[]matlab自控仿真实验报告
MATLAB与控制系统仿真实验报告

MATLAB与控制系统仿真实验报告第一篇:MATLAB与控制系统仿真实验报告《MATLAB与控制系统仿真》实验报告2013-2014学年第 1 学期专业:班级:学号:姓名:实验三 MATLAB图形系统一、实验目的:1.掌握绘制二维图形的常用函数。
2.掌握绘制三维图形的常用函数。
3.熟悉利用图形对象进行绘图操作的方法。
4.掌握绘制图形的辅助操作。
二、实验原理:1,二维数据曲线图(1)绘制单根二维曲线plot(x,y);(2)绘制多根二维曲线plot(x,y)当x是向量,y是有一维与x同维的矩阵时,则绘制多根不同颜色的曲线。
当x,y是同维矩阵时,则以x,y对应列元素为横、纵坐标分别绘制曲线,曲线条数等于矩阵的列数。
(3)含有多个输入参数的plot函数plot(x1,y1,x2,y2,…,xn,yn)(4)具有两个纵坐标标度的图形plotyy(x1,y1,x2,y2)2,图形标注与坐标控制1)title(图形名称);2)xlabel(x轴说明)3)ylabel(y轴说明)4)text(x,y图形说明)5)legend(图例1,图例2,…)6)axis([xmin xmax ymin ymax zmin zmax])3, 图形窗口的分割 subplot(m,n,p)4,三维曲线plot3(x1,y1,z1,选项1,x2,y2,选项2,…,xn,yn,zn,选项n)5,三维曲面mesh(x,y,z,c)与surf(x,y,z,c)。
一般情况下,x,y,z是维数相同的矩阵。
X,y是网格坐标矩阵,z是网格点上的高度矩阵,c用于指定在不同高度下的颜色范围。
6,图像处理1)imread和imwrite函数这两个函数分别用于将图象文件读入matlab工作空间,以及将图象数据和色图数据一起写入一定格式的图象文件。
2)image和imagesc函数这两个函数用于图象显示。
为了保证图象的显示效果,一般还应使用colormap函数设置图象色图。
自控仿真实验报告

一、实验目的1. 熟悉MATLAB/Simulink仿真软件的基本操作。
2. 学习控制系统模型的建立与仿真方法。
3. 通过仿真分析,验证理论知识,加深对自动控制原理的理解。
4. 掌握控制系统性能指标的计算方法。
二、实验内容本次实验主要分为两个部分:线性连续控制系统仿真和非线性环节控制系统仿真。
1. 线性连续控制系统仿真(1)系统模型建立根据题目要求,我们建立了两个线性连续控制系统的模型。
第一个系统为典型的二阶系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)} \]第二个系统为具有迟滞环节的系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)(s+3)} \](2)仿真与分析(a)阶跃响应仿真我们对两个系统分别进行了阶跃响应仿真,并记录了仿真结果。
(b)频率响应仿真我们对两个系统分别进行了频率响应仿真,并记录了仿真结果。
(3)性能指标计算根据仿真结果,我们计算了两个系统的性能指标,包括上升时间、超调量、调节时间等。
2. 非线性环节控制系统仿真(1)系统模型建立根据题目要求,我们建立了一个具有饱和死区特性的非线性环节控制系统模型。
其传递函数为:\[ W_k(s) = \begin{cases}1 & |s| < 1 \\0 & |s| \geq 1\end{cases} \](2)仿真与分析(a)阶跃响应仿真我们对非线性环节控制系统进行了阶跃响应仿真,并记录了仿真结果。
(b)相轨迹曲线绘制根据仿真结果,我们绘制了四条相轨迹曲线,以分析非线性环节对系统性能的影响。
三、实验结果与分析1. 线性连续控制系统仿真(a)阶跃响应仿真结果表明,两个系统的性能指标均满足设计要求。
(b)频率响应仿真结果表明,两个系统的幅频特性和相频特性均符合预期。
2. 非线性环节控制系统仿真(a)阶跃响应仿真结果表明,非线性环节对系统的性能产生了一定的影响,导致系统响应时间延长。
自控MATLAB实验一

《自动控制原理》课程实验报告实验名称初步认识MATLAB和系统仿真专业班级过程自动化03班学号2011500169姓名鲁雅洁指导教师李离学院名称电气信息学院2013 年10 月22 日实验一初步认识MATLAB和控制系统仿真一、实验目的(1)了解并掌握MATLAB仿真软件的使用方法;(2)掌握控制系统数学模型的多种描述方法及其仿真实现和互相转换; (3)熟悉控制系统仿真常用的MATLAB函数。
二、实验设备(1)硬件:个人计算机;(2)软件:MATLAB仿真软件(版本6.5或以上)。
