初二上数学期末综合复习题(三)
人教版八年级上册数学 期末复习综合练习题

人教版八年级上册数学期末复习综合练习题一.选择题1.在△ABC中,AB=5,AC=3,AD为BC边的中线,则AD的长x的取值范围()A.5≤x≤8 B.4≤x≤7 C.1<x<4 D.2.若a,b,c是△ABC三边的长,化简:|a+b﹣c|+|b﹣a﹣c|﹣|c﹣a﹣b|=()A.a+b﹣c B.b﹣a+c C.a﹣b+c D.2a﹣b+c3.如图,四边形纸片ABCD中,∠A=65°,∠B=85°,将纸片折叠,使C,D落在AB边上的C′,D′处,折痕为MN,则∠AMD′+∠BNC′=()A.60°B.70°C.80°D.85°4.若a2+(m﹣3)a+4是一个完全平方式,则m的值应是()A.1或5 B.1 C.7或﹣1 D.﹣15.如图,P是△ABC的三条角平分线的交点,连接PA、PB、PC,若△PAB、△PBC、△PAC的面积分别为S1、S2、S3,则S1()S2+S3.A.>B.=C.<D.无法确定6.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点F、G,若FG=2,ED=6,则DB+EC 的值为()A.3 B.4 C.5 D.97.关于x的分式方程﹣=1有增根,则﹣的值为()A.B.﹣C.﹣1 D.﹣38.若a满足a2=1,则分式的值为()A.﹣1 B.﹣C.0 D.9.如图,AD为等腰△ABC的高,其中∠ACB=50°,AC=BC,E,F分别为线段AD,AC上的动点,且AE =CF,当BF+CE取最小值时,∠AFB的度数为()A.75°B.90°C.95°D.105°10.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠BAC:∠ABC:∠BCA=26:7:3,则∠α的度数为()A.100°B.90°C.85°D.80°11.如图,在六边形ABCDEF中,∠A+∠F+∠E+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P度数为()A.α﹣180°B.360°﹣αC.180°﹣αD.α﹣360°12.如图,已知Rt△OAB,∠OAB=50°,∠AOB=90°,O点与坐标系原点重合,若点P在x轴上,且△APB是等腰三角形,则点P的坐标可能有()个.A.1个B.2个C.3个D.4个13.如图,△ABC中,D为BC的中点,点E为BA延长线上一点,DF⊥DE交射线AC于点F,连接EF,则BE+CF与EF的大小关系为()A.BE+CF<EF B.BE+CF=EFC.BE+CF>EF D.以上都有可能14.如图,等腰△ABC中,AB=AC=10,BC=16,△ABD是等边三角形,点P是∠BAC的角平分线上一动点,连接PC、PD,则PC+PD的最小值为()A.8 B.10 C.12 D.1615.如图所示,在等边△ABC中,点D、E、F分别在边BC、AB,AC上,则线段DE+DF的最小值是()A.BC边上高的长B.线段EF的长度C.BC边的长度D.以上都不对二.填空题16.如图,六边形ABCDEF内部有一点G,连接BG,DG.若∠1+∠2+∠3+∠4+∠5=440°,则∠BGD的大小为.17.如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60cm和40cm两部分,则边AC的长为.18.若n为正整数,且x2n=4,则(3x3n)2﹣4•(x2)2n的值是.19.因式分解:﹣8ax2+16axy﹣8ay2=.20.若16x2+1+k(k为含x的单项式)是一个完全平方式,则满足条件的k为.21.如果a2﹣9b2=4,那么(a+3b)2(a﹣3b)2的值是.22.如图,△ABC的外角∠MBC和∠NCB的平分线BP、CP相交于点P,PE⊥BC于E且PE=3cm,若△ABC 的周长为14cm,S△BPC=7.5cm2,则△ABC的面积为cm2.23.已知点A,B的坐标分别为(2,2),(2,4),O是原点,以A,B,P为顶点的三角形与△ABO全等,写出所有符合条件的点P的坐标:.24.已知,在△ABC中,E在AC上,连接BE,在BE上取点D,使AC=BD,延长CD交AB于点K,AF⊥CK 于F,若ED=CE,FC=3FD=3,则DK=.25.已知x,y,z满足x﹣y﹣z=0,2x+3y﹣7z=0,且z≠0,则的值是.26.如图,在△ABC中,AB=AC,D、E是△ABC内两点.AD平分∠BAC,∠EBC=∠E=60°,若BE=7cm,DE=3cm,则BC=cm.27.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若E是AC上一点且BE⊥AC,P是AD上的动点,则PC+PE的最小值是.28.商场销售某种商品,1月份销售了若干件,共获利润30000元,2月份把这种商品的单价降低了0.4元,但销售量比1月份增加了5000件,从而获得的利润比1月份多2000元,求调价前每件商品的利润是多少元?解:设调价前每件商品的利润是x元,可列出方程.29.已知x,y,z都是整数,且x>y,x2+z2=5,z2+y2=13.(1)x2﹣y2的值是.(2)++的值是.30.如图,等腰△ABC的底边BC的长为2,面积为5,腰AC的垂直平分线EF分别交边AC,AB于点E,F.若点D为BC边中点,M为线段EF上一动点,则DM+CM的最小值为.三.解答题31.计算:(x+2)(4x﹣3)﹣(2x﹣1)2.32.把下列各式因式分解.(1)﹣x2﹣4y2+4xy (2)9(m+n)2﹣(m﹣n)2(3)(a2+4)2﹣16a2 (4)a(x﹣3)+2b(x﹣3)33.计算:(1)a 2a−1−a−1 (2)a+2a−2⋅aa2+2a34.解分式方程:(1)3x +6x−1−x+5x2−x=0 (2)2−xx−3+13−x=135.先化简,再求值(1),其中a与2,4构成△ABC的三边,且a为整数.(2),若﹣3<x≤1,请你选取一个合适的x的整数值,求出原式的值.36.某数学老师在讲因式分解时,为了提高同学们的思维能力,他补充了一道这样的题:对多项式(a2+4a+2)(a2+4a+6)+4进行因式分解,有个学生解答过程如下:解:设a2+4a=b原式=(b+2)(b+6)+4…第一步=b2+8b+16…第二步=(b+4)2…第三步=(a2+4a+4)2…第四步根据以上解答过程回答下列问题:(1)该同学第二步到第三步运用了因式分解的哪种方法?(填选项).A.提取公因式 B.平方差公式C.两数和的完全平方公式 D.两数差的完全平方公式(2)对第四步的结果继续因式分解得到结果为.(3)请你模仿以上方法对多项式(x2﹣6x)(x2﹣6x+18)+81进行因式分解.37.如图,某社区在一块长和宽分别为(x+2y)m,(2x+y)m的长方形空地上划出两块大小相同的边长为ym的正方形区域种植花草(数据如图所示,单位:m)(阴影部分).(1)用含x,y的式子表示休闲广场的面积并化简;(2)若|y﹣5|+(x﹣2)2=0,请计算休闲广场的面积.38.“垃圾分一分,环境美十分”.某校为积极响应有关垃圾分类的号召,从百货商场购进了A,B两种品牌的垃圾桶作为可回收垃圾桶和其他垃圾桶.已知B品牌垃圾桶比A品牌垃圾桶每个贵50元,用4000元购买A品牌垃圾桶的数量是用3000元购买B品牌垃圾桶数量的2倍.(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?(2)若该中学决定再次准备用不超过6000元购进A,B两种品牌垃圾桶共50个,恰逢百货商场对两种品牌垃圾桶的售价进行调整:A品牌按第一次购买时售价的九折出售,B品牌比第一次购买时售价提高了20%,那么该学校此次最多可购买多少个B品牌垃圾桶?39.母亲节前夕,某花店购进康乃馨和百合两种鲜花,销售过程中发现康乃馨比百合销量大,店主决定将百合每枝降价2元促销,降价后100元可购买百合的数量是原来可购买百合数量的倍.(1)试问:降价后每枝百合的售价是多少元?(2)根据销售情况,店主用不多于1000元的资金再次购进两种鲜花共180枝,康乃馨进价为6元/枝,百合的进价是5元/枝.试问至少需要购进多少枝百合?40.已知,如图,在四边形ABCD中,BC>BA,∠A+∠C=180°,DE⊥BC,BD平分∠ABC,试说明AD=DC.41.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.