2018届高考数学二轮解答题滚动练1专题卷(全国通用)

合集下载

2018届高考数学文科二轮复习(全国通用):阶段滚动练1(对应1~3练) Word版含解析

2018届高考数学文科二轮复习(全国通用):阶段滚动练1(对应1~3练) Word版含解析

阶段滚动练1(对应1~3练)(建议时间:60分钟)一、选择题1.已知集合A ={x |x 2-2x ≤0},B ={-1,0,1,2},则A ∩B 等于( )A.[0,2]B.{0,1,2}C.(-1,2)D.{-1,0,1}答案 B解析 ∵集合A ={x |x 2-2x ≤0}={x |0≤x ≤2},B ={-1,0,1,2},∴A ∩B ={0,1,2},故选B.2.(2017·山东)设集合M ={x ||x -1|<1},N ={x |x <2},则M ∩N 等于( )A.(-1,1)B.(-1,2)C.(0,2)D.(1,2) 答案 C解析 ∵M ={x |0<x <2},N ={x |x <2},∴M ∩N ={x |0<x <2}∩{x |x <2}={x |0<x <2}.故选C.3.已知i 为虚数单位,复数z 满足()1+3i 2z =1-i 3,则||z 等于( )A.12B.22C.24D.216答案 C解析 由题意得,z =1-i 3()1+3i 2=1+i -2+23i ⇒||z =⎪⎪⎪⎪⎪⎪1+i -2+23i =24,故选C. 4.“1x>1”是“e x -1<1”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析 1x>1⇔x ∈(0,1),e x -1<1⇔x <1, 所以为充分不必要条件,故选A.5.(2017·梅州一检)已知命题p :∀x ∈R ,2x +12x >2,命题q :∃x 0∈⎣⎡⎦⎤0,π2,使sin x 0+cos x 0=12,则下列命题中为真命题的是( ) A.(綈p )∧(綈q ) B.(綈p )∧q C.p ∧(綈q ) D.p ∧q答案 A解析 因为命题p 为假命题,命题q 为假命题,所以(綈p )∧(綈q )为真命题,故选A.6.已知z i i -1=i +1,则复数z 在复平面上所对应的点位于( ) A.实轴上B.虚轴上C.第一象限D.第二象限答案 B解析 由z i i -1=i +1,则z =(i +1)(i -1)i =-2i =2i , 所以复数z 在复平面上所对应的点位于虚轴上.7.如果复数2-a i 1+i(a ∈R )为纯虚数,则a 等于( ) A.-2B.0C.1D.2 答案 D解析 2-a i 1+i =(2-a i )(1-i )(1+i )(1-i )=2-a -(2+a )i 2, 由于复数为纯虚数,故2-a =0,a =2.8.对任意的实数x ,若[x ]表示不超过x 的最大整数,则“-1<x -y <1”是“[x ]=[y ]”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析 取x =0.5,y =1.2,-1<x -y <1,但不满足“[x ]=[y ]”,故“-1<x -y <1”不能。

2018届高考数学文科二轮复习(全国通用):解答题滚动练3+Word版含解析【KS5U+高考】

2018届高考数学文科二轮复习(全国通用):解答题滚动练3+Word版含解析【KS5U+高考】

解答题滚动练3
1.在△ABC中,角A,B,C的对边分别为a,b,c,且a>b>c,3c-2b sin C=0.
(1)求角B的大小;
(2)若b=3,c=1,求a和△ABC的面积.
2.某高职院校进行自主招生文化素质考试,考试内容为语文、数学、英语三科,总分为200分.现从上线的考生中随机抽取20人,将其成绩用茎叶图记录如下:
(1)计算上线考生中抽取的男生成绩的方差s2;(结果精确到小数点后一位)
(2)从上述茎叶图180分以上的考生中任选2人作为考生代表出席座谈会,求所选考生恰为一男一女的概率.
3.(2017·巴蜀中学模拟)如图,平面ABCD⊥平面ADEF,四边形ABCD为菱形,四边形ADEF 为矩形,M,N分别是EF,BC的中点,AB=2AF,∠CBA=60°.
(1)求证:DM⊥平面MNA;
(2)若三棱锥A-DMN的体积为
3
3,求MN的长.
4.已知圆M:(x-a)2+(y-b)2=9,M在抛物线C:x2=2py(p>0)上,圆M过原点且与C的准线相切.
(1)求C的方程;
(2)点Q()
0,-t(t>0),点P(与Q不重合)在直线l:y=-t上运动,过点P作C的两条切线,切点分别为A,B.求证:∠AQO=∠BQO(其中O为坐标原点).。

2018届高考数学文科二轮复习(全国通用):阶段滚动练2(对应1~5练)

2018届高考数学文科二轮复习(全国通用):阶段滚动练2(对应1~5练)

