最新高考全国卷二文科数学及答案
2022年全国高考(新高考II卷)数学真题+答案 逐题解析

2022年普通高等学校招生全国统一考试(新高考全国Ⅱ卷)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A.{1,2}- B.{1,2}C.{1,4}D.{1,4}-【答案】B 【解析】【分析】求出集合B 后可求A B .【详解】{}|02B x x =≤≤,故{}1,2A B = ,故选:B.2.(22i)(12i)+-=()A.24i -+ B.24i -- C.62i + D.62i-【答案】D 【解析】【分析】利用复数的乘法可求()()22i 12i +-.【详解】()()22i 12i 244i 2i 62i +-=+-+=-,故选:D.3.中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AA k k k OD DC CB BA ====,若123,,k k k 是公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =()A.0.75B.0.8C.0.85D.0.9【答案】D 【解析】【分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项.【详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===,依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D4.已知(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a cbc ,则t =()A.6- B.5- C.5D.6【答案】C 【解析】【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得【详解】解:()3,4c t =+ ,cos ,cos ,a c b c = ,即931635t t c c+++= ,解得5t =,故选:C5.有甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有多少种()A.12种 B.24种C.36种D.48种【答案】B 【解析】【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式,故选:B6.角,αβ满足sin()cos()sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则()A.tan()1αβ+= B.tan()1αβ+=-C.tan()1αβ-= D.tan()1αβ-=-【答案】D 【解析】【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin αβαβαβαβααβ++-=-,即:sin cos cos sin cos cos sin sin 0αβαβαβαβ-++=,即:()()sin cos 0αβαβ-+-=,所以()tan 1αβ-=-,故选:D7.正三棱台高为1,上下底边长分别为积是()A.100π B.128πC.144πD.192π【答案】A【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以122,2sin 60sin 60r r ==,即123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =,2d =121d d -=或121d d +=1=或1=,解得225R =符合题意,所以球的表面积为24π100πS R ==.故选:A.8.若函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A.3- B.2- C.0D.1【答案】A 【解析】【分析】根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.函数()sin(2)(0π)f x x ϕϕ=+<<的图象以2π,03⎛⎫⎪⎝⎭中心对称,则()A.y =()f x 在5π0,12⎛⎫⎪⎝⎭单调递减B.y =()f x 在π11π,1212⎛⎫-⎪⎝⎭有2个极值点C.直线7π6x =是一条对称轴D.直线2y x =-是一条切线【答案】AD 【解析】【分析】根据三角函数的性质逐个判断各选项,即可解出.【详解】由题意得:2π4πsin 033f ϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以4ππ3k ϕ+=,k ∈Z ,即4ππ,3k k ϕ=-+∈Z ,又0πϕ<<,所以2k =时,2π3ϕ=,故2π()sin 23f x x ⎛⎫=+ ⎪⎝⎭.对A,当5π0,12x ⎛⎫∈ ⎪⎝⎭时,2π2π3π2,332x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =在5π0,12⎛⎫⎪⎝⎭上是单调递减;对B,当π11π,1212x ⎛⎫∈-⎪⎝⎭时,2ππ5π2,322x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =只有1个极值点,由2π3π232x +=,解得5π12x =,即5π12x =为函数的唯一极值点;对C,当7π6x =时,2π23π3x +=,7π()06f =,直线7π6x =不是对称轴;对D,由2π2cos 213y x ⎛⎫'=+=- ⎪⎝⎭得:2π1cos 232x ⎛⎫+=- ⎪⎝⎭,解得2π2π22π33x k +=+或2π4π22π,33x k k +=+∈Z ,从而得:πx k =或ππ,3x k k =+∈Z ,所以函数()y f x =在点30,2⎛⎫ ⎪ ⎪⎝⎭处的切线斜率为02π2cos 13x k y =='==-,切线方程为:(0)2y x -=--即2y x =-.故选:AD.10.已知O 为坐标原点,过抛物线2:2(0)C y px p =>的焦点F 的直线与C 交于A ,B 两点,点A 在第一象限,点(,0)M p ,若||||AF AM =,则()A.直线AB 的斜率为B.||||OB OF =C.||4||AB OF > D.180OAM OBM ∠+∠<︒【答案】ACD 【解析】【分析】由AF AM =及抛物线方程求得36()42p A ,再由斜率公式即可判断A 选项;表示出直线AB 的方程,联立抛物线求得6(,33p B -,即可求出OB 判断B 选项;由抛物线的定义求出2512pAB =即可判断C 选项;由0OA OB ⋅< ,0MA MB ⋅< 求得AOB ∠,AMB ∠为钝角即可判断D 选项.【详解】对于A,易得(,0)2pF ,由AF AM =可得点A 在FM 的垂直平分线上,则A 点横坐标为3224p pp +=,代入抛物线可得2233242p y p p =⋅=,则36(,)42p A ,则直线AB的斜率为62342p p =-,A 正确;对于B,由斜率为可得直线AB的方程为2p x y =+,联立抛物线方程得220y py p -=,设11(,)B x y ,则16626p y p +=,则163y =-,代入抛物线得21623p x ⎛⎫-=⋅ ⎪ ⎪⎝⎭,解得13p x =,则(,)33p B -,则732pOB OF =≠=,B 错误;对于C,由抛物线定义知:325244312p p p AB p p OF =++=>=,C 正确;对于D,23663663(,(,)0423343234p p p p p OA OB ⎛⎫⋅=⋅-=⋅+⋅-=-< ⎪ ⎪⎝⎭ ,则AOB ∠为钝角,又26262665(,(,0423343236p p p p p MA MB ⎛⎫⎛⎫⋅=-⋅--=-⋅-+⋅-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭,则AMB ∠为钝角,又360AOB AMB OAM OBM ∠+∠+∠+∠= ,则180OAM OBM ∠+∠< ,D 正确.故选:ACD.11.如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V,则()A.322V V =B.312V V =C.312V V V =+D.3123V V =【答案】CD 【解析】【分析】直接由体积公式计算12,V V ,连接BD 交AC 于点M ,连接,EM FM ,由3A EFM C EFM V V V --=+计算出3V ,依次判断选项即可.【详解】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACD V ED S a a a =⋅⋅=⋅⋅⋅= ,()232111223323ABC V FB S a a a =⋅⋅=⋅⋅⋅= ,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥,又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D = ,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ===,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ===,3EF a =,222EM FM EF +=,则EM FM ⊥,213222EFM S EM FM a =⋅= ,AC =,则33123A EFM C EFM EFM V V V AC S a --=+=⋅= ,则3123V V =,323V V =,312V V V =+,故A、B 错误;C、D 正确.故选:CD.12.对任意x ,y ,221+-=x y xy ,则()A.1x y +≤ B.2x y +≥-C.222x y +≤ D.221x y +≥【答案】BC 【解析】【分析】根据基本不等式或者取特值即可判断各选项的真假.【详解】因为22222a b a b ab ++⎛⎫≤≤ ⎪⎝⎭(,a b ÎR ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设3cos ,sin 22y x y θθ-==,所以cos ,x y θθθ==,因此2222511cos sin cos 12cos 2333x y θθθθ=θ-θ+=+++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当33,33x y ==-时满足等式,但是221x y +≥不成立,所以D 错误.故选:BC.三、填空题:本题共4小题,每小题5分,共20分.13.已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >=____________.【答案】0.14##750.【解析】【分析】根据正态分布曲线的性质即可解出.