的截面转动,而杆 件②则具有与其它杆件不同的截面转动。
(2) 结点上具有铰接的杆端不承受弯矩,因此在结点上只有刚接的各 杆杆端弯矩参与结点的力矩平衡。
杆件②在铰接端的杆端弯矩为零,只有杆件③,④,⑥在结点4上与外弯矩保 持平衡。
单元②的铰接端,只有位移自由度参加总体集成,而转动自由度是不参加集 成的。 对于单元②来说,此自由度属于内部自由度性质,为算法的方便起见,在总 体集成前,应在单元层次上将此自由度凝聚掉。具体方法 (参见王勖成的有 限单元法基本原理),略。 对于一端为铰接的单元:
e e {a } [T ]{a}
同理:
e e {P } [T]{P}
e
K
[T ] K [T ]
T e
5.1 平面杆单元
5.1.4 任意取向的平面杆单元
{a}e [T ]{a}e {P}e [T]{P}e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档