阶段滚动练2(对应1~5练)(建议时间:90分钟)一、选择题1.(2017·天津)设集合A ={1,2,6},B ={2,4},C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C 等于( ) A.{2}B.{1,2,4}C.{1,2,4,6}D.{x ∈R |-1≤x ≤5}答案 B解析 A ∪B ={1,2,4,6}.又C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C ={1,2,4}, 故选B.2.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案 A解析 由“x ≥2且y ≥2”可得“x 2+y 2≥4”,但“x 2+y 2≥4”不一定能够得到“x ≥2且y ≥2”,比如“x =1,y =3”,故选A.3.若a <b <0,则下列不等式中不成立的是( ) A.||a >||b B.1a -b >1a C.1a >1b D.a 2>b 2 答案 B解析 两个负数中,最小的其绝对值最大,所以选项A 正确; 函数f (x )=1x 在(-∞,0)上单调递减,因为a <b <0,所以f (a )>f (b ),即1a >1b,所以选项C 正确;两个负数,越小的其平方越大,所以选项D 正确;因此选B.4.设e 1,e 2,e 3为单位向量,且e 3=12e 1+k e 2(k >0),若以向量e 1,e 2为邻边的三角形的面积为12,则k 的值为( ) A.32 B.22 C.52 D.72答案 A解析 设e 1,e 2的夹角为θ,则由以向量e 1,e 2为邻边的三角形的面积为12,得12×1×1×sin θ=12,得sin θ=1,所以θ=90°,所以e 1·e 2=0.从而对e 3=12e 1+k e 2两边同时平方得1=14+k 2,解得k =32或-32(舍去). 5.在边长为2的菱形ABCD 中,∠BAD =120°,则AC →在AB →方向上的投影为( ) A.14 B.12 C.1 D.2 答案 C解析 由平面几何知识,得|AC →|=2,∠BAC =60°, 则AC →在AB →方向上的投影为|AC →|cos 60°=2×12=1,故选C.6.复数i (-6+i )|3-4i|的实部与虚部之差为( )A.-1B.1C.-75D.75答案 B解析 ∵i (-6+i )|3-4i|=-15-65i ,∴-15-⎝⎛⎭⎫-65=1, 即复数i (-6+i )|3-4i|的实部与虚部之差为1.7.已知x ,y ∈R ,i 为虚数单位,且(x -2)i -y =-1+i ,则1(1+i )x +y -3i 的虚部为( ) A.-325i B.-325 C.325i D.325答案 D解析 ∵(x -2)i -y =-1+i , ∴x =3,y =1, ∴1(1+i )x +y -3i =1(1+i )4-3i =1[](1+i )22-3i =1-4-3i =-4-3i (4+3i )(4-3i )=-425+325i ,故选D.8.非零向量a ,b 使得|a -b |=|a |+|b |成立的一个充分不必要条件是( ) A.a ∥b B.a +b =0 C.a ||a =b||b D.a =b答案 B解析 非零向量a ,b 使得|a -b |=|a |+|b |成立的充要条件为a ,b 反向,由选项,得非零向量a ,b 使得|a -b |=|a |+|b |成立的一个充分不必要条件是a +b =0,故选B.9.设a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值是( ) A.-1B.-2C.1D.2答案 A解析 由题意,得BD →=BC →+CD →=2a -b , 因为A ,B ,D 三点共线,所以存在实数t ,使AB →=tBD →,即2a +p b =2t a -t b ,则⎩⎪⎨⎪⎧2t =2,p =-t ,解得p =-1,故选A. 10.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为( ) A.2 B.4 C.6 D.8 答案 B解析 由题意得lg a +lg b =lg(a +b ), 即ab =a +b ⇒1a +1b =1,因为a >0,b >0,所以a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2b a ·ab=4,故选B. 11.已知点P (x ,y )在不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -2≥0表示的平面区域上运动,则z =x -y 的取值范围是( ) A.[-2,-1] B.[-2,1] C.[1,2] D.[-1,2]答案 D解析 由题意画出不等式组所表示的平面区域,如图阴影部分所示,平移直线0=x -y 过点A (0,1)时,z 有最小值-1;平移直线0=x -y 过点B (2,0)时,z 有最大值2,所以z =x -y 的取值范围是[-1,2].12.设M 是△ABC 内一点,且AB →·AC →=23,∠BAC =30°.定义f (M )=(m ,n ,p ),其中m ,n ,p 分别是△MBC ,△MCA ,△MAB 的面积.若f (M )=⎝⎛⎭⎫12,x ,y ,则1x +4y 的最小值是( ) A.8 B.9 C.16 D.18 答案 D解析 由AB →·AC →=23,∠BAC =30°可得|AB →|·|AC →|=4, 所以S △ABC =12|AB →|·|AC →|sin A =1,所以x +y =12,则1x +4y =2(x +y )⎝⎛⎭⎫1x +4y =2⎝⎛⎭⎫1+4x y +y x +4≥2⎝⎛⎭⎫5+24x y ·y x =18, 当且仅当4x y =yx 时等号成立,故选D.二、填空题13.已知A =⎩⎨⎧⎭⎬⎫x ⎪⎪-π2<x <π2,B ={x |1+tan x >0},则A ∩B =________________. 答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪-π4<x <π2 解析 由于tan x >-1,所以B =⎝⎛⎭⎫-π4+k π,π2+k π,k ∈Z ,故A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪-π4<x <π2. 14.(2017·北京)已知x ≥0,y ≥0,且x +y =1,则x 2+y 2的取值范围是________. 答案 ⎣⎡⎦⎤12,1解析 方法一 由x +y =1,得y =1-x . 又x ≥0,y ≥0,所以0≤x ≤1,x 2+y 2=x 2+(1-x )2=2x 2-2x +1=2⎝⎛⎭⎫x -122+12. 由0≤x ≤1,得0≤⎝⎛⎭⎫x -122≤14, 即12≤x 2+y 2≤1.所以x 2+y 2∈⎣⎡⎦⎤12,1. 方法二 x 2+y 2=(x +y )2-2xy ,已知x ≥0,y ≥0,x +y =1,所以x 2+y 2=1-2xy . 因为1=x +y ≥2xy , 所以0≤xy ≤14,所以12≤1-2xy ≤1,即x 2+y 2∈⎣⎡⎦⎤12,1.方法三 依题意,x 2+y 2可视为原点到线段x +y -1=0(x ≥0,y ≥0)上的点的距离的平方,如图所示,故(x 2+y 2)min =⎝⎛⎭⎪⎫|-1|22=12,(x 2+y 2)max=|OA |2=|OB |2=1,故x 2+y 2∈⎣⎡⎦⎤12,1.15.(2017·全国Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 3 解析 方法一|a +2b |=(a +2b )2=a 2+4a ·b +4b 2=22+4×2×1×cos 60°+4×12=12=2 3. 方法二(数形结合法)由|a |=|2b |=2知,以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC →|.又∠AOB =60°,所以|a +2b |=2 3.16.在△ABC 中,若OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的________.(填“重心”“垂心”“内心”“外心”) 答案 垂心解析 ∵OA →·OB →=OB →·OC →, ∴OB →·(OA →-OC →)=0, ∴OB →·CA →=0,∴OB ⊥CA ,即OB 为△ABC 底边CA 上的高所在直线. 同理OA →·BC →=0,OC →·AB →=0,故O 是△ABC 的垂心. 三、解答题17.若当a ∈[1,3]时,不等式ax 2+(a -2)x -2>0恒成立,求实数x 的取值范围. 解 设f (a )=a (x 2+x )-2x -2,则当a ∈[1,3]时f (a )>0恒成立.∴⎩⎪⎨⎪⎧f (1)=x 2-x -2>0,f (3)=3x 2+x -2>0. ∴⎩⎪⎨⎪⎧x >2或x <-1,x >23或x <-1,得x >2或x <-1.∴实数x 的取值范围是(-∞,-1)∪(2,+∞).18.已知集合A ={}x ∈R | 0<ax +1≤5且a ≠0,B =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪-12<x ≤2.(1)若A =B ,求实数a 的值;(2)若命题p :x ∈A ,命题q :x ∈B 且p 是q 的充分不必要条件,求实数a 的取值范围.解 (1)当a >0时,A =⎩⎨⎧⎭⎬⎫x ⎪⎪-1a<x ≤4a , ∴⎩⎨⎧-1a =-12,4a =2⇒a =2;当a <0时,A =⎩⎨⎧⎭⎬⎫x ⎪⎪4a≤x <-1a ,显然A ≠B , 故A =B 时,a =2.(2)p 是q 的充分不必要条件⇒A B , 0<ax +1≤5⇒-1<ax ≤4,当a >0时,A =⎩⎨⎧⎭⎬⎫x ⎪⎪-1a<x ≤4a ,则 ⎩⎨⎧-1a >-12,4a ≤2或⎩⎨⎧-1a ≥-12,4a <2,解得a >2;当a <0时,A =⎩⎨⎧⎭⎬⎫x ⎪⎪4a≤x <-1a ,则 ⎩⎨⎧4a >-12-1a ≤2⇒a <-8.综上,实数a 的取值范围是a >2或a <-8.19.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,求在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值.解 设生产产品A 、产品B 分别为x ,y 件,利润之和为z 元,那么 ⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,y ≥0,①故z =2 100x +900y . 二元一次不等式组①等价于 ⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ≥0,y ≥0.②作出二元一次不等式组②表示的平面区域(如图),即可行域.将z =2 100x +900y 变形,得y =-73x +z 900,平移直线y =-73x ,当直线y =-73x +z900经过点M 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧10x +3y =900,5x +3y =600,所以当x =60,y =100时, 得点M 的坐标为(60,100).z max =2 100×60+900×100=216 000.故生产产品A 、产品B 的利润之和的最大值为216 000元.20.运货卡车以每小时x 千米的速度匀速行驶130千米(按交通法规限制50≤x ≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 解 (1)行车所用时间为t =130x(h),y =130x ×2×⎝⎛⎭⎫2+x 2360+14×130x,x ∈[50,100]. 所以,这次行车总费用y 关于x 的表达式是 y =2 340x +1318x ,x ∈[50,100].(2)y =2 340x +1318x ≥2610,当且仅当2 340x =1318x ,即当x =1810时,上述不等式中等号成立.故当x =1810时,这次行车的总费用最低,最低费用为2610元.。