【详解】因为()22,X N σ,所以()()220.5P X P X <=>=,因此()()()2.522 2.50.50.360.14P X P X P X >=>-<≤=-=.故答案为:0.14.14.写出曲线ln ||y x =过坐标原点的切线方程:____________,____________.【答案】①.1ey x =②.1ey x =-【解析】【分析】分0x >和0x <两种情况,当0x >时设切点为()00,ln x x ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x <时同理可得;【详解】解:因为ln y x =,当0x >时ln y x =,设切点为()00,ln x x ,由1y x'=,所以001|x x y x ='=,所以切线方程为()0001ln y x x x x -=-,又切线过坐标原点,所以()0001ln x x x -=-,解得0e x =,所以切线方程为()11e e y x -=-,即1ey x =;当0x <时()ln y x =-,设切点为()()11,ln x x -,由1y x'=,所以111|x x y x ='=,所以切线方程为()()1111ln y x x x x --=-,又切线过坐标原点,所以()()1111ln x x x --=-,解得1e x =-,所以切线方程为()11e e y x -=+-,即1ey x =-;故答案为:1e y x =;1e y x=-15.已知点(2,3),(0,)A B a -,若直线AB 关于y a =的对称直线与圆22(3)(2)1x y +++=存在公共点,则实数a 的取值范围为________.【答案】13,32⎡⎤⎢⎥⎣⎦【解析】【分析】首先求出点A 关于y a =对称点A '的坐标,即可得到直线l 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【详解】解:()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a=上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=;圆()()22:321C x y +++=,圆心()3,2C --,半径1r =,依题意圆心到直线l 的距离1d =,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦16.已知椭圆22163x y +=,直线l 与椭圆在第一象限交于A ,B 两点,与x 轴,y 轴分别交于M ,N 两点,且||||,||MANB MN ==l 的方程为___________.【答案】0x +-=【解析】【分析】令AB 的中点为E ,设()11,A x y ,()22,B x y ,利用点差法得到12OE AB k k ⋅=-,设直线:AB y kx m =+,0k <,0m >,求出M 、N 的坐标,再根据MN 求出k 、m ,即可得解;【详解】解:令AB 的中点为E ,因为MA NB =,所以ME NE =,设()11,A x y ,()22,B x y ,则2211163x y +=,2222631x y +=,所以2222121206633x x y y -+-=,即()()()()12121212063x x x x y y y y -++-+=所以()()()()1212121212y y y y x x x x +-=--+,即12OE AB k k ⋅=-,设直线:AB y kx m =+,0k <,0m >,令0x =得y m =,令0y =得m x k =-,即,0m M k ⎛⎫- ⎪⎝⎭,()0,N m ,所以,22m m E k ⎛⎫- ⎪⎝⎭,即1222mk m k⨯=--,解得k =22k =(舍去),又MN =,即MN =,解得2m =或2m =-(舍去),所以直线2:22AB y x =-+,即0x +-=;故答案为:0x +-=四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.【答案】(1)证明见解析;(2)9.【解析】【分析】(1)设数列{}n a 的公差为d ,根据题意列出方程组即可证出;(2)根据题意化简可得22k m -=,即可解出.【小问1详解】设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即可解得,112db a ==,所以原命题得证.【小问2详解】由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+⇔⨯=+-+,即122k m -=,亦即[]221,500k m -=∈,解得210k ≤≤,所以满足等式的解2,3,4,,10k = ,故集合{}1|,1500k m k b a a m =+≤≤中的元素个数为10219-+=.18.记ABC 的三个内角分别为A ,B ,C ,其对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S,已知123123S S S B -+==.(1)求ABC 的面积;(2)若sin sin 3A C =,求b .【答案】(1)28(2)12【解析】【分析】(1)先表示出123,,S S S ,再由12332S S S -+=求得2222a c b +-=,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB A C=,即可求解.【小问1详解】由题意得22221231,,22444S a a S b S c =⋅⋅===,则22212333334442S S S a b c -+=-+=,即2222a c b +-=,由余弦定理得222cos 2a c b B ac+-=,整理得cos 1ac B =,则cos 0B >,又1sin 3B =,则cos 3B ==,132cos 4ac B ==,则12sin 28ABC S ac B == ;【小问2详解】由正弦定理得:sin sin sin b a cB A C==,则223294sin sin sin sin sin 423b ac ac B A C A C =⋅==,则3sin 2b B =,31sin 22b B ==.19.在某地区进行流行病调查,随机调查了100名某种疾病患者的年龄,得到如下的样本数据频率分布直方图.(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值作代表);(2)估计该地区一人患这种疾病年龄在区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%,从该地区任选一人,若此人年龄位于区间[40,50),求此人患该种疾病的概率.(样本数据中的患者年龄位于各区间的频率作为患者年龄位于该区间的概率,精确到0.0001)【答案】(1)44.65岁;(2)0.89;(3)0.0014.【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A ={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式()1(P A P A =-即可解出;(3)根据条件概率公式即可求出.【小问1详解】平均年龄(50.001150.002250.012350.017450.023x =⨯+⨯+⨯+⨯+⨯550.020650.012750.006850.002)1044.65+⨯+⨯+⨯+⨯⨯=(岁).【小问2详解】设A ={一人患这种疾病的年龄在区间[20,70)},所以()1()1(0.0010.0020.0060.002)1010.110.89P A P A =-=-+++⨯=-=.【小问3详解】设{B =任选一人年龄位于区间}[40,50),{C =任选一人患这种疾病},则由条件概率公式可得()0.1%0.023100.0010.23(|)0.00143750.0014()16%0.16P BC P C B P B ⨯⨯⨯====≈.20.如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)求证://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.【答案】(1)证明见解析(2)1113【解析】【分析】(1)连接BO 并延长交AC 于点D ,连接OA 、PD ,根据三角形全等得到OA OB =,再根据直角三角形的性质得到AO DO =,即可得到O 为BD 的中点从而得到//OE PD ,即可得证;(2)过点A 作//Az OP ,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得;【小问1详解】证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P ABC -的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC ,所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒,所以ODA OAD∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD ,又OE ⊄平面PAC ,PD ⊂平面PAC ,所以//OE 平面PAC【小问2详解】解:过点A 作//Az OP ,如图建立平面直角坐标系,因为3PO =,5AP =,所以224OA AP PO =-=,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD ,3AB =,所以12AC =,所以()23,2,0O ,()43,0,0B ,()23,2,3P ,()0,12,0C ,所以33,1,2E ⎛⎫ ⎪⎝⎭,则333,1,2AE ⎛⎫= ⎪⎝⎭ ,()3,0,0AB =,()0,12,0AC = ,设平面AEB 的法向量为(),,n x y z = ,则33302430n AE x y z nAB x ⎧⋅=++=⎪⎨⎪⋅==⎩,令2z =,则3y =-,0x =,所以()0,3,2n =-;设平面AEC 的法向量为(),,m a b c = ,则33302120m AE a b c m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩ ,令3a =6c =-,0b =,所以)3,0,6m =-;所以1243cos ,131339n m n m n m⋅==-⨯设二面角C AE B --为θ,由图可知二面角C AE B --为钝二面角,所以43cos 13θ=-,所以211sin 1cos 13θθ=-=故二面角C AE B --的正弦值为1113;21.