三、实验内容和步骤1.质量—弹簧—阻尼器系统的零输入响应修改并运行程序lab1_1.m以求取下列情形的零输入响应曲线并存盘:Lab1_1_1.m程序:y0=0.15;wn=sqrt(2);zeta=1/(2*sqrt(2));t=[0:0.1:10];c=(y0/sqrt(1-zeta^2));y=c*exp(-zeta*wn*t).*sin(wn*sqrt(1-zeta^2)*t+acos(zeta));bu=c*exp(-zeta*wn*t);bl=-bu;plot(t,y,t,bu,'k--',t,bl,'k--'),gridxlabel('Time (sec)'),ylabel('y(t) (meters)')legend(['\omega_n=',num2str(wn),' \zeta=',num2str(zeta)]) 仿真结果:(1)零输入响应曲线Lab1_1_2.m程序:y0=0.15;wn=sqrt(2);zeta=1;t=[0:0.1:10];y=y0*(exp(-wn*t)+wn*t.*exp(-wn*t));plot(t,y),gridxlabel('Time (sec)'),ylabel('y(t) (meters)')legend(['\omega_n=',num2str(wn),' \zeta=',num2str(zeta)]) 仿真结果:(2)零输入响应曲线Lab1_1_3.m程序:y0=0.15;wn=sqrt(2);zeta=sqrt(2);t=[0:0.1:10];s1=-wn*(zeta+sqrt(zeta^2-1));s2=-wn*(zeta-sqrt(zeta^2-1));k1=(1-zeta/sqrt(zeta^2-1))/2;k2=(1+zeta/sqrt(zeta^2-1))/2;y=y0*(k1*exp(s1*t)+k2*exp(s2*t));plot(t,y),gridxlabel('Time (sec)'),ylabel('y(t) (meters)')legend(['\omega_n=',num2str(wn),' \zeta=',num2str(zeta)]) 仿真结果:(3)零输入响应曲线2.系统传递函数的MATLAB实现及零极点分布(1)多项式的表示及求值:系数按降幂顺序构成行向量;求值函数polyval;(2)多项式的根:由函数roots求得;函数poly(roots())的功能;(3)多项式的积:由函数conv实现;(4)系统传递函数:由函数tf实现;(5)传递函数的零极点表示:函数pole,zero和pzmap的运用。
(最新版)自动控制原理MATLAB仿真实验报告

实验一 MATLAB及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、预习要点1、系统的典型响应有哪些?2、如何判断系统稳定性?3、系统的动态性能指标有哪些?三、实验方法(一)四种典型响应1、阶跃响应:阶跃响应常用格式:1、;其中可以为连续系统,也可为离散系统。
2、;表示时间范围0---Tn。
3、;表示时间范围向量T指定。
4、;可详细了解某段时间的输入、输出情况。
2、脉冲响应:脉冲函数在数学上的精确定义:其拉氏变换为:所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式:①;②③(二)分析系统稳定性有以下三种方法:1、利用pzmap绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den) 运行结果: p =-1.7680 + 1.2673i -1.7680 - 1.2673i 0.4176 + 1.1130i 0.4176 - 1.1130i -0.2991P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
自动控制原理MATLAB仿真实验(于海春)

自动控制原理MATLAB仿真实验(于海春)实验一典型环节的MATLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK 的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MATLAB软件,在命令窗口栏“>>”提示符下键入imulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个imulink仿真环境常规模板。
图1-1SIMULINK仿真界面图1-2系统方框图3.在imulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击imulink下的“Continuou”,再将右边窗口中“TranferFen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在imulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的imulink的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击imulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。
5)选择输出方式。
自动控制原理MATLAB仿真实验一(控制系统地时域分析报告)