2018届高考数学二轮导数及其应用专题卷理(全国通用)

2018届高考数学二轮导数及其应用专题卷理(全国通用)

专题能力训练5 导数及其应用(时间:60分钟满分:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.已知曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.-2B.2C.-D.2.已知函数f(x)=ln x+ln(2-x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称3.已知a≥0,函数f(x)=(x2-2ax)e x.若f(x)在[-1,1]上是单调递减函数,则a的取值范围是()A.0<a<B.<a<C.a≥D.0<a<4.已知函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f'(x)>2,则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(-∞,+∞)5.(2017浙江金丽衢十二校模拟)如图,已知直线y=kx+m与曲线y=f(x)相切于两点,则F(x)=f(x)-kx有()A.1个极大值点,2个极小值点B.2个极大值点,1个极小值点C.3个极大值点,无极小值点D.3个极小值点,无极大值点6.将函数y=ln(x+1)(x≥0)的图象绕坐标原点逆时针方向旋转角θ(θ∈(0,α]),得到曲线C,若对于每一个旋转角,曲线C都仍然是一个函数的图象,则α的最大值为()A.πB.C.D.7.已知函数f(x)=x+e x-a,g(x)=ln(x+2)-4e a-x,其中e为自然对数的底数,若存在实数x0,使f(x0)-g(x0)=3成立,则实数a的值为()A.-ln 2-1B.ln 2-1C.-ln 2D.ln 28.若函数f(x)=ln x与函数g(x)=x2+2x+a(x<0)有公切线,则实数a的取值范围是()A. B.(-1,+∞)C.(1,+∞)D.(-ln 2,+∞)二、填空题(本大题共6小题,每小题5分,共30分)9.若f(x)=x3+3ax2+3(a+2)x+1有极大值和极小值,则a的取值范围为.10.(2017浙江诸暨肇庆三模)已知函数f(x)=x3+ax2+3x-9,若x=-3是函数f(x)的一个极值点,则实数a=.11.设f'(x)是奇函数f(x)(x∈R)的导函数,f(-2)=0,当x>0时,xf'(x)-f(x)>0,则使得f(x)>0成立的x的取值范围是.12.已知函数f(x)=x3-2x+e x-,其中e是自然对数的底数.若f(a-1)+f(2a2)≤0,则实数a的取值范围是.13.已知函数f(x)=若对于∀t∈R,f(t)≤kt恒成立,则实数k的取值范围是.14.设函数f(x)=ax3+bx2+cx+d(a≠0)满足f(1)+f(3)=2f(2),现给出如下结论:①若f(x)是区间(0,1)上的增函数,则f(x)是区间(3,4)上的增函数;②若a·f(1)≥a·f(3),则f(x)有极值;③对任意实数x0,直线y=(c-12a)(x-x0)+f(x0)与曲线y=f(x)有唯一公共点.其中正确的结论为.(填序号)三、解答题(本大题共2小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分15分)已知函数f(x)=x3+|x-a|(a∈R).(1)当a=1时,求f(x)在(0,f(0))处的切线方程;(2)当a∈(0,1)时,求f(x)在区间[-1,1]上的最小值(用a表示).16.(本小题满分15分)已知函数f(x)=ax(ln x-1)(a≠0).(1)求函数y=f(x)的单调递增区间;(2)当a>0时,设函数g(x)=x3-f(x),函数h(x)=g'(x),①若h(x)≥0恒成立,求实数a的取值范围;②证明:ln(1×2×3×…×n)2e<12+22+32+…+n2(n∈N*).参考答案专题能力训练5导数及其应用1.A解析由y'=得曲线y=在点(3,2)处的切线斜率为-,又切线与直线ax+y+1=0垂直,则a=-2.故选A.2.C解析f(x)=ln x+ln(2-x)=ln(-x2+2x),x∈(0,2).当x∈(0,1)时,x增大,-x2+2x增大,ln(-x2+2x)增大,当x∈(1,2)时,x增大,-x2+2x减小,ln(-x2+2x)减小,即f(x)在区间(0,1)上单调递增,在区间(1,2)上单调递减,故排除选项A,B;因为f(2-x)=ln(2-x)+ln[2-(2-x)]=ln(2-x)+ln x=f(x),所以函数y=f(x)的图象关于直线x=1对称,故排除选项D.故选C.3.C解析f'(x)=e x[x2+2(1-a)x-2a],∵f(x)在[-1,1]上单调递减,∴f'(x)≤0在[-1,1]上恒成立.令g(x)=x2+2(1-a)x-2a,则解得a≥.4.B解析由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F'(x)=f'(x)-2,因为f'(x)>2,所以F'(x)>0在R上恒成立,所以F(x)在R上单调递增.而F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1.