第四章机械加工表面质量
机械加工表面质量控制详述

机械加工表面质量控制详述引言机械加工是一种常见的工艺,用于制造各种零部件和产品。
而表面质量是衡量机械加工品质好坏的关键指标之一。
本文将详述机械加工表面质量控制的方法和技术。
表面质量的定义表面质量是指零件或产品外表面的物理特征和性能。
它包括表面的粗糙度、平面度、圆度、直线度、平行度、垂直度等参数。
高质量的表面质量对于提高零件的性能、延长使用寿命和确保装配质量至关重要。
表面质量的评价指标常见的表面质量评价指标包括:1.粗糙度:表面的起伏程度,通常用Ra值(平均粗糙度)或Rz值(最大峰值与最小谷值之差)来表示。
2.平面度:表面在一个平面上的偏差程度。
3.圆度:表面的偏差程度,使其成为一个理想的圆形。
4.直线度:表面在一条直线上的偏差程度。
5.平行度:表面与参考面平行的程度。
6.垂直度:表面与参考面垂直的程度。
表面质量控制的方法预加工表面处理在进行机械加工前,通常需要对工件的表面进行预加工处理。
常见的预加工表面处理方法包括去除氧化层、清除污垢和毛刺、进行平整和硬化处理等。
这些表面处理的目的是为了提前解决一些表面质量问题,使机械加工过程更加顺利。
机床和刀具的选择机械加工过程中,选择适当的机床和刀具也对表面质量的控制起着很大的作用。
不同的机床和刀具具有不同的切削精度和稳定性,因此在选择时需要根据具体的加工要求进行选择。
同时,机床和刀具的定期维护和保养也是保证表面质量的重要环节。
加工参数的优化机械加工过程中的参数选择对表面质量有着直接影响。
例如,切削速度、进给速度、切削深度等参数的选择都会对表面质量产生影响。
根据不同的材料和加工方式,需要进行参数的优化选择,以实现最佳的表面质量。
加工过程的监控与调整在机械加工过程中,通过实时监测切削力、振动和温度等参数,可以及时发现并调整加工中的问题,以确保表面质量的稳定性和一致性。
表面质量的检测方法为了评估机械加工的表面质量,需要使用相应的检测方法。
常见的表面质量检测方法包括:1.视觉检测:通过肉眼观察表面是否有缺陷或异常。
机械加工表面加工质量

由于切屑的崩碎而在加工表面留下许多麻点,使表 面粗糙。
机械加工表面加工质量
(2)切削速度的影响 (3)进给量的影响
加工塑性材料时,切削速度对
表面粗糙度的影响(对积屑瘤和鳞 刺的影响)见如图4-41所示。
此外,切削速度越高,塑性变 形越不充分,表面粗糙度值越小
(1)磨削用量
▪ 砂轮的转速↑ →材料塑性变形↓ → 表面粗
糙度值↓ ;
▪磨削深度↑、工件速度↑ → 塑性变形↑ →表
面粗糙度值↑ ; 为提高磨削效率,通常在开始磨削时采
用较大的径向进给量,而在磨削后期采用较 小的径向进给量或无进给量磨削,以减小表 面粗糙度值。
机械加工表面加工质量
(2)工件材料
•太硬易使磨粒磨钝 →Ra ↑ ; •太软容易堵塞砂轮→Ra ↑ ; •韧性太大,热导率差会使磨
影响显微硬度因素
•塑变引起的冷硬
•金相组织变化引起 的硬度变化
表面物理力学 性能
影响残余应力因素
•冷塑性变形 •热塑性变形 •金相组织变化
影响金相组织变化 因素
•切削热
机械加工表面加工质量
1. 表面层的冷作硬化
(1) 表面层加工硬化的产生
定义:机械加工时,工件表面层金属受到 切削力的作用产生强烈的塑性变形,使晶 格扭曲,晶粒间产生剪切滑移,晶粒被拉 长、纤维化甚至碎化,从而使表面层的强 度和硬度增加,这种现象称为加工硬化, 又称冷作硬化和强化。
机械加工表面加工质量
三、表面层金相组织变化与磨削烧伤
1.表面层金相组织变化与磨削烧伤的产生
切削加工中,由于切削热的作用,在工件的加 工区及其邻近区域产生了一定的温升。
定义:磨削加工时,表面层有很高的温度,当 温度达到相变临界点时,表层金属就发生金相组织 变化,强度和硬度降低、产生残余应力、甚至出现 微观裂纹。这种现象称为磨削烧伤。
2、机械加工表面质量及影响因素