设双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为(2,0)F,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P且斜率为的直线与过QM ,请从下面①②③中选取两个作为条件,证明另外一个条件成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M 在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.【小问1详解】右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b =,∴222244c a b a =+==,∴1a =,∴b =.∴C 的方程为:2213y x -=;【小问2详解】由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为,直线QM∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==---,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3y y +-=中,得:()()00003y y ⎡⎤+-+=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=+⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴003x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283k x ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.22.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .【答案】(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax x h x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t tt <-对任意的1t >恒成立,从而可得()ln 1ln n n +-<任意的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.【小问1详解】当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.【小问2详解】设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax x g x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e e e ax ax ax x x h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x ax h x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.【小问3详解】取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有2ln <整理得到:()ln1lnn n+-<,()ln2ln1ln3ln2ln1lnn n+>-+-+++-()ln1n=+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.。
2020年高考文科数学全国卷2-答案

2020年普通高等学校招生全国统一考试·全国Ⅱ卷文科数学答案解析一、选择题1.【答案】D【解析】解绝对值不等式化简集合A B ,的表示,再根据集合交集的定义进行求解即可. 因为{}{}321012A x x x Z =<∈=--,,,,,,{}{}111B x x x Z x x x x Z =>∈=><-∈,或,, 所以{}22A B =-,.故选:D .【考点】绝对值不等式的解法,集合交集的定义2.【答案】A【解析】根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可.()()()()2422221i [1i ]12i i 2i 4-=-=-+=-=- 故选:A .【考点】复数的乘方运算性质3.【答案】C【解析】根据原位大三和弦满足34k j j i -=-=,,原位小三和弦满足43k j j i -=-=,,从1i =开始,利用列举法即可解出.根据题意可知,原位大三和弦满足:34k j j i -=-=,.∴158i j k ===,,;269i j k ===,,;3710i j k ===,,;4811i j k ===,,;5912i j k ===,,.原位小三和弦满足:43k j j i -=-=,.∴148i j k ===,,;259i j k ===,,;3610i j k ===,,;4711i j k ===,,;5812i j k ===,,.故个数之和为10.故选:C .【考点】列举法的应用4.【答案】B【解析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为50016001200900+-=, 故需要志愿者9001850=名. 故选:B【考点】函数模型的简单应用5.【答案】D【解析】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可. 由已知可得:11cos601122a b a b ︒==⨯⨯=. A :因为215(2)221022a b b a b b +=+=+⨯=≠,所以本选项不符合题意; B :因为21(2)221202a b b a b b +=+=⨯+=≠,所以本选项不符合题意; C :因213(2)221022a b b a b b -=-=-⨯=-≠,所以本选项不符合题意; D :因为21(2)22102a b b a b b -=-=⨯-=,所以本选项符合题意. 故选:D .【考点】平面向量数量积的定义和运算性质,两平面向量数量积为零则这两个平面向量互相垂直6.【答案】B【解析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可.设等比数列的公比为q ,由53641224a a a a -=-=,可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩, 所以1111(1)12221112n nn n n n n a q a a q S q ----=====---,, 因此1121222n n n n n S a ---==-. 故选:B .【考点】等比数列的通项公式的基本量计算,等比数列前n 项和公式的应用7.【答案】C【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值,模拟程序的运行过程,分析循环中各变量值的变化情况,即可求得答案.由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值.模拟程序的运行过程0,0k a ==第1次循环,2011011a k =⨯+==+=,,210>为否第2次循环,2113112a k =⨯+==+=,,310>为否第3次循环,2317213a k =⨯+==+=,,710>为否第4次循环,27115314a k =⨯+==+=,,1510>为是退出循环输出4k =.故选:C .【考点】求循环框图的输出值8.【答案】B【解析】由题意可知圆心在第一象限,设圆心的坐标为()0a a a >,,,可得圆的半径为a ,写出圆的标准方程,利用点()21,在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.由于圆上的点()21,在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为()a a ,,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()11,或()55,,圆心到直线230x y --=的距离均为d ==;所以,圆心到直线230x y --=.故选:B .【考点】圆心到直线距离的计算9.【答案】B 【解析】因为2222:1(00)x y C a b a b-=>,>,可得双曲线的渐近线方程是b y x a =±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE △的面积为8,可得ab 值,根据2c =结合均值不等式,即可求得答案.2222:1(00)x y C a b a b-=>,> ∴双曲线的渐近线方程是b y x a=± 直线x a =与双曲线()2222:100x y C a b a b-=>>,的两条渐近线分别交于D ,E 两点 不妨设D 为在第一象限,E 在第四象限 联立x a b y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故()D a b , 联立x a b y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故()E a b -,∴||2ED b =∴ODE △面积为:1282ODE S a b ab =⨯==△ 双曲线()2222:100x y C a b a b-=>>, ∴其焦距为28c ==当且仅当a b ==∴C 的焦距的最小值:8故选:B .【考点】求双曲线焦距的最值问题10.【答案】A 【解析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数, 再根据函数的单调性法则,即可解出.因为函数()331f x x x=-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数.又因为函数3y x =在()0+∞,上单调递增,在()0-∞,上单调递增, 而331y x x-==在()0+∞,上单调递减,在()0-∞,上单调递减, 所以函数()331f x x x =-在()0+∞,上单调递增,在()0-∞,上单调递增. 故选:A .【考点】利用函数的解析式研究函数的性质11.【答案】C【解析】根据球O 的表面积和ABC △的面积可求得球O 的半径R 和ABC △外接圆半径r ,由球的性质可知所求距离d =.设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △的等边三角形,212a ∴,解得:3a =,2233r ∴=∴球心O 到平面ABC 的距离1d ===.故选:C .【考点】球的相关问题的求解12.【答案】A【解析】将不等式变为2323x x y y ----<,根据()23t t f t -=-的单调性知x y <,以此去判断各个选项中真数与1的大小关系,进而得到结果.由2233x y x y ----<得:2323x x y y ----<,令()23t t f t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误; x y -与1的大小不确定,故CD 无法确定.