故选B.5.A解析F'(x)=f'(x)-k,如下图所示,从而可知函数y=F'(x)共有三个零点x1,x2,x3,因此函数F(x)在(-∞,x1)上单调递减,在(x1,x2)上单调递增,在(x2,x3)上单调递减,在(x3,+∞)上单调递增,故x1,x3为极小值点,x2为极大值点,即F(x)有1个极大值点,2个极小值点,应选A.6.D解析函数y=ln(x+1)(x≥0)的图象绕坐标原点逆时针方向连续旋转时,当且仅当其任意切线的倾斜角小于等于90°时,其图象都仍然是一个函数的图象,因为x≥0时y'=是减函数,且0<y'≤1,当且仅当x=0时等号成立,故在函数y=ln(x+1)(x≥0)的图象的切线中,x=0处的切线倾斜角最大,其值为,由此可知αmax=.故选D.7.A解析由题意得f(x)-g(x)=x+e x-a-ln(x+2)+4e a-x,令h(x)=x-ln(x+2),x>-2,则h'(x)=1-,∴h(x)在区间(-2,-1)上单调递减,在区间(-1,+∞)上单调递增,∴h(x)min=h(-1)=-1,又∵e x-a+4e a-x≥2=4,∴f(x)-g(x)≥3,当且仅当时等号成立.故选A.8.A解析设公切线与函数f(x)=ln x切于点A(x1,ln x1)(x1>0),则切线方程为y-ln x1=(x-x1),设公切线与函数g(x)=x2+2x+a切于点B(x2,+2x2+a)(x2<0),则切线方程为y-(+2x2+a)=2(x2+1)(x-x2),所以有因为x2<0<x1,所以0<<2.又a=ln x1+-1=-ln-1,令t=,所以0<t<2,a=t2-t-ln t.设h(t)=t2-t-ln t(0<t<2),则h'(t)=t-1-<0,所以h(t)在区间(0,2)上为减函数,则h(t)>h(2)=-ln 2-1=ln,所以a∈.故选A.9.(-∞,-1)∪(2,+∞)解析f'(x)=3x2+6ax+3(a+2),由题意知f'(x)=0有两个不相等的实根,则Δ=(6a)2-4×3×3(a+2)>0,即a2-a-2>0,解得a>2或a<-1.10.5解析f'(x)=3x2+2ax+3,由题意知x=-3为方程3x2+2ax+3=0的根,则3×(-3)2+2a×(-3)+3=0,解得a=5.11.(-2,0)∪(2,+∞)解析令g(x)=,则g'(x)=>0,x∈(0,+∞),所以函数g(x)在(0,+∞)上单调递增.又g(-x)==g(x),则g(x)是偶函数,g(-2)=0=g(2),则f(x)=xg(x)>0⇔解得x>2或-2<x<0.故不等式f(x)>0的解集为(-2,0)∪(2,+∞).12.解析因为f(-x)=(-x)3-2(-x)+e-x-=-f(x),所以f(x)为奇函数.因为f'(x)=3x2-2+e x+e-x≥3x2-2+2≥0(当且仅当x=0时等号成立),所以f(x)在R上单调递增,因为f(a-1)+f(2a2)≤0可化为f(2a2)≤-f(a-1),即f(2a2)≤f(1-a),所以2a2≤1-a,2a2+a-1≤0,解得-1≤a≤,故实数a的取值范围是.13.14.①②③解析由f(1)+f(3)=2f(2)化简得b=-6a.f'(x)=3ax2+2bx+c=3ax2-12ax+c,其对称轴为x=2,如果f(x)在区间(0,1)上递增,其关于x=2对称的区间为(3,4),故区间(3,4)也是其增区间,①正确.a[f(1)-f(3)]≥0,即2a(11a-c)≥0,导函数f'(x)=3ax2-12ax+c的判别式144a2-12ac=12a(12a-c),当a>0时,12a-c>11a-c≥0,判别式为正数,当a<0时,11a-c≤0,12a-c≤a<0,其判别式为正数,即导函数有零点,根据二次函数的性质可知原函数有极值,②正确.注意到f'(2)=c-12a,则③转化为f'(2)=,即函数图象上任意两点连线的斜率和函数在x=2处的切线的斜率相等的有且仅有一个点.由于x=2是导函数f'(x)=3ax2-12ax+c的最小值点,即有且仅有一个最小值点,故③正确.15.解 (1)因为当a=1,x<1时,f(x)=x3+1-x,f'(x)=3x2-1,所以f(0)=1,f'(0)=-1,所以f(x)在(0,f(0))处的切线方程为y=-x+1.(2)当a∈(0,1)时,由已知得f(x)=当a<x<1时,由f'(x)=3x2+1>0,知f(x)在(a,1)上单调递增.当-1<x<a时,由f'(x)=3x2-1,知①当a∈时,f(x)在上递增,在上递减,在上递增,所以f(x)min=min=min=a-.②当a∈时,f(x)在上递增,在上递增,在(a,1)上递增,所以f(x)min=min{f(-1),f(a)}=min{a,a3}=a3.综上所述,f(x)min=16.解 (1)∵f'(x)=a=a ln x,令f'(x)>0,当a>0时,解得x>1;当a<0时,解得0<x<1,∴当a>0时,函数y=f(x)的单调递增区间是(1,+∞);当a<0时,函数y=f(x)的单调递增区间是(0,1).(2)①∵h(x)=g'(x)=x2-f'(x)=x2-a ln x,∴由题意得h(x)min≥0.∵h'(x)=x-,∴当x∈(0,)时,h'(x)<0,h(x)单调递减;当x∈(,+∞)时,h'(x)>0,h(x)单调递增.∴h(x)min=h()=a-a ln,由a-a ln≥0,得ln a≤1,解得0<a≤e.∴实数a的取值范围是(0,e].②由(1)知a=e时,h(x)=x2-eln x≥0在x∈(0,+∞)上恒成立,当x=时等号成立,∴x∈N*时,2eln x<x2,令x=1,2,3,…,n,累加可得2e(ln 1+ln 2+ln 3+…+ln n)<12+22+32+…+n2,即ln(1×2×3×…×n)2e<12+22+32+…+n2(n∈N*).。