机械加工表面质量及影响因素一、表面质量定义任何机械加工所得的表面,实际上不可能是理想的光滑表面,总是存在一定的微观几何形状误差。
另外,表面材料在加工时受切削力、切削热的影响,也会使原有的物理—机械性能发生变化。
因此,加工表面质量应包括:1、加工表面粗糙度。
是指加工表面的较小间距和微小峰谷的微观几何形状误差。
它主要是由于切削加工过程中的刀痕、切削分离时的塑性变形、刀具与被加工表面的摩擦、工艺系统的高频振动等原因造成的。
2、表面层的物理———机械性能变化。
表面层的材料在加工时,物理—机械性能变化主要有以下三个方面的内容:1)表面层的冷作硬化。
工件在机械加工过程中,表面层金属产生强烈的塑性变化,使表层的强度和硬度都有所提高,这种现象称表面冷作硬化。
2)表面层残余应力。
在切削加工过程中,由于切削变形和切削热的影响,在加工表面会产生残余应力,如果残余应力超过材料的屈服强度,就会产生表面裂纹,表面的微观裂将给零件带来严重的隐患。
3)表面层金相组织的变化。
工件表面经磨削精加工时,磨削产生的高温,一般可达800~1000 ℃,高的磨削温度会烧坏工作表面,使淬火钢件表面退火,引起表层金属发生相变,将大大降低表面层的物理—机械性能。
二、影响表面粗糙度的因素1、切削加工影响表面粗糙度的因素刀具几何形状及切削运动的影响刀具相对于工件作进给运动时,在加工表面留下了切削层残留面积,从而产生了表面粗糙度,残留面积的形状是刀具几何形状的复映,其高度H受刀具的几何角度和切削用量大小的影响。
减小进给量vf、主偏角、副偏角以及增大刀尖圆弧半径,均可减小残留面积的高度。
此外,适当增大刀具的前角,以减小切削时的塑性变形的程度,合理选择润滑液和提高刀具刃磨质量,以减小切削时的塑性变形和抑制刀瘤、鳞刺的生成,也是减小表面粗糙度值的有效措施。
2、工件材料的性质加工塑性材料时,由于刀具对金属的挤压,产生了塑性变形,加之刀具迫使切屑与工件分离的撕裂作用,使表面粗糙度值加大。
机械制造工艺学 第四节 机械加工表面质量

2)砂轮的粒度和砂轮的修整对表面粗糙度的影响
砂轮的粒度
磨粒间的距离
磨粒的大小
砂轮的粒度号越大, 磨粒和磨粒间离越小
砂轮的粒度号↑ ,参与磨削的磨粒↑ ,粗糙度↓ ;
修整砂轮时,纵向进给量对表面粗糙度的影响甚大; 纵向进给量↓ ,砂轮表面的等高性越好 ,粗糙度 ↓ ;
(2)金属表面层的塑性变形 在磨削过程中,由于磨粒大多具有很大的负前角,很不锋 利,所以大多数磨粒在磨削时只是对表面产生挤压作用而使表 面出现塑性变形,磨削时的高温更加剧了塑性变形,增大了表 面粗糙度值。
表面层的加工硬化对疲劳强度影响 适当的加工硬化能阻碍已有裂纹的继续扩大和新裂纹的产生,有助于 提高疲劳强度。但加工硬化程度过大,反而易产生裂纹,故加工硬化程度 应控制在一定范围内。
拉应力加剧疲劳裂纹的产生和扩展;
3.表面质量对零件耐腐蚀性的影响 表面粗糙 表面粗糙度值越大,越容易积聚腐蚀性物质; 度的影响 波谷越深,渗透与腐蚀作用越强烈。 零件的耐腐蚀性在很大程度上取决于表面粗糙度 表面残余应力对零件耐腐蚀性影响
(二)、表面层的残余应力 l、表面层残余应力及其产生的原因 表面层残余应力 外部载荷去除后,工件表面层及其与
基体材料的交界处仍残存的互相平衡的应力。
表面层残余应 力产生的原因
(1)冷态塑性变形引起的残余应力 (2)热态塑性变形引起的残余应力 (3)金相组织变化引起的残余应力
(1)冷态塑性变形引起的残余应力
其中: H——加工后表面层的显微硬度
H0——材料原有的显微硬度
(2)表面层金相组织变化
指的是加工中,由于切削热的作用引起表层金属金相组织 发生变化的现象。如磨削时常发生的磨削烧伤,大大降低表面 层的物理机械性能。 (3)表面层产生残余应力 指的是加工中,由于切削变形 和切削热的作用,工件表层及其基 体材料的交界处产生相互平衡的弹 性应力的现象。残余应力超过材料
第四章 机械加工质量及其控制