(1)求证:AD=BE;(2)求AD的长.42.如图,AP,CP分别是△ABC外角∠MAC和∠NCA的平分线,它们交于点P.求证:BP为∠MBN的平分线.43.已知:如图,∠MON=90°,点A、B分别在射线OM、ON上移动(不与点O重合),AC平分∠MAB,AC的反向延长线与∠ABO的平分线相交于点D.(1)当∠ABO=70°时、∠D的度数是多少?(2)随着点A、B的移动,试问∠D的大小是否变化?请说出你的理由.44.【问题背景】在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF =60°,试探究图1中线段BE、EF、FD之间的数量关系.【初步探索】琪琪同学认为:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,则可得到BE、EF、FD之间的数量关系是.【探索延伸】在四边形ABCD中如图2,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,∠EAF=∠BAD,上述结论是否仍然成立?说明理由.【结论运用】如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角(∠EOF)为70°,试求此时两舰艇之间的距离.45.在△DEF中,DE=DF,点B在EF边上,且∠EBD=60°,C是射线BD上的一个动点(不与点B重合,且BC≠BE),在射线BE上截取BA=BC,连接AC.(1)当点C在线段BD上时,①若点C与点D重合,请根据题意补全图1,并直接写出线段AE与BF的数量关系为;②如图2,若点C不与点D重合,请证明AE=BF+CD;(2)当点C在线段BD的延长线上时,用等式表示线段AE,BF,CD之间的数量关系(直接写出结果,不需要证明).。
最新人教版初二八年级上册数学期末综合测卷

九年级上册数学期末综合考题第一部分 选择题部分一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的) 1.sin30º=A .3B .23C .33 D .212.若1-=x 是关于x 的一元二次方程02=+-c x x 的一个根,则c 的值是A .2B .1C .0D .–2 3.某几何体如图1所示,则它的主视图为4.如图2,下列各组条件中,不能判定△ABC ≌△ABD 的是 A .AC=AD ,BC=BD B .∠C=∠D ,∠BAC=∠BADC .AC=AD ,∠ABC=∠ABDD .AC=AD ,∠C=∠D=90º 5.已知点(–2,3)在函数xky =的图象上,则下列说法中,正确的是 A .该函数的图象位于一、三象限B .该函数的图象位于二、四象限C .当x 增大时,y 也增大D .当x 增大时,y 减小6.如图3,将矩形ABCD 沿对角线AC 折叠,使B 落在E 处, AE 交CD 于点F ,则下列结论中不一定成立的是 A .AD = CE B .AF = CFC .△ADF ≌△CEFD .∠DAF=∠CAF7.如图4,小明为测量一条河流的宽度,他在河岸边相距80m 的P 和Q两点分别测定对岸一棵树R 的位置,R 在Q 的正南方向,在P 东偏南36°的方向,则河宽为 A .80tan36° B .80tan54°C .︒36tan 80 D .80sin36°8.如图5,随机闭合开关S 1、S 2、S 3中的两个,能让灯泡⊗发光的概率是A .43 B .32 C .21 D .31 9.如图6,等腰梯形ABCD 中,AD//BC ,AB=CD=2, AC ⊥AB ,AC = 4,则sin ∠DAC=A B C DEF 图3图5P Q R 图4 ABCD图6C A图2 B D A . B . C . D . 图1A .21 B .55 C .552 D .210.如图7,当小颖从路灯AB 的底部A 点走到C 点时,发现自己在路灯B 下的影子顶部落在正前方E 处。
人教版八年级数学上册《期末考试综合测试卷》测试题及参考答案

人教版八年级数学上册期末考试综合测试卷(时间:120 分钟,满分:120 分)一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.每小题给出的四个选项中,只有一项符合题目要求)1. 下列计算正确的是().A.x 2·x 3=x 6B.-2x 2+3x 2=-5x 2C.(-3ab )2=9a 2b 2D.(a+b )2=a 2+b 22. 计算 3ab 2·5a 2b 的结果是().A.8a 2b 2B.8a 3b 3C.15a 3b 3D.15a 2b 23. 下列方程无解的是().A. 3=1B.�-2+x=�-2+1�-1�-1�-1C.6 − 6=2D.�-1=2� 3��+1 34. 如图,欲测量内部无法到达的古塔相对两点 A ,B 间的距离,可延长 AO 至点 C ,使 CO=AO ,延长 BO 至点 D ,使 DO=BO ,则△COD ≌△AOB ,从而通过测量 CD 就可测得 A ,B 间的距离,其全等的根据是 ().A.SASB.ASAC.AASD.SSS5. 已知等腰三角形的一边长为 4,一边长为 9,则它的周长是().A.17B.22C.17 或 22D.13 6. 若一个多边形的内角和为 900°,则这个多边形是().A.五边形B.六边形C.七边形D.八边形7.若 a+b=5,ab=-24,则 a 2+b 2 的值为( ).A.73B.49C.43D.238.如图,在△ABC 中,延长BC 边上的中线AD 到点E,使DE=AD,则下列结论成立的是( ).A.DE=DCB.CE=ABC.CE=CBD.AE=BC9.如图,AB∥CD,AE 平分∠CAB 交CD 于点E.若∠C=50°,则∠AED=( ).A.65°B.115°C.125°D.130°10.已知1 = 1 + 1 , 1 = 1 −1 , �1( ).�1 �1�2 �2�2 �1则�2等于A.�1+�2�2-�1B. �1-�2�2+�1C. �2-�1�1+�2D.�2+�1�1-�2二、填空题(本大题共6 小题,每小题4 分,共24 分)11.因式分解:8a2-2= .12.方程2�+2−1=0 的解是.�13.如图,△ABO 是关于x 轴对称的轴对称图形,若点A 的坐标为(1,-2),则点B 的坐标为.14.如图,已知∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,若以“SAS”为依据,还要添加的条件为.15.如图,AB=AC,AD=AE,∠B=50°,∠AEC=120°,则∠DAC 的度数等于.16. 如图,∠1 是五边形 ABCDE 的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D=°.三、解答题(本大题共 8 小题,共 66 分)17.(6 分)化简:(�+�)2−2��+(a 2+b 2)0.�2+�2 �2+�218.(6 分)先化简,再求值:(2x+y )2+(x-y )(x+y )-5x (x-y ),其中 x= 2+1,y= 2-1.19.(6 分)已知:线段 a ,∠α.求作:等腰三角形 ABC ,使其腰长 AB 为 a ,底角∠B 为∠α.要求:用尺规作图,不写作法和证明,但要清楚地保留作图痕迹.20.(8 分)如图,已知 AC 平分∠BAD ,∠1=∠2.求证:AB=AD.21.(8 分)先化简,再求值:1-��2+�÷ 1-�-� + 1 ,其中,a= 2-1.�22.(8 分)如图,在△ABC 中,AB=AC,AB 的垂直平分线交AB 于点N,交BC 的延长线于点M,若∠A=40°.(1)∠NMB= ;(2)如果将题中∠A 的度数改为70°,其余条件不变,那么∠NMB= ;(3)你发现有什么样的规律性?试证明;(4)若将题中的∠A 改为钝角,你对这个规律性的认识是否需要加以修改?23.(12 分)如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开, 分成三角形和四边形两部分,求四边形中最大角的度数.24.(12 分)某校原有600 张旧课桌急需维修,经过A,B,C 三个工程队的竞标得知,A,B 两个工程队的工作效率相同,且都为C 工程队的2 倍,若由一个工程队单独完成,C 工程队比A 工程队要多用10 天.学校决定由三个工程队一起施工,要求至多6 天完成维修任务.