全国通用2018版高考数学总复习考前三个月解答题滚动练1理.doc

全国通用2018版高考数学总复习考前三个月解答题滚动练1理.doc

解答题滚动练11.(2017届长郡中学模拟)四边形如%如图所示,已知AB=BC=CD=2, AD=2^3.(1)求/cos A~cos。

的值;(2)记△姗与△助的面积分别是S与&,求击+&的最大值.解⑴在△刃及?中,BD=A^+A〃—2AB・AD COS,=16一8也COS A,在△冏%中,BB=BO,CB—2BC,CD COS C=8—8COS C,所以漆cos A—cos C=l.(2)依题意强=£朋•应色比勺=12 —12cosW• 6Z^sin七 =4—4cos/所以 5?+&=12 — 12cos粉+4—4COS2C— 16—4(cos C~\~ 1)2—4cos2f =—Scos2^—8cos 61+12 = —8^cos C+^+14,因为2^ —2V刃V4,所以 8—8cos C= BBW (16 —16).解得一IVcos CVy^ —],所以5?+&W14,当cos C=一§时取等号,即§+戎的最大值为14.2.已知等差数列{aj的公差为2,前刀项和为&且S, Si,但成等比数列.(1)求数列{aJ的通项公式;(2)设G+D (a+5),数列{如}的前〃项和为I,求证:T n<-⑴解L.等差数列{&}的公差为2,前”项和为,. 〃(刀一1) 2・・ &=刀31+ 言d-—- n n~\~nai....s, &, S成等比数列,1 - 5 -1 -2 +- 1 - 1 -3 +- 1 - 1 - 4+- 1 - 21 +刀.•.&=&・BP (22—2+2ai )2=ai •(妒—4+4戚,化为(l + ai )2=ai (3 + ai ),解得 ai = l.31+(72— 1) d=l+2 (〃一 1) =2/1— 1.⑵证明由⑴可得&=2刀—1,则勿=(&,+ i )(&+5)(2〃—1 + 1)(2〃—1 + 5厂 〃(〃+2厂 d2刀+3 2 (刀+1)(刀+2)V/?eN*,2刀+3.•.2(〃+1) (〃+2)>°'3 2 刀+3 3 口口 3...「2(〃+1) (〃+2)3 即综上所述,3. 如图,在三棱柱 ABC-A^G 中,侧面 ACQAyL 底面/WG ZA l AC=60° , AC=2AA l = 4, 点D, £分别是WC 的中点.⑴证明:庞〃平面43C ;(2)若AB=2, ZBAC=60° ,求直线庞与平面ABB.A,所成角的正弦值.⑴证明取花的中点凡连接庭7, EF,... 0是死的中点,EF//AB,ABC —AiBC 是三棱柱,AB// AB,:.EF// AB,:.涉'〃平面AW,〃是的中点,1- 1一刀 +0,DF 〃 A 、C,:.班〃平面A^C.又 EFC DF= F,平面奶'〃平面ABC, :.庞〃平面ABC.(2)解 过点4作AO±AC,垂足为0,连接0B,•..侧面ACGA1底面ABC,:.40_L 平面如...AOLOB, AxOLOC.VZAJC=60° , 04 = 2,0A=\, 0A=y[3,':AB=2, ZOAB=60° ,由余弦定理,得0^=0A + Aff-20A • ABcosZBAC=3,:.0B=y[3, ZAOB=90° ,OB LAC,分别以站,OC, <21所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系。