工艺系统刚度主要取决于薄弱环节的刚度。
2)机床刚度
y机床 y主轴 y刀架 y尾座
k主轴= k尾架= k刀架= Fp 2 y主轴 Fp 2 y尾架 Fp y刀架
机床的刚度取决于部件的刚度。
(2)工艺系统刚度对加工精度的影响
常见的几种工艺系统中其低刚度环节所在位置:
镗孔:工件进给孔为椭圆形。
避免措施
提高主轴及箱体的制造精度、选用高精度的轴承、提高主轴 部件的装配精度、对高速主轴部件进行平衡、对滚动轴承进 行预紧等,均可提高机床主轴的回转精度。
2)导轨误差
(a) 在水平面 内的直线度误 差 误差敏感方向
(b) 在垂直平面 内的直线度
ΔR ≈Δ22/D 设Δ2=
工艺系统的刚度在不同的加工位置上是各不相同的,当主轴箱 刚度与尾座刚度相等时,工艺系统刚度在工件全长上的差别最 小,工件在轴截面内几何形状误差最小。
在车床上加工短而粗的光轴(工件刚度相对于机床刚度大 得多),已知径向切削分力
Fp
=1000N,主轴刚度
k主轴
=100000N/mm,尾座刚度
k尾座
=50000N/mm,
正确地选用刀具材料和选用新型耐磨的刀具材料,合理地选 用刀具几何参数和切削用量,正确地刃磨刀具,正确地采用冷 却润滑液等,均可有效地减少刀具的尺寸磨损。必要时还可采 用补偿装置对刀具尺寸磨损进行自动补偿。
10000.054 mm, 加工一合金钢管,其外径为
工件长度
l =2100mm,圆柱度公差在全长范围内
c)采用合理的装夹方式和加工方式
2)减小切削力及其变化 合理地选择刀具材料、 增大前角和主偏角、对 工件材料进行合理的热 处理以改善材料的加工 性能等,都可使切削力 减小。
机械制造技术基础(第2版)第四章课后习题答案

《机械制造技术基础》部分习题参考解答第四章机械加工质量及其控制4-1什么是主轴回转精度?为什么外圆磨床头夹中的顶尖不随工件一起回转,而车床主轴箱中的顶尖则是随工件一起回转的?解:主轴回转精度——主轴实际回转轴线与理想回转轴线的差值表示主轴回转精度,它分为主轴径向圆跳动、轴向圆跳动和角度摆动。
车床主轴顶尖随工件回转是因为车床加工精度比磨床要求低,随工件回转可减小摩擦力;外圆磨床头夹中的顶尖不随工件一起回转是因为磨床加工精度要求高,顶尖不转可消除主轴回转产生的误差。
4-2 在镗床上镗孔时(刀具作旋转主运动,工件作进给运动),试分析加工表面产生椭圆形误差的原因。
答:在镗床上镗孔时,由于切削力F的作用方向随主轴的回转而回转,在F作用下,主轴总是以支承轴颈某一部位与轴承内表面接触,轴承内表面圆度误差将反映为主轴径向圆跳动,轴承内表面若为椭圆则镗削的工件表面就会产生椭圆误差。
4-3为什么卧式车床床身导轨在水平面内的直线度要求高于垂直面内的直线度要求?答:导轨在水平面方向是误差敏感方向,导轨垂直面是误差不敏感方向,故水平面内的直线度要求高于垂直面内的直线度要求。
4-4某车床导轨在水平面内的直线度误差为0.015/1000mm,在垂直面内的直线度误差为0.025/1000mm,欲在此车床上车削直径为φ60mm、长度为150mm的工件,试计算被加工工件由导轨几何误差引起的圆柱度误差。
解:根据p152关于机床导轨误差的分析,可知在机床导轨水平面是误差敏感方向,导轨垂直面是误差不敏感方向。
水平面内:0.0151500.002251000R y∆=∆=⨯=mm;垂直面内:227()0.025150/60 2.341021000zRR-∆⎛⎫∆==⨯=⨯⎪⎝⎭mm,非常小可忽略不计。
所以,该工件由导轨几何误差引起的圆柱度误差0.00225R∆=mm。
4-5 在车床上精车一批直径为φ60mm 、长为1200mm 的长轴外圆。
表面质量概念机械加工表面质量是指零件在机械加工后表面层