故选:A .【考点】对数式的大小的判断问题二、填空题 13.【答案】19【解析】直接利用余弦的二倍角公式进行运算求解即可.22281cos212sin 12()1399x x =-=-⨯-=-=. 故答案为:19. 【考点】余弦的二倍角公式的应用14.【答案】25【解析】因为{}n a 是等差数列,根据已知条件262a a +=,求出公差,根据等差数列前n 项和,即可求得答案.{}n a 是等差数列,且12a =-,262a a +=设{}n a 等差数列的公差d根据等差数列通项公式:()11n a a n d +-=可得1152a d a d +++=即:()2252d d -++-+=整理可得:66d =解得:1d = 根据等差数列前n 项和公式:*1(1)2n n n S na d n N -=+∈, 可得:()1010(101)1022045252S ⨯-=-+=-+= ∴1025S =.故答案为:25.【考点】求等差数列的前n 项和15.【答案】8【解析】在平面直角坐标系内画出不等式组表示的平面区域,然后平移直线12y x =-,在平面区域内找到一点使得直线1122y x z =-+在纵轴上的截距最大,求出点的坐标代入目标函数中即可. 不等式组表示的平面区域为下图所示:平移直线12y x =-,当直线经过点A 时,直线1122y x z =-+在纵轴上的截距最大, 此时点A 的坐标是方程组121x y x y -=-⎧⎨-=⎩的解,解得:23x y =⎧⎨=⎩, 因此2z x y =+的最大值为:2238+⨯=.故答案为:8.【考点】线性规划的应用,数形结合思想16.【答案】①③④【解析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【考点】空间中线面关系有关命题真假的判断三、解答题17.【答案】(1)3A π=(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -②,将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC △是直角三角形.【解析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A π⎛⎫++= ⎪⎝⎭可化为251cos cos 4A A -+=,即可解出; 因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<, 所以3A π=;(2)根据余弦定理可得222b c a bc +-=,将b c -=代入可找到a b c ,,关系, 再根据勾股定理或正弦定理即可证出. 因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -②,将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC △是直角三角形.【考点】诱导公式和平方关系的应用18.【答案】(1)12000(2)0.94(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【解析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可; 样区野生动物平均数为201111200602020i i y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯=;(2)利用公式20()()i i x x y y r --=∑ 样本()i i x y ,的相关系数为20()()0.943i i x x y y r --===≈∑ (3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样. 由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样 先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【考点】平均数的估计值、相关系数的计算,抽样方法的选取19.【答案】(1)12(2)1C :2211612x y +=,2C :28y x =.【解析】(1)根据题意求出2C 的方程,结合椭圆和抛物线的对称性不妨设A C ,在第一象限,运用代入法求出A B C D ,,,点的纵坐标,根据4||||3CD AB =,结合椭圆离心率的公式进行求解即可; 解:(1)因为椭圆1C 的右焦点坐标为:()c 0F ,,所以抛物线2C 的方程为24y cx =,其中c = 不妨设A C ,在第一象限,因为椭圆1C 的方程为:22221x y a b+=, 所以当x c =时,有222221c y b y a b a +=⇒=±,因此A B ,的纵坐标分别为2b a ,2b a-; 又因为抛物线2C 的方程为24y cx =,所以当x c =时,有242y c c y c =⇒=±,所以C D ,的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =. 由4||||3CD AB =得2843b c a =,即2322c c a a ⎛⎫=- ⎪⎝⎭,解得2c a =-(舍去),12c a =.所以1C 的离心率为12. (2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可;由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为ABC △,(20)c -,,(0),(0),,2C 的准线为x c =-.由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =. 【考点】椭圆的离心率,椭圆和抛物线的标准方程,椭圆的四个顶点的坐标,抛物线的准线方程 20.【答案】(1),M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB1//MN AA ∴在等边ABC △中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BBMN BC ⊥由MN AM M =,MN AM ⊂,平面1A AMN∴BC ⊥平面1A AMN 又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC 又11B C ⊂平面11EB C F ,且平面11EB C F 平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)24【解析】(1)由M N ,分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1//MN AA ,要证平面11EB C F ⊥平面1A AMN ,只需证明EF ⊥平面1A AMN 即可;M N ,分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB1//MN AA ∴在等边ABC △中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BBMN BC ⊥由MN AM M =,MN AM ⊂,平面1A AMN∴BC ⊥平面1A AMN 又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC 又11B C ⊂平面11EB C F ,且平面11EB C F 平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)根据已知条件求得11EB C F S 四边形和M 到PN 的距离,根据椎体体积公式,即可求得11B EB C F V -. 过M 作PN 垂线,交点为H ,画出图形,如图//AO 平面11EB C FAO ⊂平面1A AMN ,平面1A AMN平面11EB C F NP = //AO NP ∴ 又//NO AP∴6AO NP ==O 为111A B C △的中心. ∴1111sin606sin60333ON AC ==⨯⨯=故:ON AP ==3AM AP ==平面11EB C F ⊥平面1A AMN ,平面11EB C F 平面1A AMN NP =,MH ⊂平面1A AMN∴MH ⊥平面11EB C F 又在等边ABC △中EF AP BC AM = 即323AP BC EF AM ⨯=== 由(1)知,四边形11EB C F 为梯形∴四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP ++=⨯=四边形 111113B EBC F EB C F V S h -∴=四边形,h 为M 到PN 的距离sin 603MH ==,∴1243243V =⨯⨯=.【考点】证明线线平行和面面垂直,求四棱锥的体积21.【答案】(1)1c -≥;(2)()g x 在区间()0a ,和()a +∞,上单调递减,没有递增区间 【解析】(1)不等式()2f x x c +≤转化为()20f x x c --≤,构造新函数,利用导数求出新函数的最大值,进而进行求解即可;函数()f x 的定义域为:()0+∞,()()()2202ln 120f x x c f x x c x x c +⇒--⇒+--*≤≤≤,设()()2ln 120h x x x c x =+-->,则有()()2122x h x x x-'=-=, 当1x >时,()()0h x x h '<,单调递减,当01x <<时,()()0h x h x '>,单调递增, 所以当1x =时,函数()h x 有最大值,即()()max 12ln11211h c x h c ==+-⨯-=--,要想不等式()*在()0+∞,上恒成立, 只需()max 0101h x c c ⇒--⇒-≤≤≥;(2)对函数()g x 求导,把导函数()g x '分子构成一个新函数()m x ,再求导得到()m x ',根据()m x '的正负,判断()m x 的单调性,进而确定()g x '的正负性,最后求出函数()g x 的单调性.()()()()2ln 12ln 12ln ln 0x a x a g x x a x ax x a +---==≠-->且 因此()()()22ln ln x a x x x a g x a x x --+'=-,设()()2ln ln m x x a x x x a =--+,则有()()2ln ln m x a x '=-,当x a >时,ln ln x a >,所以()0m x '<,()m x 单调递减,因此有()()0m x m a =<,即()0g x '<,所以()g x 单调递减;当0x a <<时,ln ln x a <,所以()0m x '>,()m x 单调递增,因此有()()0m x m a =<,即()0g x '<,所以()g x 单调递减,所以函数()g x 在区间()0a ,和()a +∞,上单调递减,没有递增区间. 【考点】利用导数研究不等式恒成立问题,利用导数判断含参函数的单调性22.