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、实验容(一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性num1=[0 3 2 5 4 6];den1=[1 3 4 2 7 2];sys1=tf(num1,den1);figure(1);hold on[gm,pm,wcp,wcg]=margin(sys1);margin(sys1);title('对数频率特性图');xlabel('频率rad/sec');ylabel('Gain dB');2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
a=[0 0 1 2 2];b=[1 7 3 5 2];[z,p,k]=tf2zpk(a,b) ;(二)阶跃响应1. 二阶系统()102102++=s s s G1)键入程序,观察并记录单位阶跃响应曲线num1=[10];den1=[1 2 10];step(num1,den1);grid on ;2)计算系统的闭环根、阻尼比、无阻尼振荡频率,并记录 wn=sqrt(10);%自然振荡频率zunibi=2/wn;%阻尼比syms s ;S=solve(s^2+2*s+10);%求闭环根3)修改参数,分别实现1=ζ和2=ζ的响应曲线,并记录 n0=10;d0=[1 2 10]; step(n0,d0);%原响应曲线hold on ;n1=10;d1=[1 6.32 10];step(n1,d1);n2=10;d2=[1 12.64 10];step(n2,d2);4)修改参数,分别写出程序实现0121w w n =和022w w n =的响应曲线,并记录 n0=10;d0=[1 2 10];step(n0,d0);%原响应曲线hold on ;n1=2.5;d1=[1 1 2.5];step(n1,d1);n2=40;d2=[1 4 40];step(n2,d2);2. 作出以下系统的阶跃响应,并分析结果 (1)()10210221+++=s s s s G (2)()102105.0222++++=s s s s s G (3)()1025.0222+++=s s s s s G (4)()10222++=s s ss Gn0=[2 10];d0=[1 2 10];step(n0,d0);hold on ;n1=[1 0.5 10];d1=[1 2 10];step(n1,d1);hold on ;n2=[1 0.5 0];d2=[1 2 10];step(n2,d2);hold on ;n3=[1 0];d3=[1 2 10]; step(n3,d3);3. 25425)()(2++=s s s R s C 求该系统单位阶跃响应曲线,并在所得图形上加网格线和标题 num0=[25];den0=[1 4 25]; step(num0,den0); grid on ;xlabel('X'); ylabel('Y ');title('单位阶跃曲线');(三)系统动态特性分析 用Matlab 求二阶系统12012120)(2++=s s s G 和01.0002.001.0)(2++=s s s G 的峰值时间p t ,上升时间r t ,调整时间s t ,超调量%σ。
自动控制原理MATLAB分析与设计仿真实验报告(最终版)

兰州理工大学《自动控制原理》MATLAB分析与设计仿真实验报告学院:电气工程与信息工程学院专业班级: 13级自动化3班姓名:学号:时间: 2015年12月Step ResponseTime (seconds)A m p l i t u d e1234567891000.511.5System: sys1Rise time (seconds): 1.17System: sys1P eak amplitude: 1.41Overshoot (%): 40.6At time (seconds): 2.86System: sys1Final value: 1第三章 线性系统的时域分析法一、教材第三章习题3.5设单位反馈系统的开环传递函数为G(s)=0.41(0.6)s s s ++(1)试求系统在单位阶跃输入下的动态性能。
(2)忽略闭环零点的系统在单位阶跃输入下的动态性能。
(3)对(1) 和(2)的动态性能进行比较并分析仿真结果。
(1)A :程序如下。
B :系统响应曲线如下图。
Step Response Time (seconds)A m p l i t u d e01234567891000.20.40.60.811.21.4System: sys1Final value: 1System: sys1Settling time (seconds): 8.08System: sys1P eak amplitude: 1.16Overshoot (%): 16.3At time (seconds): 3.63System: sys1Rise time (seconds): 1.64(2)A :程序如下。
B :系统响应曲线如下图。
(3) A :程序如下。
B 响应曲线如下图。