三个工程队都按原来的工作效率施工2 天时,学校又清理出需要维修的课桌360 张,为了不超过6 天时限,工程队决定从第3 天开始,各自都提高工作效率,A,B 两个工程队提高的工作效率仍然都是C 工程队提高的2 倍.这样他们至少还需要3 天才能完成整个维修任务.(1)求A 工程队原来平均每天维修课桌的张数;(2)求A 工程队提高工作效率后平均每天多维修课桌张数的取值范围.答案与解析一、选择题1.C2.C3.B 选项B 中, �-2,得x=1,但x=1 使分母为0.等式两边同减去�-14.A5.B6.C7.A8.B9.B10.B 1 = �1+�2 , 1 = �1-�2,�1 �1�2 �2 �1�2则s1=�1�2 ,s2= �1�2 .�1+�2 �1-�2�1 =�1�2 ·�1-�2 = �1-�22 1+�2 1 2 1+�2二、填空题11.2(2a+1)(2a-1) 12.x=2 13.(1,2)14.BC=EF(或BE=CF) 15.70°16.425三、解答题所以2 17. 解 (�+�)2 − 2�� +1=�2+2��+�2-2��+1=�2+�2+1=2.�2+�2�2+�2 �2+�2 �2+�218.解 原式=4x 2+4xy+y 2+x 2-y 2-5x 2+5xy=9xy.当 x= 2+1,y= 2-1 时,原式=9xy=9( 2+1)( 2-1)=9.19. 解20. 证明 ∵AC 平分∠BAD ,∴∠BAC=∠DAC.∵∠1=∠2,∴∠ABC=∠ADC.∠B � = ∠B �,在△ABC 和△ADC 中, ∠��� = ∠���, �� = ��,∴△ABC ≌△ADC (AAS).∴AB=AD.21.解 原式= 1-� ÷ 1-� -�2-��(�+1) � �= 1-� ÷1-�-�2+� �(�+1) �= 1-� ÷1-�2 �(�+1) �= 1-� ·��(�+1)= 1 ,(�+1)(1-�)(1+�)当 a= 2-1 时,原式=1= 1.( 2-1+1)2222.解 (1)20° (2)35°(3)∠NMB=1A. : , A 作 AD ⊥BC 于点 D.∠ 证明 如图过点2�� =在Rt △ABD 与Rt △ACD 中, �� = ��,∴Rt △ABD ≌Rt △ACD (HL).∴∠BAD=∠CAD ,∴∠BAD=1 BAC. ∠2∵AD ⊥BC ,∴∠B+∠BAD=90°.∵MN ⊥AB ,∴∠B+∠NMB=90°,∴∠BAD=∠NMB ,∴∠NMB=1BAC. ∠2(4)需要修改.此时上述规律应改为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.23.解 如图,在△ABC 中,∠B=∠C=35°,则∠A=110°.过底边上的点 D 作 DE ⊥BC 交 AB 于点 E ,则∠EDC=90°.所以∠AED=360°-90°-35°-110°=125°,即分成的四边形中最大角的度数为 125°.24.解 (1)设C 工程队原来平均每天维修课桌 x 张, 则A 工程队,B 工程队原来平均每天维修课桌 2x 张. 根据题意, 600 − 600得 � 2� =10.解方程得 x=30.经检验,x=30 是原方程的解,且符合题意, 则 2x=60.故A 工程队原来平均每天维修课桌 60 张.(2)设C 工程队提高工作效率后平均每天多维修课桌 x 张,施工 2 天时,已维修(60+60+30)×2=300(张),从第 3 天起还需维修的课桌应为 300+360=660(张). 根据题意,得 3(2x+2x+x+150)≤660≤4(2x+2x+x+150).解得3≤x≤14,即6≤2x≤28.故A 工程队提高工作效率后平均每天多维修的课桌张数的取值范围是不少于6 张且不多于28 张.。
人教版数学八年级上学期期末综合检测题含答案解析

人教版数学八年级上学期期末综合检测题分值:120分时间:100分钟一、选择题(本大题共12道小题,共36分)1.下列运算正确的是A. B.C.D.2.AD 是中BC 边上的中线,若,,则BD 的取值范围是A. B. C. D.3.一个多边形的内角和是外角和的2倍,则它是A.四边形B.五边形C.六边形D.八边形4.将多项式加上一个单项式后,使它能够在我们所学范围内因式分解,则此单项式不能是A.B.C.8mD.5.把多项式分解因式,得,则的值分别是A.5B.C.1D.6.课外活动跳绳时,相同时间内小林跳了90下,小陈跳了120下.已知小陈每分钟比小林多跳20下,设小林每分钟跳x 下,则根据题意,下面所列方程中正确的是.A.B.C. D.7.如图,中,,,以点A 为圆心,任意长为半径作弧,分别交AB 、AC 于D 和E ,再分别以点D 、E 为圆心,大于二分之一DE 为半径作弧,两弧交于点F ,连接AF 并延长交BC 于点G ,于H ,,则的面积为A.4B.5C.9D.108.如图,在中,,,BC的垂直平分线交AB于点E,垂足为D,CE平分若,则AE的长为A.1 B. C. D.29.下列计算正确的是A. B. C. D.10如果,则的值为A.2B.1C.D.11.如右图所示的是用4个相同的小长方形形与1个小正方形镶嵌而成的正方形图案,已知该图案的面积为49,小正方形的面积为4,若用x,y表示小长方形的两边长,请观察图案,指出以下关系式中,不正确的是A. B. C. D.12.如图,是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,的度数是A. B. C. D.二、填空题(本大题共6小题,共18分)13.因式分解:______.14.已知,则________.15.如图,中,,AD是的平分线,,垂足为E,若,,则BE的长是______.16.如图,为正三角形,BD是角平分线,点F在线段BD上移动,直线CF与AB交于点E,连结AF,当时,______度.17.如图,P为的平分线OC上任意一点,于M,于N,连接MN交OP于点则,,,其中正确的有________.18.观察,,通过计算,猜想:________.三、解答题(本大题共7小题,共66分)19.把下列各式分解因式:;.20先化简,然后从的范围内选取一个你喜欢的整数作为x的值代入求值,21.如图,在所给的网格中,完成下列各题.画出格点关于直线DE的对称;若点A的坐标为,点B的坐标为,则的坐标为______;在DE上画出点P,使最小.22.如图,已知在四边形ABCD中,点E在AD上,,,.求证:.若,,求的度数.23.复课返校后,为了拉大学生锻炼的间距,某学校决定增购适合独立训练的两种体育器材:跳绳和毽子.已知跳绳的单价比毽子的单价多5元,用400元购买的跳绳个数和用150元购买的毽子个数相同.求跳绳和毽子的单价分别是多少元?学校准备一次性购买跳绳和毽子两种器材共120个,但总费用不超过600元,那么最多可购买多少根跳绳?24.如图,已知等腰三角形ABC中,,点D、E分别在边AB、AC上,且,连接BE、CD,交于点F.判断与的数量关系,并说明理由;求证:过点A、F的直线垂直平分线段BC.25.如下图,和均为等边三角形,点A,D,E在同一直线上,连接BE.求证:求的度数探究:如下图,和均为等腰直角三角形,,点A,D,E在同一直线上,于点M,连接BE.的度数为;线段DM,AE,BE之间的数量关系为直接写出答案,不需要说明理由参考答案一、选择题(本大题共12道小题,共36分)1、C2、C3、C4、B5、B6、D7、B8、A9、D10、C11、D12、C二、填空题(本大题共6小题,共18分)13、14、201515、2cm16、2017、18、三、解答题(本大题共7小题,共66分)19、解:原式原式20、解:原式,,整数x为,0,2,,,可取,则原式.21、如图所示;;点P如图所示.22、解:,,,在和中,,≌,;,,,,,.23、解:设毽子的单价为x元,则跳绳的单价为元,依题意,得:,解得:,经检验,是原方程的解,且符合题意,.答:跳绳的单价为8元,毽子的单价为3元;设跳绳能买y根,则毽子能买个,依题意,得:,解得:,答:最多可购买48根跳绳.24、解:;在和中,,≌,;连接AF.,,由可知,,,,点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.25、解:证明:和均为等边三角形,,,,.在和中,.,.为等边三角形,..;。
人教版八年级上学期期末数学综合卷及答案

16.已知关于x,y的方程组 的唯一解是 ,则关于m,n的方程组 的解是____________.