【答案】(1)14C x y +=:;2224C x y -=:;(2)17cos 5ρθ=. 的【解析】(1)分别消去参数θ和t 即可得到所求普通方程;由22cos sin 1θθ+=得1C 的普通方程为:4x y +=; 由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=. (2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即5322P ⎛⎫ ⎪⎝⎭,; 设所求圆圆心的直角坐标为()0a ,,其中0a >, 则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =, ∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=, ∴所求圆的极坐标方程为17cos 5ρθ=. 【考点】极坐标与参数方程的综合应用问题23.【答案】(1)31122x x x ⎧⎫⎨⎬⎩⎭≤或≥ (2)(][),13,-∞-+∞【解析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤; 当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为31122x x x ⎧⎫⎨⎬⎩⎭≤或≥. (2)利用绝对值三角不等式可得到()()21f x a -≥,由此构造不等式求得结果.()()()()22222121211f x x a x a x a x a a a a =-+-+---+=-+-=-≥(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a -≤或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【考点】绝对值不等式的求解,利用绝对值三角不等式求解最值的问题。
高考全国卷2文科数学试卷及答案

绝密★启用前2021年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学考前须知:1. 本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部。
答卷前考生将自己的姓名、准考证号填写在答题卡上。
2. 答复第一卷时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3. 答第二卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第一卷一、选择题:本大题共12小题。
每题5分,在每个小题给出的四个选项中,只有一项为哪一项符合要求的。
〔1〕集合M={x|-3<X<1},N={-3,-2,-1,0,1},那么M∩N=〔A〕{-2,-1,0,1}〔B〕{-3,-2,-1,0}〔C〕{-2,-1,0} 〔D〕{-3,-2,-1 } 〔2〕||=〔A〕2〔B〕2 〔C〕〔D〕1〔3〕设x,y满足约束条件,那么z=2x-3y的最小值是〔A〕〔B〕-6 〔C〕〔D〕-〔4〕△ABC的内角A,B,C的对边分别为a,b,c,b=2,B=,C=,那么△ABC的面积为〔A〕2+2 〔B〕〔C〕2〔D〕-1〔5〕设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30。
,那么C的离心率为〔A〕〔B〕〔C〕〔D〕〔6〕sin2α=,那么cos2(α+)=〔A〕〔B〕〔C〕〔D〕〔7〕执行右面的程序框图,如果输入的N=4,那么输出的S=〔A〕1〔B〕1+〔C〕1++++〔D〕1++++〔8〕设a=log32,b=log52,c=log23,那么〔A〕a>c>b 〔B〕b>c>a 〔C〕c>b>a 〔D〕c>a>b〔9〕一个四面体的顶点在点间直角坐系O-xyz中的坐标分别是〔1,0,1〕,〔1,1,0〕,〔0,1,1〕,〔0,0,0〕,画该四面体三视图中的正视图时,以zOx平面为投影面,那么得到的正视图可为〔A〕〔B〕〔C〕〔D〕( 10)设抛物线C:y2=4x的焦点为F,直线L过F且与C交于A, B两点.假设|AF|=3|BF|,那么L的方程为(A)y=x-1或y=-x+1 〔B〕y=〔X-1〕或y=-〔x-1〕〔C〕y=〔x-1〕或y=-〔x-1〕〔D〕y=〔x-1〕或y=-〔x-1〕〔11〕函数f〔x〕=x3+ax2+bx+c ,以下结论中错误的选项是〔A〕〔B〕函数y=f〔x〕的图像是中心对称图形〔C〕假设x0是f〔x〕的极小值点,那么f〔x〕在区间〔-∞,x0〕单调递减〔D〕假设x0是f(x)的极值点,那么f’〔x0〕=0〔12〕假设存在正数x使2x〔x-a〕<1成立,那么a 的取值范围是〔A〕〔-∞,+∞〕〔B〕(-2, +∞) (C)(0, +∞) (D)〔-1,+∞〕第二卷本卷包括必考题和选考题两局部。
2020年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

绝密★启用前2020年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题目时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,在选涂其它答案标号框.回答非选择题目时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A. B.{–3,–2,2,3)C.{–2,0,2} D.{–2,2}【答案】D 【解析】【分析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可.【详解】因为3,2,1,0,1,2A x x x Z ,1,1B x x x Z x x 或 1,x x Z ,所以 2,2A B ∩.故选:D.【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题.2.(1–i )4=()A.–4B.4C.–4iD.4i【答案】A【解析】【分析】根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可.【详解】422222(1)[(1)](12)(2)4i i i i i .故选:A.【点睛】本题考查了复数的乘方运算性质,考查了数学运算能力,属于基础题.3.如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称a i ,a j ,a k 为原位大三和弦;若k –j =4且j –i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.15【答案】C 【解析】【分析】根据原位大三和弦满足3,4k j j i ,原位小三和弦满足4,3k j j i 从1i 开始,利用列举法即可解出.【详解】根据题意可知,原位大三和弦满足:3,4k j j i .∴1,5,8i j k ;2,6,9i j k ;3,7,10i j k ;4,8,11i j k ;5,9,12i j k .原位小三和弦满足:4,3k j j i .∴1,4,8i j k ;2,5,9i j k ;3,6,10i j k ;4,7,11i j k ;5,8,12i j k .故个数之和为10.故选:C .【点睛】本题主要考查列举法的应用,以及对新定义的理解和应用,属于基础题.4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【答案】B 【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为50016001200900 ,故需要志愿者9001850名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是()A.a +2bB.2a +bC.a –2bD.2a –b【答案】D 【解析】【分析】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可.【详解】由已知可得:11cos 601122a b a b .A :因为215(2)221022a b b a b b ,所以本选项不符合题意;B :因为21(2)221202a b b a b b ,所以本选项不符合题意;C :因213(2)221022a b b a b b ,所以本选项不符合题意;D:因为21(2)22102a b b a b b ,所以本选项符合题意.故选:D.【点睛】本题考查了平面向量数量积的定义和运算性质,考查了两平面向量数量积为零则这两个平面向量互相垂直这一性质,考查了数学运算能力.6.记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =()A.2n –1 B.2–21–n C.2–2n –1D.21–n –1【答案】B 【解析】【分析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可.【详解】设等比数列的公比为q ,由536412,24a a a a 可得:421153111122124a q a q q a a q a q ,所以1111(1)122,21112n nn n n n n a q a a qS q ,因此1121222n n n n n S a .故选:B.【点睛】本题考查了等比数列的通项公式的基本量计算,考查了等比数列前n 项和公式的应用,考查了数学运算能力.7.执行右面的程序框图,若输入的k =0,a =0,则输出的k 为()A.2B.3C.4D.5【答案】C 【解析】分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值,模拟程序的运行过程,分析循环中各变量值的变化情况,即可求得答案.【详解】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值模拟程序的运行过程0,0k a 第1次循环,2011a ,011k ,210 为否第2次循环,2113a ,112k ,310 为否第3次循环,2317a ,213k ,710 为否第4次循环,27115a ,314k ,1510 为是退出循环输出4k .故选:C.【点睛】本题考查求循环框图的输出值,解题关键是掌握模拟循环语句运行的计算方法,考查了分析能力和计算能力,属于基础题.8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y 的距离为()A.55B.255C.355D.455【答案】B 【解析】【分析】由题意可知圆心在第一象限,设圆心的坐标为 ,,0a a a ,可得圆的半径为a ,写出圆的标准方程,利用点 2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y 的距离.