2018届高考数学(理)二轮专题复习:1-7 Word版含答案.doc

2018届高考数学(理)二轮专题复习:1-7 Word版含答案.doc

小题提速练(七)(满分80分,押题冲刺,45分钟拿下客观题满分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,A ={x ∈N |2x (x -4)<1},B ={x ∈N |y =ln(2-x )},则图中阴影部分表示的集合的子集个数为( )A .1B .2C .3D .4解析:选D.由韦恩图知阴影部分表示的是A ∩(∁U B ),∵A ={x ∈N |2x (x -4)<1}={1,2,3},B ={x ∈N |y =ln(2-x )}={0,1},∴阴影部分对应的集合是A ∩(∁U B )={2,3},则图中阴影部分表示的集合的子集个数为22=4.2.若复数a +3i1+2i(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A .-6B .-2C .4D .6 解析:选A.∵a +3i 1+2i =a +-+-=a ++-2a5为纯虚数,∴⎩⎪⎨⎪⎧a +6=0,3-2a ≠0,解得a =-6.3.给出命题p :若平面α与平面β不重合,且平面α内有不共线的三点到平面β的距离相等,则α∥β;命题q :向量a =(-2,-1),b =(λ,1)的夹角为钝角的充要条件为λ∈⎝ ⎛⎭⎪⎫-12,+∞.关于以上两个命题,下列结论中正确的是( ) A .命题“p ∨q ”为假 B .命题“p ∧q ”为真 C .命题“p ∨﹁q ”为假D .命题“p ∧﹁q ”为真解析:选A.命题p :若平面α与平面β不重合,且平面α内有不共线的三点到平面β的距离相等,则α∥β或相交,因此是假命题;命题q :向量a =(-2,-1),b =(λ,1)的夹角为钝角的充要条件为⎩⎪⎨⎪⎧a·b <0,且不异向共线,-2λ-1<0,解得λ>-12,由-λ+2=0,解得λ=2,此时a 与b 异向共线,因此向量a =(-2,-1),b =(λ,1)的夹角为钝角的充要条件为λ∈⎝ ⎛⎭⎪⎫-12,+∞且λ≠2,因此是假命题. 4.一个空间几何体的三视图如图所示,则该几何体的外接球的表面积为()A .24πB .6πC .4πD .2π解析:选B.几何体为三棱锥,可以将其补形为一个棱长为2的正方体,该正方体的外接球和几何体的外接球为同一个,故2R =22+22,R =62,所以外接球的表面积为4πR 2=6π. 5.下面图1是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A 1,A 2,…,A 16,图2是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是( )7 8 9 10 116 9 1 3 6 72 9 4 1 58 6 3 1 4图1图2A .6B .10C .91D .92解析:选B.由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图可知:数学成绩大于等于90的人数为10,因此输出结果为10.6.已知正数x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,则z =4-x·⎝ ⎛⎭⎪⎫12y的最小值为( )A .1 B.14 32 C.116D.132解析:选C.根据约束条件画出可行域,把z =4-x ·⎝ ⎛⎭⎪⎫12y化成z =2-2x -y,直线z 1=-2x -y 过点A (1,2)时,z 1最小值是-4,∴z =2-2x -y的最小值是2-4=116.7.已知函数y =A cos ⎝ ⎛⎭⎪⎫π2x +φ(A >0)在一个周期内的图象如图所示,其中P ,Q 分别是这段图象的最高点和最低点,M ,N 是图象与x 轴的交点,且∠PMQ =90°,则A 的值为()A. 3B. 2 C .1D .2解析:选A.过Q ,P 分别作x 轴的垂线于B ,C ,∵函数的周期T =2ππ2=4,∴MN =2,CN =1,∵∠PMQ =90°,∴PQ =2MN =4,即PN =2,即PC =PN 2-NC 2=4-1=3,∴A = 3.8.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( ) A .0 B .-100 C .100D .10200解析:选B.由题意可得a n =n 2cos(n π)+(n +1)2cos[(n +1)π]=(-1)n -1(2n +1),所以a 1+a 2+a 3+…+a 100=3-5+7-9+11-…+199-201=50×(-2)=-100.9.函数f (x )是定义域为R 的奇函数,且x ≤0时,f (x )=2x-12x +a ,则函数f (x )的零点个数是( )A .1B .2C .3D .4解析:选C.∵函数f (x )是定义域为R 的奇函数, ∴f (0)=0,又∵x ≤0时,f (x )=2x-12x +a ,∴f (0)=20+a =0,解得a =-1,故x ≤0时,f (x )=2x -12x -1,令f (x )=2x -12x -1=0,解得x =-1或x =0,故f (-1)=0,则f (1)=0,综上所述,函数f (x )的零点个数是3个.10.设A 1,A 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左右顶点,若双曲线上存在点M 使得两直线斜率kMA 1·kMA 2<2,则双曲线C 的离心率的取值范围为( )A .(0,3)B .(1,3)C .(3,+∞)D .(0,3)解析:选B.由题意可得A 1(-a,0),A 2(a,0),设M (m ,n ),可得m 2a 2-n 2b 2=1,即n 2m 2-a 2=b 2a 2,由题意k MA 1·k MA 2<2,即为n -0m +a ·n -0m -a <2,即有b 2a 2<2,即b 2<2a 2,c 2-a 2<2a 2,即c 2<3a 2,c <3a ,即有e =ca<3,由e >1,可得1<e < 3.11.已知△ABC 外接圆O 的半径为1,且OA →·OB →=-12,∠C =π3,从圆O 内随机取一个点M ,若点M 取自△ABC 内的概率恰为334π,则△ABC 的形状为( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形解析:选B.∵OA →·OB →=-12,圆的半径为1,∴cos∠AOB =-12,又0<∠AOB <π,故∠AOB =2π3,又△AOB 为等腰三角形,故AB =3,从圆O 内随机取一个点,取自△ABC 内的概率为334π,即S △ABC S 圆=334π,∴S △ABC =334,设BC =a ,AC =b ,∵C =π3,∴12ab sin C =334,得ab =3①,由AB 2=a 2+b 2-2ab cos C =3,得a 2+b 2-ab =3,a 2+b 2=6②,联立①②解得a =b =3,∴△ABC 为等边三角形.12.设函数f (x )的导函数为f ′(x ),对任意x ∈R 都有f ′(x )>f (x )成立,则( ) A .3f (ln 2)>2f (ln 3) B .3f (ln 2)=2f (ln 3) C .3f (ln 2)<2f (ln 3)D .3f (ln 2)与2f (ln 3)的大小不确定 解析:选C.令g (x )=f xe x ,则g ′(x )=f x x-f xxe2x=f x -f xex,因为对任意x ∈R 都有f ′(x )>f (x ),所以g ′(x )>0,即g (x )在R 上单调递增,又ln 2<ln 3,所以g (ln 2)<g (ln 3),即feln 2<feln 3,所以f2<f3,即3f (ln 2)<2f (ln 3),故选C.二、填空题(本题共4小题,每小题5分;共20分)13.已知过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a =________.解析:因为点P (2,2)满足圆(x -1)2+y 2=5的方程,所以P 在圆上,又过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,所以切点与圆心连线与直线ax -y +1=0平行,所以直线ax -y +1=0的斜率为a =2-02-1=2.答案:214.在△ABC 中,已知B =π3,AC =43,D 为BC 边上一点.若AB =AD ,则△ADC 的周长的最大值为________.解析:∵AB =AD ,B =π3,∴△ABD 为正三角形,∵∠DAC =π3-C ,∠ADC =2π3,在△ADC 中,根据正弦定理可得ADsin C =43sin 2π3=DCsin ⎝ ⎛⎭⎪⎫π3-C , ∴AD =8sin C ,DC =8sin ⎝ ⎛⎭⎪⎫π3-C ,∴△ADC 的周长为AD +DC +AC =8sin C +8sin ⎝ ⎛⎭⎪⎫π3-C +43=8⎝ ⎛⎭⎪⎫12sin C +32cos C +43=8sin ⎝ ⎛⎭⎪⎫C +π3+43,∵∠ADC =2π3,∴0<C <π3,∴π3<C +π3<2π3,∴当C +π3=π2,即C =π6时,sin ⎝ ⎛⎭⎪⎫C +π3的最大值为1,则△ADC 的周长最大值为8+4 3.答案:8+4 315.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上点A 满足AF 2⊥F 1F 2,若点P 是椭圆C 上的动点,则F 1P →·F 2A →的最大值为________.解析:由椭圆C :x 24+y 23=1可得a 2=4,b 2=3,c =a 2-b 2=1,可得F 1(-1,0),F 2(1,0),由AF 2⊥F 1F 2,令x =1,可得y =±3·1-14=±32,可设A ⎝ ⎛⎭⎪⎫1,32,设P (m ,n ),则m 24+n 23=1,又-3≤n ≤3,则F 1P →·F 2A →=(m +1,n )·⎝ ⎛⎭⎪⎫0,32=32n ≤332,可得F 1P →·F 2A →的最大值为332.答案:33216.定义在R 上的函数,对任意实数都有f (x +3)≤f (x )+3和f (x +2)≥f (x )+2,且f (1)=2,记a n =f (n )(n ∈N *),则a 2018=________.解析:∵f (x +3)≤f (x )+3和f (x +2)≥f (x )+2,∴f (x +1)+2≤f (x +3)≤f (x )+3,∴f (x +1)≤f (x )+1,∵f (x +1)+1≥f (x +2)≥f (x )+2,∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1,∴f (x +1)-f (x )=1,∴{a n }是以f (1)为首项,公差为1的等差数列. ∴a 2018=f (2018)=f (1)+(2018-1)×1=2019. 答案:2019。