三.解答题(共86分)
C.市民中心北偏东60°方向D.地王大厦25楼
4.下列各式计算正确的是()
A. B. C. D.
5.若中国队参加国际数学奥林匹克 参赛选手比赛成绩的方差计算公式为: ,下列说法错误的是()
A.我国一共派出了六名选手B.我国参赛选手的平均成绩为38分
C.参赛选手的中位数为38D.由公式可知我国参赛选手比赛成绩团体总分为228分
(1)填空:若要求水泵站P距离A村最近,则P的坐标为____________;
(2)若从节约经费考虑,水泵站P建在距离大桥O多远的地方可使所用输水管最短?
24. (12分)如图1,已知直线AO与直线AC的表达式分别为: 和 .
(1)直接写出点A的坐标;
(2)若点M在直线AC上,点N在直线OA上,且MN//y轴,MN= OA,求点N 坐标;
(2)猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.
23. (10分)要在某河道建一座水泵站P,分别向河的同一侧甲村A和乙村B送水,经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴建立直角坐标系(如图),两村的坐标分别为A(1,-2),B(9,-6).
6.如图, ,AE与BD交于点C, ,则 的度数为()
A. B. C. D.
7.下列命题是假命题的是().
A. 是最简二次根式B.若点A(-2,a),B(3,b)在直线y=-2x+1,则a>b
人教版八年级数学上册期末综合复习题

人教版八年级数学上册期末综合复习题一、选择题(每小题3分)1.下列长度的三条线段,不能..构成三角形的是( ) A .3,3,3 B .3,4,5 C .5,6,10 D .4,5,92.下列交通指示标识中,不是轴对称图形的是( ) A. B. C. D.3.下列运算中,正确的是( )A .x 2x 5=x 6B .(ab )5=a 5b 5C .3a+2a =5a 2D .(x 3)2=x 54.如图,点E 、F 分别在AB 、CD 上,∠B =40°,∠C =60°,则∠1+∠2等于( )A .70°B .80°C .90°D .100°5.如图,已知∠1=∠2,若添加一个条件使△ABC ≌△ADC ,则添加错误的是( ) A. B. C. D.6.下列因式分解正确的是( )A .x 2﹣xy+x =x (x ﹣y )B .a 3﹣2a 2b+ab 2=a (a ﹣b )2C .x 2﹣2x+4=(x ﹣1)2+3D .ax 2﹣9=a (x+3)(x ﹣3)7.已知a ﹣b =5,ab =﹣2,则代数式a 2+b 2﹣1的值是( )A .16B .18C .20D .288.如图,在ABC ∆中,AB AC =,40A ∠=︒,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则CBE ∠的度数为( )A .70︒B .80︒C .40︒D .30︒ 9.如果(x+m )(x ﹣6)中不含x 的一次项,则( )A .m =0B .m =6C .m =﹣6D .m =110.如图的图形面积由以下哪个公式表示( )A .a 2﹣b 2=a (a ﹣b )+b (a ﹣b )B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .a 2﹣b 2=(a+b )(a ﹣b )11、使分式x 2x -1有意义的x 的取值范围是( ) A .x ≥12 B .x ≤12 C .x >12 D .x ≠1212.化简x2x-1+11-x的结果是( )A.x+1 B.1x+1C.x-1 D.xx-113.如图,在△ABC中,AB=AC,点D,E分别在AC,AB上,且AD=AE,点O是BD和CE的交点,则:①△ABD≌△ACE;②△BOE≌△COD;③点O在∠BAC的平分线上,以上结论( )A.都正确 B.都不正确 C.只有一个正确 D.只有一个不正确14.已知y2+10y+m是完全平方式,则m的值是 ( )A.25 B.±25 C.5 D.±515.施工队要铺设一段长2 000 m的管道,因在中考期间需要停工两天,实际每天施工需要比计划多50 m,才能按时完成任务.求原计划每天施工多少米.设原计划每天施工x m,则根据题意所列方程正确的是( )A.2 000x-2 000x+50=2 B.2 000x+50-2 000x=2 C.2 000x-2 000x-50=2 D.2 000x-50-2 000x=2二、填空题。
人教版八年级上数学期末考试试卷(免费、15套)

八年级(上)数学期末综合测试(1)一、相信你一定能选对!(每小题3分,共36分)1.下列各式成立的是()A.a-b+c=a-(b+c)B.a+b-c=a-(b-c)C.a-b-c=a-(b+c)D.a-b+c-d=(a+c)-(b-d)2.直线y=kx+2过点(-1,0),则k的值是()A.2 B.-2 C.-1 D.13.和三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点4.一个三角形任意一边上的高都是这边上的中线,•则对这个三角形最准确的判断是()A.等腰三角形B.直角三角形C.正三角形D.等腰直角三角形5.下图所示的扇形图是对某班学生知道父母生日情况的调查,A•表示只知道父亲生日,B表示只知道母亲生日,C表示知道父母两人的生日,D表示都不知道.•若该班有40名学生,则知道母亲生日的人数有()A.25% B.10 C.22 D.126.下列式子一定成立的是()A.x2+x3=x5; B.(-a)2·(-a3)=-a5C.a0=1 D.(-m3)2=m57.黄瑶拿一张正方形的纸按右图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()8.已知x2+kxy+64y2是一个完全式,则k的值是()A.8 B.±8 C.16 D.±169.下面是一组按规律排列的数:1,2,4,8,16,……,则第2005个数是()A.22005B.22004C.22006D.2200310.已知(x+a)(x+b)=x2-13x+36,则a+b的值分别是()A.13 B.-13 C.36 D.-3611.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD交EF于F,若BF=AC,则∠ABC等于()A.45° B.48° C.50° D.60°(11题) (12题) (19题)12.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC•的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm二、你能填得又对又快吗?(每小题3分,共24分)13.计算:1232-124×122=_________.14.在实数范围内分解因式:3a3-4ab2=__________.15.已知△ABC≌△DEF,若∠A=60°,∠F=90°,DE=6cm,则AC=________.16.点P关于x轴对称的点是(3,-4),则点P关于y轴对称的点的坐标是_______.17.已知a2+b2=13,ab=6,则a+b的值是________.18.直线y=ax+2和直线y=bx-3交于x轴同一点,则a与b的比值是________.19.如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_____a3b+_____a2b2+______ab3+b420.如图所示,一个窗户被装饰布挡住了一部分,其中窗户的长a与宽b的比是3:2,装饰布由一个半圆和两个四分之一圆组成,圆的直径都是0.5b,那么当b=4时,•这个窗户未被遮挡的部分的面积是__________.三、认真解答,一定要细心哟!(共60分)21.(5分)先化简再求值:[(x+2y)(x-2y)-(x+4y)2]÷(4y),其中x=5,y=2.22.(7分)求证:等腰三角形两腰上的高的交点到底边两端的距离相等.23.(8分)已知图7中A、B分别表示正方形网格上的两个轴对称图形(阴影部分),其面积分别记为S1、S2(网格中最小的正方形的面积为一个单位面积),请你观察并回答问题.(1)填空:S1:S2的值是__________.(2)请你在图C中的网格上画一个面积为8个平方单位的轴对称图形.24.(9分)每年6月5日是“世界环境日”,保护地球生态环境是世界各国政府和人民应尽的义务.下表是我国近几年来废气污染排放量统计表,请认真阅读该表后,•解答题后的问题.(1)请你在图8中用虚线、实线、粗线分别画出二氧化硫排放总量、烟尘排放总量和工业粉尘排放量的折线走势图;(2)2003年相对于1999年,全国二氧化硫排放总量、•烟尘排放总量和工业粉尘排放量的增长率分别为_________、________、_________(精确到1个百分点).