【详解】由于圆上的点 2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为,a a ,则圆的半径为a ,圆的标准方程为 222x a y a a .由题意可得 22221a a a ,可得2650a a ,解得1a 或5a ,所以圆心的坐标为 1,1或 5,5,圆心到直线230x y 的距离均为22555d;所以,圆心到直线230x y 的距离为255.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.9.设O 为坐标原点,直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32【答案】B 【解析】【分析】因为2222:1(0,0)x y C a b a b ,可得双曲线的渐近线方程是b y x a,与直线x a 联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2222c a b ,结合均值不等式,即可求得答案.【详解】∵2222:1(0,0)x y C a b a b双曲线的渐近线方程是by x a∵直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a,解得x a y b故(,)D a b 联立x ab y x a,解得x a y b故(,)E a b ||2ED bODE 面积为:1282ODE S a b ab△∵双曲线2222:1(0,0)x y C a b a b其焦距为2222222168c a b ab 当且仅当22a b 取等号C 的焦距的最小值:8【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.10.设函数331()f x x x,则()f x ()A.是奇函数,且在(0,+∞)单调递增 B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增 D.是偶函数,且在(0,+∞)单调递减【答案】A 【解析】【分析】根据函数的解析式可知函数的定义域为0x x ,利用定义可得出函数 f x 为奇函数,再根据函数的单调性法则,即可解出.【详解】因为函数 331f x x x定义域为 0x x ,其关于原点对称,而 f x f x ,所以函数 f x 为奇函数.又因为函数3y x 在()0,+¥上单调递增,在(),0-¥上单调递增,而331y x x在()0,+¥上单调递减,在(),0-¥上单调递减,所以函数 331f x x x在()0,+¥上单调递增,在(),0-¥上单调递增.故选:A .【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题.11.已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.3B.32C.1D.32【答案】C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离22d R r.【详解】设球O 的半径为R ,则2416R ,解得:2R .设ABC 外接圆半径为r ,边长为a ,ABC ∵ 是面积为934的等边三角形,21393224a ,解得:3a ,22229933434a r a ,球心O 到平面ABC 的距离22431d R r .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.12.若2233x y x y ,则()A.ln(1)0y x B.ln(1)0y x C.ln ||0x y D.ln ||0x y 【答案】A 【解析】【分析】将不等式变为2323x x y y ,根据 23t tf t 的单调性知x y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2233x y x y 得:2323x x y y ,令 23ttf t ,2x y ∵为R 上的增函数,3x y 为R 上的减函数, f t 为R 上的增函数,x y ,0y x Q ,11y x , ln 10y x ,则A 正确,B 错误;x y Q 与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.二、填空题目:本题共4小题,每小题5分,共20分.13.若2sin 3x ,则cos 2x __________.【答案】19【解析】【分析】直接利用余弦的二倍角公式进行运算求解即可.【详解】22281cos 212sin 12()1399x x .故答案为:19.【点睛】本题考查了余弦的二倍角公式的应用,属于基础题.14.记n S 为等差数列 n a 的前n 项和.若1262,2a a a ,则10S __________.【答案】25【解析】【分析】因为 n a 是等差数列,根据已知条件262a a ,求出公差,根据等差数列前n 项和,即可求得答案.【详解】∵ n a 是等差数列,且12a ,262a a 设 n a 等差数列的公差d根据等差数列通项公式: 11n a a n d 可得1152a d a d 即: 2252d d 整理可得:66d 解得:1d∵根据等差数列前n 项和公式:*1(1),2n n n S na d n N可得: 1010(101)1022045252S1025S .故答案为:25.【点睛】本题主要考查了求等差数列的前n 项和,解题关键是掌握等差数列的前n 项和公式,考查了分析能力和计算能力,属于基础题.15.若x ,y 满足约束条件1121,x y x y x y,,则2z x y 的最大值是__________.【答案】8【解析】【分析】在平面直角坐标系内画出不等式组表示的平面区域,然后平移直线12y x ,在平面区域内找到一点使得直线1122y x z在纵轴上的截距最大,求出点的坐标代入目标函数中即可.【详解】不等式组表示的平面区域为下图所示:平移直线12y x,当直线经过点A 时,直线1122y x z 在纵轴上的截距最大,此时点A 的坐标是方程组121x y x y的解,解得:23x y,因此2z x y 的最大值为:2238 .故答案为:8.【点睛】本题考查了线性规划的应用,考查了数形结合思想,考查数学运算能力.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l 平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ②12p p ③23p p ④34p p 【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为 ;若3l 与1l 相交,则交点A 在平面 内,同理,3l 与2l 的交点B 也在平面 内,所以,AB ,即3l ,命题1p 真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m 平面 ,则m 垂直于平面 内所有直线,∵直线l 平面 , 直线m 直线l ,命题4p 为真命题.综上可知,14p p 为真命题,12p p 为假命题,23p p 为真命题,34p p 为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A .(1)求A ;(2)若33b c a,证明:△ABC 是直角三角形.【答案】(1)3A;(2)证明见解析【解析】【分析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A可化为251cos cos 4A A,即可解出;(2)根据余弦定理可得222b c a bc ,将33b c a 代入可找到,,a b c 关系,再根据勾股定理或正弦定理即可证出.【详解】(1)因为25cos cos 24A A,所以25sin cos 4A A ,即251cos cos 4A A ,解得1cos 2A ,又0A ,所以3A;(2)因为3A ,所以2221cos 22b c a A bc ,即222b c a bc ①,又33b c a②,将②代入①得, 2223b c b c bc ,即222250b c bc ,而b c ,解得2b c ,所以3a c,故222b a c ,即ABC 是直角三角形.【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix,2011200i iy,2021)80i i x x (,2021)9000i i y y (,201))800i i i x y x y ((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x((((,2=1.414.【答案】(1)12000;(2)0.94;(3)详见解析【解析】【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20120202211()()()()iii iii i x x yy r x x yy计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【详解】(1)样区野生动物平均数为201111200602020i i y ,地块数为200,该地区这种野生动物的估计值为2006012000 (2)样本(,)i i x y 的相关系数为20120202211()()800220.943809000()()iii i i i i x x y y r x x y y(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.19.已知椭圆C 1:22221x y a b(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.【答案】(1)12;(2)1C :2211612x y ,2C :28y x .【解析】【分析】(1)根据题意求出2C 的方程,结合椭圆和抛物线的对称性不妨设,A C 在第一象限,运用代入法求出,,,A B C D 点的纵坐标,根据4||||3CD AB ,结合椭圆离心率的公式进行求解即可;(2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可;【详解】解:(1)因为椭圆1C 的右焦点坐标为:(c,0)F ,所以抛物线2C 的方程为24y cx ,其中22c a b.不妨设,A C 在第一象限,因为椭圆1C 的方程为:22221x y a b,所以当x c 时,有222221c y b y a b a ,因此,A B 的纵坐标分别为2b a ,2ba;又因为抛物线2C 的方程为24y cx ,所以当x c 时,有242y c c y c ,所以,C D 的纵坐标分别为2c ,2c ,故22||bAB a,||4CD c .由4||||3CD AB 得2843b c a,即2322()c c a a ,解得2c a (舍去),12c a .所以1C 的离心率为12.