2018年全国各地高考数学一题多解:全国II卷(含答案)

2018年全国各地高考数学一题多解:全国II卷(含答案)

全国 II 卷【理数 10 题】已知直三棱柱 C1 1C 1中,C120 ,2 , C CC 1 1,则异面直线1与 C 1 所成角的余弦值为()315 10 3A .B .C .D .2553【答案】 C【考点】 线面角解法二:向量法:取空间向量的一组基底为BA, BC , BB 1 ,则 AB 1 BB 1 BA ,BC 1 BC CC 1 BC BB 1 ,易知 AB 15, BC 12 ,2AB 1 BC 1 (BB 1 BA) (BC BB 1)= BB 1 BC BB 1BA BC BA BB 1 =2 ,1 与 C 1 所成角的余弦值为AB 1 BC 1 2 10,故此题答所以异面直线cos AB 1, BC 1BC 1AB 1 2 55案为 C.解法三: 建系法: 如下图, 以垂直于 BC 的方向为 x 轴, BC 为 y 轴, BB 1 为 z 轴,成立空间直角坐标系,则 B 1 (0,0,1), A( 3, 1,0), BC 1 (0,1,1), AB 1 ( 3,1,1) ,所以异面直线1与C 1 所成角的余弦值cosAB 1 BC 1 1 110,故此题答案为 C.AB 1 BC 12 55【理数 12 题】已知ABC 是边长为 2 的等边三角形, P 为平面 ABC 内一点,则PA ( PB PC)的最小值是()A. 23 4D. 1B. C.2 3【答案】 B【考点】平面向量的坐标运算、函数的最值【剖析】平面向量中相关最值问题的求解往常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,而后依据平面图形的特点直接进行判断;②“数化”,即利用平面向量的坐标运算 ,把问题转变为代数中的函数最值与值域、不等式的解集、方程有解等问题,而后利用函数、不等式、方程的相关知识来解决.【分析】解法二:极化恒等式:取BC 的中点为M,则 PB PC 2PM ,于是PA (PB PC) 2PA PM ,根据极化恒等式可得PA PM=1(PA PM )2 (PA PM )21(2PN )2 ( MA)2 PN 2 33,应选 B.4 4 4 4解法三:代数法:如下图,若 PA ( PB PC ) 取最小值,则 PA 与PB PC 反向共线,即点P位于ABC 的中线上,中线长为22 12 = 3 ,设PA x ,则 PB PC =2( 3 x) ,所以PA (PB PC ) PA PB PC x 2( 3 x) 2x2 2 3x ;当x 3 时, PA (PB PC ) 获得最小值,此时,PA (PB PC )= 2 2 ( 3 )232 PA .2 2 2。

2018年普通高等学校招生全国统一考试押题卷 理科数学(二)含精品解析

2018年普通高等学校招生全国统一考试押题卷 理科数学(二)含精品解析

A. 51π 4
【答案】C
B. 41π 2
C. 41π
D. 31π
【解析】根据三视图得出,该几何体是镶嵌在正方体中的四棱锥 O ABCD ,
正方体的棱长为 4, A , D 为棱的中点,根据几何体可以判断:球心应该在过 A , D 的平
行于底面的中截面上,
设球心到截面 BCO 的距离为 x ,则到 AD 的距离为 4 x ,

DC



在等腰梯形 ABCD 中, AB AD 1 2 cos 60 1, AB DC 2 ,
BC

AD

11
cos
60

1

BC

DC

11
cos120


1

2
2
AE AF 1

f
x,

x

5

OH

BQ

H
当Q
在半圆弧
AQB
上运动时,
QOH

1
(

)