(3)简要评价这三种废气污染物排放量的走势(要求简要说明:总趋势,增减的相对快慢).25.(9分)某批发商欲将一批海产品由A地运往B地,•汽车货运公司和铁路货运公司均开办了海产品运输业务.已知运输路程为120千米,•汽车和火车的速度分别为60千米/时和100千米/时.两货物公司的收费项目和收费标准如下表所示:运输工具运输费单价(元/吨·千米)冷藏费单价(元/吨·小时)过路费(元)装卸及管理费(元)汽车 2 5 200 0火车 1.8 5 0 1600注:“元/吨·千米”表示每吨货物每千米的运费;“元/•吨小时”表示每吨货物每小时的冷藏费.(1)设该批发商待运的海产品有x(吨),•汽车货运公司和铁路货运公司所要收取的费用分别为y1(元)和y2(元),试求出y1和y2和与x的函数关系式;(2)若该批发商待运的海产品不少于30吨,为节省运费,•他应该选择哪个货运公司承担运输业务?26.(10分)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB•交CE 于点F,DF的延长线交AC于点G,求证:(1)DF∥BC;(2)FG=FE.27.(12分)如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.(1)求点C的坐标,并回答当x取何值时y1>y2?(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.(3)当x为何值时,直线m平分△COB的面积?答案:1.C 2.A 3.D 4.C 5.C 6.B 7.C 8.D 9.B 10.B 11.A 12.C 13.•1 14.a3a+2b)3) 15.3m 16.(-3,4) 17.±5 18.-2319.4;6;4 20.24- 21.-20 22.略 23.①9:11;②略24.①略;②-8%,-30%,-29%;③评价:•总体均成下降趋势;二氧化硫排放量下降趋势最小;烟尘排放量下降趋势最大.25.①y1=2×120x+5×(120÷60)x+200=250x+200y2=1.8×120x+5×(120•÷100)x+1600=222x+1600;②若y1=y2,则x=50.∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算;当海产品恰好是50吨时选择两家公司都一样,没有区别;•当海产品超过50吨时选择铁路货运公司费用节省一些.26.①证△ACF≌△ADF得∠ACF=∠ADF,∵∠ACF=∠B , ∴∠ADF=∠B , ∴DF ∥BC ;②∵DF ∥BC ,BC ⊥AC , ∴FG ⊥AC , ∵FE ⊥AB ,又AF 平分∠CAB , ∴FG=FE 27.(1)解方程组26y x y x =⎧⎨=-+⎩ 得22x y =⎧⎨=⎩∴C 点坐标为(2,2);(2)作CD ⊥x 轴于点D ,则D (2,0).①s=12x 2(0<x ≤2); ②s=-x 2+6x-6(2<x<3); (3)直线m 平分△AOB 的面积, 则点P 只能在线段OD ,即0<x<2. 又△COB•的面积等于3, 故12x 2=3×12,解之得八年级(上)数学期末测试(2)一、选择题(每小题3分,共30分) 1. 反映某种股票的涨跌情况,应选择 ( )A .条形统计图B .折线统计图C .扇形统计图D .直方图2. 下列各式从左往右计算正确的是 ( ) A .()a b c a b c -+=-+ B .22)2(4-=-x xC .bc ac ab a c a b a -+-=+-2))((D .)0()(33≠=÷-x x x x 3. 如图是跷跷板的示意图,支柱OC 与地面垂直,点O是横板AB 的中点,AB 可以绕着点O 上下转动,当A端落地时,∠OAC =20°,横板上下可转动的最大角度 (即∠A ′OA )是( )A .80°B .60°C .40°D .20° 4. 一个容量为80的样本中,最大值是141,最小值是50,取组距为10,则这个样本可以成( )A .10组B .9组C .8组D .7组5. 下列命题中,不正确的是 ( )A .关于直线对称的两个三角形一定全等B .角是轴对称图形C .等边三角形有3条对称轴D .等腰三角形一边上的高、中线及这边所对角的角平分线重合 6. 等腰三角形的一个内角是50°,则这个三角形的底角的大小是 ( )A .65°或50°B .80°或40°C .65°或80°D .50°或80° 7.使两个直角三角形全等的条件是 ( )A .一锐角对应相等B .两锐角对应相等C .一条边对应相等D .两条直角边对应相等 8. 直线62-=x y 关于y 轴对称的直线的解析式为 ( )A .62+=x yB .62+-=x yC .62--=x yD .62-=x y9. 如图,AB=AC ,AD=AE ,∠B=50°,∠AEC=120°,则∠DAC 的度数等于( ) A .120° B .70° C .60° D .50°10.已知如图,图中最大的正方形的面积是( )A .2aB .22b a +C .222b ab a ++D .22b ab a ++二、填空题(每小题3分,共24分)11.多项式132-+x x 是 次 项式.12.若1)7(0=-x ,则x 的取值范围为__________________. 13.在一幅扇形统计图中,扇形表示的部分占总体的百分比为20%,则此扇形的圆心角为 °. 14.已知一次函数1-=kx y ,请你补充一个条件______________,使函数图象经过第二、三、四象限.15.已知在一个样本中有50个数据,它们分别落在5个组内,第一、二、三、四、C(第9AB D E (第10题)五组数据的个数分别为2,8,15,x ,5,则x 等于______,第四组的频率为_________. 16.Rt △ABC 中,∠C=90°,∠B=2∠A ,BC=3cm ,AB=_________cm . 17.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm , BD=7cm ,则点D 到AB 的距离为_____________cm . 18.在平面直角坐标系xOy 中,已知点A (2,-2),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的有_______个. 三、解答题(共20分)19.(4分)计算:(1))22(4)25(22a a a +-+; (2))1)(1(52-+x x x .20.(4分)用乘法公式计算:(1)2.608.59⨯; (2)2198.21.(12分)分解因式:(1)x x -22; (2)1162-x ;(3)32296y y x xy --; (4)2)(9)(124y x y x -+-+.四、解答题(本题共3小题;共14分)22.(5分)先化简,再求值:x y x y x y x 2)])(()[(2÷-++-,其中x =2005,y =2004.23.(5分)求证:等腰三角形两底角相等.24.(4分)作图题(不写作图步骤,保留作图痕迹).已知:如图,求作点P ,使点P 到A 、B 两点的距离相等,且P 到∠MON 两边的距离也相等.五、解答题(42分)25.(9分)已知一次函数的图象经过(3,5)和(-4,-9)两点. (1)求这个一次函数的解析式;(2)画出这个一次函数的图象; (3)若点(a ,2)在这个函数图象上,求a 的值.26.(7分)金鹰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图). (1)利用图中提供的信息,回答下列问题:在专业知识方面3人得分谁是最过硬的?在工作经验方面3人得分谁是最丰富的?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10∶7∶3, (3)在(2)的条件下,你对落聘者有何建议?27.(6分)已知A (5,5),B (2,4),M 是x 轴上一动点,求使得M A +MB 最小时的点M 的坐标.28.(8分)某市的A 县和B 县春季育苗,急需化肥分别为90吨和60吨,该市的C 县和D 县分别储存化肥100吨和50吨,全部调配给A 县和B 县,已知C 、D 两县运化肥到A 、B 两县的运费(元/吨)如下表所示.(第17题)CBAD仪表形象(第26题)专业知识 工作经验 (第24题)ONM ·· A B(1)设C 县运到A 县的化肥为x 吨,求总运费W (元)与x (吨)的函数解析式,并写出自变量x 的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.29.