(2)由(1)知2a c ,3b c ,故22122:143x y C c c,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c ,(0,3)c ,(0,3)c ,2C 的准线为x c .由已知得312c c c c ,即2c .所以1C 的标准方程为2211612x y ,2C 的标准方程为28y x .【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的坐标以及抛物线的准线方程,考查了数学运算能力.20.如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积.【答案】(1)证明见解析;(2)24.【解析】【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F 平面1A AMN ,只需证明EF 平面1A AMN 即可;(2)根据已知条件求得11EB C F S 四边形和M 到PN 的距离,根据椎体体积公式,即可求得11B EB C F V .【详解】(1)∵,M N 分别为BC ,11B C 的中点,1//MN BB 又11//AA BB1//MN AA 在等边ABC 中,M 为BC 中点,则BC AM 又∵侧面11BB C C 为矩形,1BC BB 1//MN BB ∵MN BC由MN AM M ,,MN AM 平面1A AMNBC ⊥平面1A AMN又∵11//B C BC ,且11B C 平面ABC ,BC 平面ABC ,11//B C 平面ABC又∵11B C 平面11EB C F ,且平面11EB C F 平面ABC EF11//B C EF//EF BC又BC ∵平面1A AMNEF 平面1A AMN EF ∵平面11EB C F 平面11EB C F 平面1A AMN(2)过M 作PN 垂线,交点为H ,画出图形,如图∵//AO 平面11EB C FAO 平面1A AMN ,平面1A AMN 平面11EB C F NP//AO NP又∵//NO AP6AO NP ∵O 为111A B C △的中心.1111sin 606sin 60333ON A C故:3ON AP,则333AM AP ,∵平面11EB C F 平面1A AMN ,平面11EB C F 平面1A AMN NP ,MH 平面1A AMNMH 平面11EB C F又∵在等边ABC 中EF APBC AM即36233AP BC EF AM由(1)知,四边形11EB C F 为梯形四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP 四边形111113B EBC F EB C F V S h 四边形,h 为M 到PN 的距离23sin 603MH , 1243243V .【点睛】本题主要考查了证明线线平行和面面垂直,及其求四棱锥的体积,解题关键是掌握面面垂直转为求证线面垂直的证法和棱锥的体积公式,考查了分析能力和空间想象能力,属于中档题.21.已知函数f (x )=2ln x +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0时,讨论函数g (x )=()()f x f a x a的单调性.【答案】(1)1c ;(2)()g x 在区间(0,)a 和(,)a 上单调递减,没有递增区间【解析】【分析】(1)不等式()2f x x c 转化为()20f x x c ,构造新函数,利用导数求出新函数的最大值,进而进行求解即可;(2)对函数()g x 求导,把导函数()g x 分子构成一个新函数()m x ,再求导得到()m x ,根据()m x 的正负,判断()m x 的单调性,进而确定()g x 的正负性,最后求出函数()g x 的单调性.【详解】(1)函数()f x 的定义域为:(0,)()2()202ln 120()f x x c f x x c x x c ,设()2ln 12(0)h x x x c x ,则有22(1)()2x h x x x,当1x 时,()0,()h x h x 单调递减,当01x 时,()0,()h x h x 单调递增,所以当1x 时,函数()h x 有最大值,即max ()(1)2ln11211h x h c c ,要想不等式() 在(0,) 上恒成立,只需max ()0101h x c c ;(2)2ln 1(2ln 1)2(ln ln )()(0x a x a g x x x a x a且)x a 因此22(ln ln )()()x a x x x a g x x x a ,设()2(ln ln )m x x a x x x a ,则有()2(ln ln )m x a x ,当x a 时,ln ln x a ,所以()0m x ,()m x 单调递减,因此有()()0m x m a ,即()0g x ,所以()g x 单调递减;当0x a 时,ln ln x a ,所以()0m x ,()m x 单调递增,因此有()()0m x m a ,即()0g x ,所以()g x 单调递减,所以函数()g x 在区间(0,)a 和(,)a 上单调递减,没有递增区间.【点睛】本题考查了利用导数研究不等式恒成立问题,以及利用导数判断含参函数的单调性,考查了数学运算能力,是中档题.(二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y ,(θ为参数),C 2:1,1x t t y t t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y ;222:4C x y ;(2)17cos 5.【解析】【分析】(1)分别消去参数 和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由22cos sin 1 得1C 的普通方程为:4x y ;由11x t t y t t 得:2222221212x t t y t t,两式作差可得2C 的普通方程为:224x y .(2)由2244x y x y 得:5232x y ,即53,22P ;设所求圆圆心的直角坐标为 ,0a ,其中0a ,则22253022a a,解得:1710a , 所求圆的半径1710r , 所求圆的直角坐标方程为:22217171010x y ,即22175x y x , 所求圆的极坐标方程为17cos 5.【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a .(1)当2a 时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x或112x;(2) ,13, .【解析】【分析】(1)分别在3x 、34x 和4x 三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到 21f x a ,由此构造不等式求得结果.【详解】(1)当2a 时, 43f x x x .当3x 时, 43724f x x x x ,解得:32x ≤;当34x 时, 4314f x x x ,无解;当4x 时, 43274f x x x x ,解得:112x;综上所述: 4f x 的解集为32x x或112x .(2) 22222121211f x x a x a x ax a a a a (当且仅当221a x a 时取等号), 214a ,解得:1a 或3a ,a 的取值范围为 ,13, .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.祝福语祝你马到成功,万事顺意!。
普通高等学校招生全国统一考试全国卷Ⅱ文数高考试题(含答案)

绝密★启用前2021 年普通高等学校招生全国统一考试文科数学本试卷共 5 页。
考试结束后,将本试卷和答题卡一并交回。
考前须知:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5 毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:此题共12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.集合A={ x | x1} , B { x | x2},那么 A∩ B=A . (– 1, +∞)B . (–∞, 2)C.(–1, 2) D .2.设 z=i(2+i) ,那么z =A . 1+2iB .–1+2iC.1–2i D .–1–2i 3.向量a=(2,3), b=(3,2),那么|a–b|=A .2B . 2C.52 D .504.生物实验室有 5 只兔子,其中只有3 只测量过某项指标,假设从这 5 只兔子中随机取出3 只,那么恰有 2 只测量过该指标的概率为23A .B .3521C. D .555.在“一带一路〞知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C.丙、乙、甲 D .甲、丙、乙6.设 f(x)为奇函数,且当 x≥0时, f(x)= e x1,那么当x<0时,f(x)=A .e x1C. e x17.设α,β为两个平面,那么α∥ β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面B.e x1 D. e x18.假设 x1=,x2=是函数f(x)=sin x (>0) 两个相邻的极值点,那么= 443A . 2B.2C.1D.129.假设抛物线2x2y2y =2px〔 p>0〕的焦点是椭圆1的一个焦点,那么p=3 p pA . 2B.3C.4D. 810.曲线 y=2sinx+cosx 在点 (π,– 1) 处的切线方程为A.x y1 0B.2x y 2 1 0C.2x y 2 1 0D.x y1011. a∈〔 0,π〕, 2sin2 α=cos2α+1,那么 sin α= 2A.1B.5 55C.3D.2 53512.设 F 为双曲线 C:x2y21〔a>0,b>0〕的右焦点, O 为坐标原点,以 OF 为直径的圆与a 2b2圆x2+y2=a2交于 P、Q 两点.假设 |PQ|=|OF|,那么 C 的离心率为A.2B.3C 2D. 5.二、填空题:此题共 4 小题,每题 5 分,共 20 分.2 x3y6,013.假设变量 x, y 满足约束条件xy3,那么 z=3x–y 的最大值是___________.y2,14.我国高铁开展迅速,技术先进.经统计,在经停某站的高铁列车中,有10 个车次的正点率为,有20 个车次的正点率为,有 10 个车次的正点率为,那么经停该站高铁列车所有车次的平均正点率的估计值为 ___________.15.△ABC的内角 A, B, C 的对边分别为a, b, c. bsinA+acosB=0 ,那么 B=___________.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体〞〔图 1〕.半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体表达了数学的对称美.图 2 是一个棱数为48 的半正多面体,它的所有顶点都在同一个正方体的外表上,且此正方体的棱长为1.那么该半正多面体共有________个面,其棱长为_ ________.〔此题第一空 2 分,第二空 3 分.〕三、解答题:共70 分。