2
BQ 2OQ sin 2OQ cos ,
2
2
CQ BQ2 BC2 100cos2 100 10 cos2 x 1 5 2cos x 6 ,
D.
【答案】A
【解析】 N x 2x 1 x x 0, M x | x 1,M N x | 0 x 1.故选:A.
2.若双曲线 x2 y2 1的一个焦点为 3, 0,则 m ( )
m
A. 2 2 【答案】B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解答题滚动练
解答题滚动练1
1.(2017届长郡中学模拟)四边形ABCD 如图所示,已知AB =BC =CD =2,AD =2 3.
(1)求3cos A -cos C 的值;
(2)记△ABD 与△BCD 的面积分别是S 1与S 2,求S 21+S 22的最大值.
解 (1)在△ABD 中,
BD 2=AB 2+AD 2-2AB ·AD cos A =16-83cos A ,
在△BCD 中,
BD 2=BC 2+CD 2-2BC ·CD cos C =8-8cos C , 所以3cos A -cos C =1.
(2)依题意S 21=14
AB 2·AD 2sin 2A =12-12cos 2A , S 22=14
BC 2·CD 2sin 2C =4-4cos 2C , 所以S 21+S 22=12-12cos 2A +4-4cos 2C =16-4(cos C +1)2-4cos 2C
=-8cos 2C -8cos C +12=-8⎝
⎛⎭⎫cos C +122+14, 因为23-2<BD <4,
所以8-8cos C =BD 2∈()16-83,16.
解得-1<cos C <3-1,
所以S 21+S 22≤14,当cos C =-12
时取等号,即S 21+S 22的最大值为14. 2.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.
(1)求数列{}a n 的通项公式;
(2)设b n =4
()a n +1()a n +5,数列{}b n 的前n 项和为T n ,求证:T n <34. (1)解 ∵等差数列{a n }的公差为2,前n 项和为S n ,
∴S n =na 1+n ()n -12
d =n 2-n +na 1,
∵S 1,S 2,S 4成等比数列,
∴S 22=S 1·
S 4, 即(22-2+2a 1)2=a 1·(42-4+4a 1),化为(1+a 1)2=a 1(3+a 1),解得a 1=1. ∴a n =a 1+(n -1)d =1+2(n -1)=2n -1.
(2)证明 由(1)可得a n =2n -1,则b n =4(a n +1)(a n +5)
=4(2n -1+1)(2n -1+5)=1n (n +2)=12⎝
⎛⎭⎫1n -1n +2, ∴T n =b 1+b 2+b 3+…+b n
=12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫12-14+12⎝⎛⎭⎫13-15+12⎝⎛⎭⎫14-16+ (12)
⎛⎭⎫1n -1n +2 =12⎝⎛⎭⎫1-13+12-14+13-15+14-16+…+1n -1n +2=12⎝⎛⎭⎫1+12-1n +1-1n +2=34-2n +32()n +1()n +2. ∵n ∈N *,
∴2n +32()n +1()
n +2>0, ∴34-2n +32()n +1()n +2<34,即T n <34
. 综上所述,T n <34
. 3.如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,∠A 1AC =60°,AC =2AA 1=4,点D ,E 分别是AA 1,BC 的中点.
(1)证明:DE ∥平面A 1B 1C ;
(2)若AB =2,∠BAC =60°,求直线DE 与平面ABB 1A 1所成角的正弦值.
(1)证明 取AC 的中点F ,连接DF ,EF ,
∵E 是BC 的中点,
∴EF ∥AB ,
∵ABC -A 1B 1C 1是三棱柱,
∴AB ∥A 1B 1,
∴EF ∥A 1B 1,
∴EF ∥平面A 1B 1C ,
∵D 是AA 1的中点,
∴DF ∥A 1C ,
∴DF ∥平面A 1B 1C .
又EF ∩DF =F ,
∴平面DEF ∥平面A 1B 1C ,
∴DE ∥平面A 1B 1C .
(2)解 过点A 1作A 1O ⊥AC ,垂足为O ,连接OB ,
∵侧面ACC 1A 1⊥底面ABC ,
∴A 1O ⊥平面ABC ,
∴A 1O ⊥OB ,A 1O ⊥OC .
∵∠A 1AC =60°,AA 1=2,
∴OA =1,OA 1=3,
∵AB =2,∠OAB =60°,由余弦定理,得
OB 2=OA 2+AB 2-2OA ·AB cos ∠BAC =3,
∴OB =3,∠AOB =90°,
∴OB ⊥AC ,
分别以OB ,OC ,OA 1所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Oxyz ,
由题设可得A (0,-1,0),C (0,3,0),B (3,0,0),A 1(0,0,3),D ⎝
⎛⎭⎫0,-12,32,E ⎝⎛⎭
⎫32,32,0, ∴AB →=(3,1,0),AA 1→=(0,1,3).
设m =()x 1,y 1,z 1是平面ABB 1A 1的一个法向量,
则⎩⎪⎨⎪⎧
m ·AB →=0,m ·AA 1→=0, 即⎩⎨⎧ 3x 1+y 1=0,y 1+3z 1=0,
令z 1=1,∴m =(1,-3,1),
∵DE →=⎝⎛⎭⎫32
,2,-32, ∴cos 〈m ,DE →〉=m ·DE →||m ||
DE →=-233055, ∴直线DE 与平面ABB 1A 1所成角的正弦值为233055
. 4.已知函数f (x )=x 2-x ,g (x )=e x -ax -1.
(1)讨论函数g (x )的单调性;
(2)当x >0时,f (x )≤g (x )恒成立,求实数a 的取值范围. 解 (1)g ′(x )=e x -a .
①当a ≤0时,g ′(x )>0,g (x )在(-∞,+∞)上单调递增.
②当a >0时,当x ∈(-∞,ln a )时,g ′(x )<0,g (x )单调递减; 当x ∈(ln a ,+∞)时,g ′(x )>0,g (x )单调递增.
(2)当x >0时,x 2-x ≤e x -ax -1,
即a ≤e x x -x -1x
+1. 令h (x )=e x x -x -1x
+1(x >0), 则h ′(x )=e x (x -1)-x 2+1x 2
. 令F (x )=e x (x -1)-x 2+1(x >0),
则F ′(x )=x (e x -2).
当x ∈(0,ln2)时,F ′(x )<0,F (x )单调递减;
当x ∈(ln2,+∞)时,F ′(x )>0,F (x )单调递增.
又F (0)=0,F (1)=0,所以当x ∈(0,1)时,F (x )<0, 即h ′(x )<0,h (x )单调递减,
当x ∈(1,+∞)时,F (x )=(x -1)(e x -x -1)>0,
即h ′(x )>0,h (x )单调递增.
所以h (x )min =h (1)=e -1,
所以a ∈(-∞,e -1].。

相关文档
最新文档