阶跃响应t (sec)c (t )0123456789100.20.40.60.811.21.4System: sysRise Time (sec): 1.46System: sys1Rise Time (sec): 1.64System: sys1P eak amplitude: 1.16Overshoot (%): 16.3At time (sec): 3.63System: sys P eak amplitude: 1.18Overshoot (%): 18At time (sec): 3.16System: sys1Final Value: 1System: sys1Settling Time (sec): 8.08System: sysSettling Time (sec): 7.74120,0.1ττ==120.1,0ττ==分析:忽略闭环零点时,系统的峰值时间,调节时间,上升时间均为增大的,而超调量减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[]matlab自控仿真实验报告目录实验一 MATLAB及仿真实验(控制系统的时域分析) (1)实验二 MATLAB及仿真实验(控制系统的根轨迹分析) (4)实验三 MATLAB及仿真实验(控制系统的频域分析) (7)实验一 MATLAB及仿真实验(控制系统的时域分析)学习利用MATLAB进行以下实验,要求熟练掌握实验内容中所用到的指令,并按内容要求完成实验。
一、实验目的学习利用MATLAB进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、预习要点1、系统的典型响应有哪些?2、如何判断系统稳定性?3、系统的动态性能指标有哪些?三、实验方法(一)四种典型响应1、阶跃响应:阶跃响应常用格式:1、)(sysstep;其中sys可以为连续系统,也可为离散系统。
2、),step;表示时间范围0---Tn。
sys(Tn3、),step;表示时间范围向量T指定。
sys(T4、),Y ;可详细了解某段时间的输stepsys(T入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ;② );,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点(三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性 den=[1 3 4 2 7 2]; p=roots(den) 输出结果是: p =-1.7680 + 1.2673i -1.7680 - 1.2673i 0.4176 + 1.1130i 0.4176 - 1.1130i -0.2991有实部为正根,所以系统不稳定。
2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
den=[1 7 3 5 2];p=roots(den) 输出结果:p = -6.6553 0.0327 + 0.8555i 0.0327 - 0.8555i -0.4100(二)阶跃响应 1. 二阶系统()102102++=s s s G1)键入程序,观察并记录单位阶跃响应曲线 num=10;den=[1210];t=10;sys=tf(num,den);step(sys,t)0123456789100.20.40.60.811.21.4System: sysTime (sec): 1.11Amplitude: 1.34System: sysTime (sec): 3.14Amplitude: 1.04Step ResponseTime (sec)A m p l i t u d e2)计算系统的闭环根、阻尼比、无阻尼振荡频率,并记录P1 =-1.0000 + 3.0000i; P2=-1.0000 -3.0000i;ξ=10/√10;w=√103)记录实际测取的峰值大小、峰值时间及过渡过程时间,并填表:实际值 理论值峰值C max 1.35 峰值时间t p 1.03过渡时间 t s%5± %2±4)修改参数,分别实现1=ζ和2=ζ的响应曲线,并记录5)修改参数,分别写出程序实现0121w w n =和022w w n =的响应曲线,并记录2. 作出以下系统的阶跃响应,并与原系统响应曲线进行比较,作出相应的实验分析结果(1)()10210221+++=s s s s G ,有系统零点的情况num=[210];den=[1210];t=10;sys=tf(num,den);step(sys,t)Step ResponseTime (sec)A m p l i t u d e1234567891000.511.5System: sys Time (sec): 1.84Amplitude: 0.85System: sysTime (sec): 0.821Amplitude: 1.43(2)()102105.0222++++=s s s s s G ,分子、分母多项式阶数相等num=[10.510];den=[1210];t=10;sys=tf(num,den);step(sys,t)0123456789100.650.70.750.80.850.90.9511.051.11.15System: sysTime (sec): 0.497Amplitude: 0.697System: sys Time (sec): 1.42Amplitude: 