(12分)如图,直线y=-2x +4分别与x 轴、y 轴相交于点A 和点B ,如果线段CD 两端点在坐标轴上滑动(C 点在 y 轴上,D 点在x 轴上),且CD=AB . (1)当△COD 和△AOB 全等时,求C 、D 两点的坐标;(2)是否存在经过第一、二、三象限的直线CD ,使CD ⊥AB ?如果存在,请求出直线CD八年级(上)数学参考答案一、选择题(每小题3分,共30分)1.B 2.C 3.C 4.A 5.D 6.A 7.D 8.C 9.B 10.C 二、填空题(每小题3分,共24分)11.二、三 12.x ≠7 13.72° 14.0<k 15.20,0.4 16.3217.3 18.4三、解答题(共76分)19.(1)原式=228825a a a --+ …………………………………………………1分=8232-+-a a . …………………………………………………2分(2)原式=)1(522-x x ………………………………………………………1分 =2455x x -. ………………………………………………………2分 20.(1)原式=(60-0.2 )(60+0.2) ……………………………………………1分=222.060-=3599.96. …………………………………………………2分(2)原式=2)2200(- ……………………………………………………………1分=22222002200+⨯⨯-=39204. ………………………………………2分21.(1)原式=)12(-x x . ………………………………………………………3分 (2)原式=)14)(14(-+x x . …………………………………………………3分 (3)原式=)96(22y x xy y -- ………………………………………………1分 =)69(22y xy x y +-- ………………………………………………2分=2)3(y x y --. ………………………………………………………3分(4)原式=[]2)(32y x -+ ………………………………………………………2分=2)233(+-y x . …………………………………………………………3分22.原式=x y x y xy x 2)2(2222÷-++-……………………………………………2分 =x xy x 2)22(2÷-……………………………………………………………3分 =y x -. ……………………………………………………………………4分 当2005x =,2004y =时,原式=2005-2004 =1. …………………………………………………………5分(第29题)23.已知:如图,△ABC 中,AB=AC (包括画图).求证:∠B=∠C . ………………………………………………………………2分 证明:略. ………………………………………………………………………5分 24.作图题.略,角平分线和线段的垂直平分线每画对一个得2分. 25.(1)设一次函数解析式为b kx y +=,由题意,得3549.k b k b +=⎧⎨-+=-⎩,…………………………………………………………………2分解之,得2,1.k b =⎧⎨=-⎩………………………………………………………………4分因此一次函数的解析式为12-=x y .………………………………………5分 (2)图略. ………………………………………………………………………7分 (3)将(a ,2)代入12-=x y ,得212=-a . ……………………………8分解得23=a . ………………………………………………………………9分26.点B 关于x 轴对称的点的坐标是B ′(2,-4).连AB ′,则AB ′与x 轴的交点即为所求. …………………………………1分 设AB ′所在直线的解析式为b kx y +=, 则55,2 4.k b k b +=⎧⎨+=-⎩ ………………………………………………………………2分则3,10.k b =⎧⎨=-⎩ ……………………………………………………………………3分所以直线AB 的解析式为103-=x y . ……………………………………4分 当0=y 时,310=x .故所求的点为)0,310(M . …………………………6分27.(1)乙,甲,丙; ……………………………………………………………3分 (2)甲14.75,乙15.9,丙15.35,录取乙; ………………………………5分(3)略. …………………………………………………………………………7分 28.(1)由题意,得 )40(45)100(30)90(4035-+-+-+=x x x x W104800(4090)x x =+≤≤. …………………………6分 (2)因为W 随着x 的减小而减小,所以当40=x 时,W 最小=10×40+4800=5200(元).答:略. …………………………8分 29.(1)由题意,得A (2,0),B (0,4),即AO =2,OB =4. …………………………………………………………2分 ①当线段CD 在第一象限时,点C (0,4),D (2,0)或C (0,2),D (4,0).………………………4分 ②当线段CD 在第二象限时,点C (0,4),D (-2,0)或C (0,2),D (-4,0).…………………6分 ③当线段CD 在第三象限时,点C (0,-4),D (-2,0)或C (0,-2),D (-4,0).……………8分 ④当线段CD 在第一象限时,点C (0,-4),D (2,0)或C (0,-2),D (4,0) ………………10分 (2)C (0,2),D (-4,0).直线CD 的解析式为221+=x y .…………12分AB CD八 年 级 (上)数 学 期 末 综 合 测 试3一、选择题(每小题3分,共30分)1.下列平面图形中,不是轴对称图形的是 ( )2.关于函数12+-=x y ,下列结论正确的是 ( )A . 图象必经过)1,2(-B . 当21>x 时,0<yC . 图象经过第一、二、三象限D . y 随x 的增大而增大3.一个样本中有80个数据,最大值是141,最小值是50,取组距为10,则样本可分成( )A .10组B .9组C .8组D .7组4.下列计算中,错误的是 ( )A 22221138y x y x =+ B 222594x x x -=- C 05522=-ba b a D m m m 5)2(3=--5.若x 的多项式5382+-x x 与352323+-+x mx x 相加后,不含2x 项,则m 等于( ) A . 2 B . -2 C . -4 D . -86.已知:在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD :DC =9:7,则D 到AB 边的距离为 ( ) A .18 B .16 C .14 D .127.若三点)1,6(),,2(),4,1(-p 在一条直线上,则p 的值为 ( ) A . 2 B . 3 C .-7 D .08.已知:如图,△ABC 与△DEF 是全等三角形,则图中相等的线段的组数是 ( )A .3B . 4C .5D .6(第8题) (第9题) (第10题)9.如图,在∠AOB 的两边上截取AO=BO ,CO=DO ,连接AD ,BC 交于点P ,那么在结论①△AOD ≌△BOC ;②△APC ≌△BPD ;③点P 在∠AOB 的平分线上.其中正确的是 ( ) A .只有① B . 只有② C . 只有①② D . ①②③ 10.如图,D ,E 分别是△ABC 的边BC ,AC ,上的点,若AB=AC ,AD=AE ,则 ( )A .当∠B 为定值时,∠CDE 为定值 B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值 二、填空题(每小题3分,共30分) 11.函数x x y -++=24中,自变量x 的取值范围是 .12.在某次考试中全班50人中有10人获得优秀等级,那么绘制扇形图描述成绩时,优秀等级所在的扇形的圆心角是____________度.A B E CF D O DCA B P A B D C Eαγ β13.已知12335+n b a 与314b a m --的和是单项式,则=m ,=n . 14.如图,△ABC ≌△ADE ,∠EAC =25°,则∠BAD = °15.如图,D ,E 是边BC 上的两点,AD =AE ,请你再添加一个条件: 使△ABE ≌△ACD16.把点A (a ,3)向上平移三个单位正好在直线y =-x +1上,则a 的值是 .17.已知,2,522-=+=+b ab ab a 那么=-22b a .18.等腰三角形一腰上的高与另一腰的夹角为40°19.如图,△ABC中,DE 是AC 的垂直平分线,AE =3cm,△ABD 则△ABC 的周长为__________cm .20.