2.加工表面质量对零件使用性能的影响
(1)表面质量对零件耐磨性的影响 (2)表面质量对零件疲劳强度的影响 (3)表面质量对零件耐腐蚀性的影响 (4)表面质量对配合性质的影响 (5)表面质量对零件的使用性能其他
方面的影响
(1)表面质量对零件耐磨性的影响
磨损过程的基本规律: 零件的磨损可分为三个阶段,如图1-17所示。 第Ⅰ阶段:(初期磨损阶段)由于摩擦副开始工作时,两个零件
④伤痕 在加工表面的一些个别位置上 出现的缺陷。
在加工表面的一些个别位置上出现的缺 陷。它们大多是随机分布的,例如砂眼、 气孔、裂痕和划痕等。
(2)表面层物理、化学和力学性能
●表面层加工硬化(冷作硬化)。 ●表面层金相组织变化及由此引起的表层金
属强度、硬度、塑性及耐腐蚀性的变化。 ●表面层产生残余应力或造成原有残余应力
表面层的加工硬化对耐磨性的影响
表面层的加工硬化,一般能提高耐磨性0.5~l 倍。这是因为加工硬化提高了表面层的强度, 减少了表面进一步塑性变形和咬焊的可能。但 过度的加工硬化会使金属组织疏松,甚至出现 疲劳裂纹和产生剥落现象,从而使耐磨性下降。 所以零件的表面硬化层必须控制在一定的范围 之内。
表面互相接触,一开始只是在两表面波峰接触,当零件受力时, 波峰接触部分将产生很大的压强,因此磨损非常显著。 第Ⅱ阶段:经过初期磨损后,实际接触面积增大,磨损变缓,进 入磨损的第Ⅱ阶段,即正常磨损阶段。这一阶段零件的耐磨性最 好,持续的时间也较长。 第Ⅲ阶段:由于波峰被磨平,表面粗糙度参数值变得非常小,不 利于润滑油的储存,且使接触表面之间的分子亲和力增大,甚至 发生分子粘合,使摩擦阻力增大,从而进入磨损的第Ⅲ阶段,即 急剧磨损阶段。
机械制造工艺课件第四章机械加工表面质量

机械制造工艺
★★★
第四章
第一节
第二节 第三节 第四节
机械加工表面质量
基本概念
表面粗糙度的形成及其影响因素 加工表面力学物理性能的变化及其影响因素 机械加工中的振动
★★★
机械制造工艺
基本慨念
★★★
第一节
零件机械加工表面质量是指零件在机械加工后 表面层的微观几何形状误差和力学物理性能。零件 机械加工后表面层中存在着表面粗糙度、表面波度、 表面加工纹理等微观几何形状误差以及伤痕等缺陷, 零件表面层在加工过程中还会产生加工硬化、金相 组织变化及残余应力等现象。上述种种因素综合作 用的结果,直接影响了零件的寿命及可靠性,从而 影响产品的质量和使用性能。
★★★
机械制造工艺
★★★
图4-2
初期磨损量与零件表面粗糙度 1—轻载荷 2—重载荷
★★★
机械制造工艺
★★★
2、表面质量对零件疲劳强度的影响
零件在交变载荷的作用下,其表面微观不平的凹谷 处和表面层的缺陷处容易引起应力集中而产生疲劳裂纹, 造成零件的疲劳破坏。试验表明,减小零件表面粗糙度 值可以使零件的疲劳强度有所提高。因此,对于一些承 受交变载荷的重要零件,如曲轴其曲拐与轴颈交接处精 加工后常进行光整加工,以减小零件的表面粗糙度值, 提高其疲劳强度。
★★★
机械制造工艺
★★★
图4-3
表面残留面积
★★★
机械制造工艺
★★★
金属切削过程幻灯片
★★★
机械制造工艺
★★★
2、影响表面粗糙度的工艺因素及改善措施
(1)切削用量的影响 进给量大,切屑变形也大,切屑 与刀具前刀面的摩擦以及后刀面与已加工表面的摩擦加剧, 从而增大工件表面粗糙度值。因此,减小进给量利于减小工 vc 件表面粗糙度值。 切削速度对表面粗糙度的影响因工件材料而异。对于塑 性材料,一般情况下,低速或高速切削时,不会产生积屑瘤, 故加工表面粗糙度值都较小,但在中等切削速度下,塑性材 料的工件容易产生积屑瘤或鳞刺,且塑性变形较大,如图4-4 所示。对于脆性材料,加工表面粗糙度主要是由于脆性挤裂 碎裂而成,与切削速度关系较小。所以精加工塑性材料时往 往选择高速或低速精切,以获得较小的表面粗糙度值。