1.11System: sys Time (sec): 3.57Amplitude: 1.01Step ResponseTime (sec)A m p l i t u d e(3)()1025.0222+++=s s s s s G ,分子多项式零次项为零num=[10.5 0];den=[1 210];t=10;sys=tf(num,den);step(sys,t)12345678910-0.4-0.20.20.40.60.81System: sys Time (sec): 2.01Amplitude: 0.134System: sysTime (sec): 0.959Amplitude: -0.383System: sys Time (sec): 3.07Amplitude: -0.0468Step ResponseTime (sec)A m p l i t u d e(4)()10222++=s s s s G ,原响应的微分,微分系数为1/100123456789100.020.040.060.080.10.120.14System: sys Time (sec): 3.18Amplitude: 0.104System: sys Time (sec): 1.14Amplitude: 0.133Step ResponseTime (sec)A m p l i t u d e3. 单位阶跃响应:25425)()(2++=s s s R s C 求该系统单位阶跃响应曲线,并在所得图形上加网格线和标题Step ResponseTime (sec)A m p l i t u d e0123456789100.20.40.60.811.21.4Sy stem: sy sPeak amplitude: 1.25Ov ershoot (%): 25.4At time (sec): 0.68System: sysSettling Time (sec): 1.68System: sysRise Time (sec): 0.295(三)系统动态特性分析 用Matlab求二阶系统12012120)(2++=s s s G 和01.0002.001.0)(2++=s s s G 的峰值时间pt 上升时间rt 调整时间st超调量。
%σ num1=[120];den1=[112 120];sys1=tf(num1,den1); num2=[0.01];den2=[1 0.0020.01];sys2=tf(num2,den2);Step ResponseTime (sec)A m p l i t u d e0123456789100.20.40.60.811.21.4Sy stem: sy s1Peak amplitude: 1.13Ov ershoot (%): 12.8At time (sec): 0.34Sy stem: sy s1Settling Time (sec): 0.532System: sys1Rise Time (sec): 0.159System: sys2P eak amplitude: 0.457Overshoot (%): 0At time (sec): 10t=0:0.01:10; figure(1) step(sys1,t);grid figure(2) step(sys2,t);grid由图知第一个的峰值时间pt =0.34 ,上升时间rt =0.159 ,调整时间st =0.532 ,超调量%σ=12.8由图知第二个的调整时间st =10 ,超调量%σ=0五.实验报告要求:a) 完成上述各题b)分析阻尼比、无阻尼振荡频率对系统阶跃响应和脉冲响应的影响c)分析零初值、非零初值与系统模型的关系d)分析响应曲线的稳态值与系统模型的关系e)分析零极点对系统性能的影响实验二 MATLAB 及仿真实验(控制系统的根轨迹分析)一 实验目的1.利用计算机完成控制系统的根轨迹作图 2.了解控制系统根轨迹图的一般规律 3.利用根轨迹图进行系统分析 二 预习要点1. 预习什么是系统根轨迹?2. 闭环系统根轨迹绘制规则。
三 实验方法(一) 方法:当系统中的开环增益k 从0到变化时,闭环特征方程的根在复平面上的一组曲线为根轨迹。
设系统的开环传函为:)()()(0s Q s N k s G =,则系统的闭环特征方程为:0)()(1)(10=+=+s Q s N ks G根轨迹即是描述上面方程的根,随k变化在复平面的分布。
(二) MATLAB 画根轨迹的函数常用格式:利用Matlab 绘制控制系统的根轨迹主要用pzmap ,rlocus ,rlocfind ,sgrid 函数。
1、零极点图绘制[p,z]=pzmap(a,b,c,d):返回状态空间描述系统的极点矢量和零点矢量,而不在屏幕上绘制出零极点图。
❑[p,z]=pzmap(num,den):返回传递函数描述系统的极点矢量和零点矢量,而不在屏幕上绘制出零极点图。
❑p zmap(a,b,c,d)或pzmap(num,den):不带输出参数项,则直接在s复平面上绘制出系统对应的零极点位置,极点用×表示,零点用o表示。
❑p zmap(p,z):根据系统已知的零极点列向量或行向量直接在s复平面上绘制出对应的零极点位置,极点用×表示,零点用o表示。