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,CF 平分∠ACB ,CF ,BE 交于点P ,AC =4cm ,BC =3cm ,AB =5cm ,则△CPB 的面积为 2cm三、解答题(本大题共60分)21.①(5分)计算: )2(3)3(2)2(2222xy y x xy y xy x -+---+-② (5分)化简求值:[]{})24(32522222b a ab ab b a b a ----其中5.0,3=-=b a22.(5分)如图,A 、B 、C 三点表示3个村庄,为了解决村民子女就近入学问题,计划新建一所小学,要使学校到3个村庄的距离相等,请你在图中有尺规确定学校的位置.(保留作图痕迹,写出画法) 画法:23.(7分)已知直线1+=x y 与直线4+=kx y 交于点),1(n p ,求n k ,的值,及两直线与两坐标轴所围成的四边形的面积.24.(7分)如图,BD 平分∠MBN ,A ,C 分别为BM ,BN 上的点,且BC >BA ,E 为BD 上的一点,AE =CE ,求证 ∠BAE +∠BCE =180°25.(7分) 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求△ABC 各角的度数.26.(7分)初三某班对最近的一次数学考试成绩(得分取整数)进行统计分析,将所有成绩由低到高分成5组,并绘制成如图所示的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有___________(2)在该频数分布直方图中画出频数折线图; (3)若这次考试中,成绩80分以上(不含80分) 为优秀,那么该班这次数学考试的优秀率是多少?27.(8分)如图,在△ABC 中,∠ACB =90°,CE ⊥AB 于点E ,AD=AC ,AF 平分∠CAB •交CEADBE CBDE CA(第14题)(第15题)CAB···C 50.60.70.90.80.100.5B C NDEMA于点F ,DF 的延长线交AC 于点G ,求证:(1)DF ∥BC ;(2)FG =FE .28.(本题9分) 如图, △ABC 为等边三角形,AE =CD ,AD 、BE 相交于点P ,BQ ⊥AD 与Q ,PQ =4,PE =1 (1)求证 ∠BPQ =60° (2)求AD 的长八年级(上)数学期末测试4一 耐心填一填(30分)1 .函数y= 中,自变量x 的取值范围是_______________2 若直线y=-x+a 和直线y=x+b 的交点坐标为(m,8),则a+b=_______________.3 对直线y=3x-15,当x____________时,y<0; 当x__________时,y>0.4 常用的统计图有 __________ , __________ , __________。
2022-2023学年浙教版八年级数学上册《第3章一元一次不等式》期末综合复习题(附答案)

2022-2023学年浙教版八年级数学上册《第3章一元一次不等式》期末综合复习题(附答案)一.选择题(共8小题,满分40分)1.下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个2.据气象台预报,2019年某日武侯区最高气温33℃,最低气温24℃,则当天气温(℃:)的变化范围是()A.t>33B.t≤24C.24<t<33D.24≤t≤333.下列说法中,正确的是()A.x=1是不等式2x<1的解B.x=3是不等式﹣x<1的解集C.x>﹣1是不等式﹣2x<1的解集D.不等式﹣x<1的解集是x>﹣14.不等式组的解集是()A.x<3B.x>5或x<3C.x>5D.无解5.若a+b=﹣2,且a≥2b,则()A.有最小值B.有最大值1C.有最大值2D.有最小值6.一个正数m的平方根是a﹣3与1﹣2a,则关于x的不等式ax+>2x的解集为()A.x>B.x<C.x>D.x<7.若关于x,y的方程组的解满足x﹣y>﹣,则m的最小整数解为()A.﹣3B.﹣2C.﹣1D.08.若关于x的一元一次不等式组的解集是x≤k,且关于y的方程2y=3+k有正整数解,则符合条件的所有整数k的和为()A.5B.8C.9D.15二.填空题(共8小题,满分40分)9.若2x﹣y=1,且0<y<1,则x的取值范围为.10.已知关于x的不等式(2a﹣b)x>a﹣2b的解集是,则关于x的不等式ax+b<0的解集为.11.如果关于x的不等式3x﹣a≤0只有3个正整数解,则a的取值范围.12.不等式的负整数解的积是.13.符号表示运算ac﹣bd,对于整数a,b,c,d,已知1<<3,则b+d的值是.14.不等式组的解集是.15.不等式组无解,则m的取值范围为.16.若关于x的不等式组有3个整数解,则m的取值范围是.三.解答题(共6小题,满分40分)17.已知a+1>0,2a﹣2<0.(1)求a的取值范围;(2)若a﹣b=3,求a+b的取值范围.18.已知x=1满足不等式组,求a的取值范围.19.(1)解不等式:x+2﹣3(x+1)>1;(2)解不等式组.20.求不等式组的整数解.21.先阅读理解下面例题,再按要求解答下列问题:例:解不等式x2﹣9<0.解:∵x2﹣9=(x+3)(x﹣3),∴原不等式可化为(x+3)(x﹣3)<0.由有理数乘法法则:两数相乘,异号得负,得:①,或②.解不等式组①得﹣3<x<3,解不等式组②无解,∴原不等式x2﹣9<0的解集为﹣3<x<3.请你模仿例题的解法,解决下列问题:(1)不等式x2﹣4>0解集为;(2)不等式x2+3x≤0解集为;(3)拓展延伸:解不等式.22.某学校计划购进一批电脑和电子白板,购买1台电脑和2台电子白板需要3.5万元;购进2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有哪几种购买方案?(3)请你求出学校在(2)的购买活动中最多需要多少资金?参考答案一.选择题(共8小题,满分40分)1.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.2.解:由题意知:武侯区的最高气温是33℃,最低气温24℃,所以当天武侯区的气温(t℃)的变化范围为:24≤t≤33.故选:D.3.解:A、解不等式得到解集是x,则x=1不是不等式2x<1的解,故不符合题意.B、不等式﹣x<1的解集是x>﹣1,∴x=3是它的一个解,而不是解集,故不符合题意.C、不等式﹣2x<1的解集是x>﹣,∴x>﹣1不是它的解集,故不符合题意.D、不等式﹣x<1的解集是x>﹣1,故符合题意.故选:D.4.解:∵比大的大比小的小无解,故选D.5.解:∵a+b=﹣2,∴a=﹣b﹣2,b=﹣2﹣a,又∵a≥2b,∴﹣b﹣2≥2b,a≥﹣4﹣2a,移项,得﹣3b≥2,3a≥﹣4,解得,b≤﹣<0(不等式的两边同时除以﹣3,不等号的方向发生改变),a≥﹣;由a≥2b,得≤2 (不等式的两边同时除以负数b,不等号的方向发生改变);A、当a>0时,<0,即的最小值不是,故本选项错误;B、当﹣≤a<0时,≥,有最小值是,无最大值;故本选项错误;C、有最大值2;故本选项正确;D、无最小值;故本选项错误.故选:C.6.解:根据题意得a﹣3+1﹣2a=0∴a=﹣2,∴a﹣3=﹣5,∴m=25,∴不等式为﹣2x+>2x,解得x<,故选:B.7.解:,①﹣②得:x﹣y=3m+2,∵关于x,y的方程组的解满足x﹣y>﹣,∴3m+2>﹣,解得:m>﹣,∴m的最小整数解为﹣1,故选:C.8.解:,解不等式①得x≤k,解不等式②得x<7,由题意得k<7,解关于y的方程2y=3+k得,y=,由题意得,>0,解得k>﹣3,∴k的取值范围为:﹣3<k<7,且k为整数,∴k的取值为﹣2,﹣1,0,1,2,3,4,5,6,当k=﹣2时,y==,当k=﹣1时,y==1,当k=0时,y==,当k=1时,y==2,当k=2时,y==,当k=3时,y==3,当k=4时,y==,当k=5时,y==4,当k=6时,y==,∵为整数,且k为整数,∴符合条件的整数k为﹣1,1,3,5,∵﹣1+1+3+5=8,∴符合条件的所有整数k的和为8.故选:B.二.填空题(共8小题,满分40分)9.解:∵2x﹣y=1,∴y=2x﹣1,∵0<y<1,∴0<2x﹣1<1,解得<x<1.故答案为:.10.解:∵关于x的不等式(2a﹣b)x>a﹣2b的解集是,∴2a﹣b>0,x>∴2a>b,=∴2a﹣4b=10a﹣5b∴8a=b∴2a>8a∴a<0∵ax+b<0∴ax<﹣b∴x>﹣∵8a=b∴x>﹣8故答案为:x>﹣8.11.解:3x﹣a≤0的解集为x≤;其正整数解为1,2,3,则3≤<4,所以a的取值范围9≤a<12.12.解:不等式的解集是x>﹣,因而负整数解是:﹣1,﹣2,则其积是2.13.解:根据题意得:,解得:1<bd<3,∵b、d是整数,∴bd=2,则b、d的值是1和2,或﹣1,﹣2.则b+d=3或﹣3.故答案是:±3.14.解:,解不等式①得:x>﹣1,解不等式②得:x<4,∴不等式组的解集为﹣1<x<4,故答案为:﹣1<x<4.15.解:,解不等式①,得x≥3,∵不等式组无解,∴m<3,故答案为:m<3.16.解:解不等式2x﹣3>5,得:x>4,解不等式x﹣m<1,得:x<m+1,不等式租的解集为4<x<m+1,∵不等式组仅有3个整数解,∴7<m+1≤8,∴6<m≤7,故答案为:6<m≤7.三.解答题(共6小题,满分40分)17.解:(1)根据题意得,解①得a>﹣1,解②得a<1,则a的范围是﹣1<a<1;(2)∵a﹣b=3,∴b=a﹣3,∴a+b=2a﹣3,∵﹣1<a<1,∴﹣2<2a<2,∴﹣5<2a﹣3<﹣1,即﹣5<a+b<﹣1.18.解:将x=1代入3x﹣5≤2x﹣4a,得4a≤4,解得a≤1;将x=1代入3(x﹣a)<4(x+2)﹣5,得a>﹣.不等式组解集是﹣<a≤1,a的取值范围是﹣<a≤1.19.解:(1)x+2﹣3(x+1)>1,x+2﹣3x﹣3>1,x﹣3x>1﹣2+3,﹣2x>2,x<﹣1;(2)解不等式5x﹣1≤3(x+1),得:x≤2,解不等式≥x﹣1,得:x≤4,则不等式组的解集为x≤2.20.解:由①得,由②得x≤1,所以这个不等式组的的解集是,∴不等式组的整数解是﹣1,0,1.21.解:(1)∵x2﹣4>0,∴(x+2)(x﹣2)>0,则①,②,解不等式组①,得:x>2,解不等式组②,得:x<﹣2,∴不等式x2﹣4>0解集为x>2或x<﹣2,故答案为:x>2或x<﹣2;(2)∵x2+3x≤0,∴x(x+3)≤0,则①,②,解不等式组①,得:不等式组无解;解不等式组②,得:﹣3≤x≤0,故答案为:﹣3≤x≤0;(3)∵≤0,∴①,②,解不等式组①,得:﹣3≤x≤5,解不等式组②,得:不等式组无解;所以原不等式的解集为﹣3≤x≤5.22.解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得,,答:每台电脑0.5万元,每台电子白板1.5万元;(2)设需购进电脑m台,则购进电子白板(30﹣m)台,根据题意得:,解得:15≤m≤17,又∵m为正整数,∴m可以为15,16,17,∴共有3种购买方案:方案1:购进电脑15台,电子白板15台;方案2:购进电脑16台,电子白板14台;方案3:购进电脑17台,电子白板13台.(3)选择方案1所需费用为0.5×15+1.5×15=30(万元);选择方案2所需费用为0.5×16+1.5×14=29(万元);选择方案3所需费用为0.5×17+1.5×13=28(万元).∵30万元>29万元>28万元,∴学校在(2)的购买活动中最多需要30万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二上数学期末综合复习题(三)
姓名:___________ 分数:________(满分150分)
一、填空题: (每题2分;共30分)
1、分解因式:2
x -4=_________________________;
2、分解因式:y 61-+29y =___________________________;
3、当x _____ ______时,分式
1
32
+x x 有意义;
4、当m =__________时,分式
3
9
2
--m m
值为零;
5、已知公式S =2
02
1at t V +
用S 、V O 、t 表示a 为_ _______;
6、化简________6
3422
=-x x x x +++;
7、等腰三角形的底角等于15°,腰长为2a ,则腰上的高为_______;
8、在Rt △ABC 中,∠C =90°,a =12,b =5,则c =________;
9、等腰三角形一底角为30°,底边上的高为9cm ,则这个等腰三角形的腰长是_______cm ,顶角是_____度;
10、等腰直角三角形一条直角边长为1 cm ,那么它斜边上的高是_______ cm ; 11、已知线段AB 和点C 、D ,且CA =CB ,DA =DB ,那么直线CD 是线段AB 的_____________________;
12、线段的对称轴是____________________;
13、到角两边距离相等的点,必在这个角的_________________________; 14、若2
x =25,则x =_____;
15、一个正数的正的平方根叫这个数的_______________;
二、选择题:(每题3分;共30分) 16、下列判断正确的是( )
A 、分式是有除法运算的式子;
B 、分式不是有理式;
C 、当x ≥5时,分式
5
1-x 的值为正; D 、当1-=x 时,分式
1
4+x 无意义;
17、下列有理数中,属于分式的个数是( )
28n m 2
;
y
x x +2; -
11
7x ;
4
3;
5
32-x ;
ab
1;
x
x 41+;
A 、 1
B 、 2
C 、 3
D 、 4 ;
18、分式
()
3
4
3
31b a b
a -和
()
2
5
2
61
b a b
a -的最简公分母是( )
A 、18()35
3
b a b
a -; B 、()5956
b a b a -; C 、12()352b a b a -; D 、()3536b a b a -;
19、下列各式中,正确的变形是( ) A 、
n
m n m n
m n m ++-=---; B 、
n
m n
m ++99=
-; C 、
n
m n m n
m n m 20103002.01.0301.0-+=
-+; D 、
m
b a m
b a ---=
-+;
20、下列各式中,正确的是( )
A 、
()6
2
4
3
m m
m =; B 、
b a b
a
++
=11; C 、
b a b
a b a +++=2
2; D 、
b a b
a a
b --=--2
2;
21、把分式
()
y x x y x -+中的x 、y 都扩大2倍,那么分式的值( )
A 、扩大2倍;
B 、缩小为原来的2
1; C 、不变; D 、扩大4倍;
22、下列计算错误的是( )
A 、1=n m n
n m m
+++; B 、1=--m n n
n m m
+; C 、2
62
322a
b
a b =
⎪⎪⎭
⎫ ⎝⎛-; D 、
2-=-
-n
n m n
n m +;
23、下列命题中正确的是( )
A 、一个内角是45°的直角三角形不是轴对称图形;
B 、三角形可以分为直角三角形与等腰三角形两类;
C 、有一个角是30°的直角三角形不是轴对称图形;
D 、三角形按角分类分为锐角三角形与钝角三角形;
24、下列命题中正确的是( )
A 、两个全等形一定是轴对称图形;
B 、关于一条直线对称的两个图形一定是全等形;
C 、两个图形全等,它们一定关于一条直线对称;
D 、两个等腰直角三角形一定关于某条直线对称; 25、已知2=b a +,5-=ab ,则a
b b a
+
的值为( )
A 、5
2-
; B 、5
7-
; C 、5
14-; D 、5
24-
;
三、计算题:(每题5分,共20分) 26、2
333
442
2
2
+++x x x x x x -∙
-- ; 27、
a
a --329
122
+
;
28、222
22
y x y
x xy y x --⎪
⎪⎭
⎫ ⎝⎛+; 29、
⎪⎭
⎫ ⎝⎛
-÷-23221
2
++++m m m m m ;
四、解关于x 的方程(每题6分,共12分)
30、2
251
11
+++
x x x =
; 31、
()02≠--
=-b a b
a x a
b x +;
五、先化简再求值:(每题7分,共14分)
32、()
2264
46
22
2
+-⋅-+÷+-+x x x x x x x ,其中3=x
33、如果6,36
13112
2
==
+
xy y
x
,求22y x +的值
六、计算与证明:(每题7分;共14分)
34、已知:如图在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 的各角的度数;
35、如图:在△ABC 中,BD ⊥AC 于D ,CE ⊥AB 于E ,BD =CE ,求证:AB =AC
七、列分式方程解应用题:(每题7分;共14分)
36、甲、乙两班学生同时从学校出发去距学校15千米的公园植树,乙班行走的速度是甲班的1.2倍,结果乙班比甲班提前半小时到达目的地,求甲、乙两班每小时各走多少千米?
37、甲、乙两人分别从甲、乙两地同时相向出发,在甲超过中点50米处甲、乙两人第一次相遇,甲、乙到达乙、甲两地后立即返身往回走,结果甲、乙两人在距甲地100米处第二次相遇,求甲、乙两地的路程。
B C
八、综合题:(每题8分;共16分)
38、已知:0152
=+-x x ,计算:2
2
1x
x +
的值;
39、证明:四个连续自然数的积再加上1一定是一个完全平方数。