全国新课标2卷高考文科数学试题及答案解析

普通高等学校招生全国统一考试Ⅱ卷文科数学第一卷选择题:本大题共12小题, 每小题5分, 在每小题给出的四个选项中, 只有一项是符合题目要求的。
(1)已知集合A={}{}=<<=<<-B A x x B x x Y 则,30,21A.(-1, 3)B.(-1, 0 )C.(0, 2)D.(2, 3)(2)若a 实数, 且=+=++a i i ai则,312A.-4B. -3C. 3D. 4(3)根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图, 以下结论中不正确的是2700260025002400210020001900)A.逐年比较, 2008年减少二氧化碳排放量的效果最显著;B.2007年我国治理二氧化碳排放显现成效;C.2006年以来我国二氧化碳排放量呈减少趋势;D.2006年以来我国二氧化碳年排放量与年份正相关。
(4)已知向量=•+-=-=则(2),2,1(),1,0( A. -1 B. 0 C. 1 D. 2 (5)设{}项和,的前是等差数列n a S n n 若==++5531,3S a a a 则A. 5B. 7C. 9D. 11(6)一个正方体被一个平面截去一部分后, 剩余部分的三视图如右图, 则截去部分体积与剩余部分体积的比值为A. 81B.71C. 61D. 51(7)已知三点)32()30(),01(,,,,C B A ,则ABC ∆外接圆的圆心到原点的距离为A. 35B. 321C. 352D. 34(8)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图, 若输入的a,b 分别为14,18, 则输出的a 为A. 0B. 2C. 4D.14(9)已知等比数列{}=-==24531),1(4,41a a a a a a n 则满足 CA. 2B. 1C. 21D. 81(10)已知A,B 是球O 的球面上两点, 为该球面上动点,C AOB ,90︒=∠若三棱锥O-ABC体积的最大值为36, 则球O 的表面积为A. 36πB. 64πC. 144πD.256π(11)如图, 长方形的边AB=2, BC=1,O 是AB 的中点, 点P 沿着边BC,CD,与DA 运动, 记的图像大致为则数两点距离之和表示为函到将动点)(),(,,x f x f B A P x BOP =∠xPODCBADCBA424442424π424XOXOX X O(12)设函数的范围是成立的则使得x x f x f x x x f )12()(,11)1ln()(2->+-+=A. )1,31(B. ),1()31,(+∞-∞YC. )31,31(-D. ),31()31,(+∞--∞Y第二卷填空题:本大题共4个小题, 每小题5分(13)已知函数=-=a x ax x f ),则的图像过点(4,1-2)(3。
2021年普通高等学校招生全国统一考试(全国新课标Ⅱ卷)数学试题(文科)解析版

新课标II 卷数学试卷(文科)第I 卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.设集合A ={-2,0,2},20{|2=}B x x x =--,则A B ⋂=( )A . ∅B . {2}C . {0}D . {-2}【答案解析】B.解析:把-2,0,2代人202x x --=验证,只有2满足不等式,故选B.考点:考查集合的知识,简单题.2. 113i i+-= ( )A . 1+2iB .-1+2iC .1-2iD .-1-i【答案解析】B. 解析:13(13)(1)121(124)2(1)i i i i i i i i+++===-++-+--故选B.考点:考查复数的基本知识,简单题.3.函数()f x 在0x x =处导数存在,若00:()0,:p f x q x x ==是()f x 的极值点,则()A . p 是q 的充分必要条件B . p 是q 的充分条件,但不是q 的必要条件C . p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,也不是q 的必要条件【答案解析】 C.解析:极值点必为导函数的根,而导函数的根不一定是极值点,即,q p p q ⇒⇒/ 从而p 是q 的必要但不充分的条件故选C.考点:考查充要条件与极值的基础知识,简单题. 4. 设向量,a b 满足10a b +=,6a b-=,则a b •=( )A . 1B .2C . 3D .5【答案解析】A .解析:||10,6|4=41=+=-=∴+⋅+⋅+∴⋅∴⋅=-=2222a b a b a 2a b b a 2a b b a b a b故选A .考点:考查平面向量的数量积,中等题.5.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S = ( )A . (n 1)n + )B . (n 1)n -C . (n )21n +D .(n 1)2n - 【答案解析】A .解析:∵数列{}n a 是等差数列,公差等于2∴2141812,6,14a a a a a a =+=+=+∵248,,a a a 成等比数列∴22428111()6)214()(a a a a a a ⋅⇒=++=+ 解得122(221)n a a n n ==+-⇒⋅=∴(1)(222)=n n n S n n ⋅=++ 故选A .考点:考查等差数列的通项公式与求和公式,中等题.6.如图,网格纸上正方形小格子的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛胚切削而得到,则切削掉部分的体积与原来毛胚体积的比值为( )A .1727 B . 59C . 1027D .13 【答案解析】C.解析:毛胚的体积23654V ππ⋅⋅==制成品的体积 221322434V πππ⋅⋅+⋅⋅==∴切削掉的体积与毛胚体积之比为:134********V V ππ-=-= ,故选C. 考点:考查三视图于空间几何体的体积,中等题.7.正三棱柱111ABC A B C -的底面边长为2,侧棱长为3 ,D 为BC 中点,则三棱锥11A B DC -的体积为( )A .3B .32C .1D .3【答案解析】C.解析: ∵正三棱柱的底面边长为2,D 为BC 中点 ∴22213AD +==∵1112,3BC CC ==∴111111123322B DC B C S C C ⋅=⋅⋅⋅==∴11111133133AB C B DC V S AD ⋅⋅=⋅⋅== .故选C. 考点:考查空间点,线,面关系和棱锥体积公式,中等题.8.执行右图的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7【答案解析】D.解析:第1次循环M=2,S=5,k=1第2次循环,M=2,S=7,k=2第3次循环k=3>2,故输出S=7,故选D.考点:考查算法的基本知识,简单题.9.设x ,y 满足约束条件0103310x y x y x y ≥⎧⎪--≤⎨⎪-+≥-⎩+,则z =2x +y 的最大值为( )A . 8B . 7C .2D .1【答案解析】A .解析:作图即可.考点:考查二元一次不等式组的应用,中等题.10.设F 为抛物线23C y x =:的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB | =( )A . 30B .6C .12D .73【答案解析】C.解析:∵23y x =∴抛物线C 的焦点的坐标为:()3,04F所以直线AB 的方程为:330an )t (4y x ︒-= 故233()43x y y x ⎧==-⎪⎨⎪⎩从而2122161689012x x x x -+=+=⇒ ∴弦长12||=3122x x AB ++= 故选C.考点:考查抛物线的几何性质,弦长计算以及分析直线和圆锥曲线位置关系的能力,难度为中等题.11.若函数()ln f x kx x =-在区间(1,)+∞上单调递增,则k 的取值范围是( )A .(],2-∞-B . (],1-∞-C . [2)∞,+D . [1)∞,+ 【答案解析】D.解析:()ln f x kx x =-1()(0)f x k x x∴'=-> ()f x 在区间(1,)+∞上递增()f x ∴在区间(1,)+∞上恒大于等于0,11()0((1,))x k k x x f x∴'=-≥⇒≥∀∈+∞ 1k ∴≥故选D.考点:考查导数与函数单调性的关系.中等题.12.设点0(,1)M x ,若在园22:1O x y +=上存在点N ,使得∠OMN =45°,则0x 的取值范围是( )A .[]1,1-B .[]11,22-C . []2,2-D . []22,22- 【答案解析】A . 解析:设N 点的坐标为,s (cos )in θθ(1)当00,1x ≠± 时∵0(,1)M x 点的坐标为∴OM ,MN 的斜率分别为:001s n c s ,i o 1OM MN k x k x θθ-==- ∵45OMN ∠=︒∴1tan 45()1MN OM MN OM MN OM MN OMk k k k k k k k -︒=±⇒=-++± 即000011sin 1()11sin cos cos ()x x x x θθθθ--±-=--+⋅* 取正号时,化简(*)式得:2000(1)sin 11()cos x x x θθ+-=++取负号化简(*)式得:2000(1)sin 1(1)cos x x x θθ++=+-∴2220000(1)(1)sin()1x x x θϕ++-+=+∴222400000(1)(1)11||1x x x x x +-≥+⇒≤⇒≤+故0||<1x 且00x ≠(2)当00x =时,取(1,0)N ,此时满足题设.(3)当01x =±时,取(0,1)N ,此时也满足题设.综上所述,011x -≤≤ ,故选A .从上面解法可以看到选择N 的几个特殊位置观察,即可以猜出答案,这样就可以简化解法. 考点:考查应用斜率与倾斜角的概念,直线方程,园的方程,分析问题的能力.困难题. 第II 卷二、填空题(本大题共4小题,每小题5分,共20分)13.甲乙两名运动员各自从红,白,蓝3种颜色的运动服从选择1种,则他们选择相同颜色的运动服的概率为 .【答案解析】1.3解析:1.3333P =⋅= 考点:考查古典概型的概念.简单题.14.函数()sin(2si c s )n o f x x x ϕϕ=+-的最大值为 .【答案解析】1解析:因为cos sin 2sin c ()sin s o co s x x f x x ϕϕϕ-=+si s n in cos s n c (o i )s x x x ϕϕϕ==--所以最大值为1.考点:考查和差角公式,简单题.15.偶函数y =f (x )的图像关于直线x =2对称,f (3)=3,则f (-1)= .【答案解析】3解析:因()f x 是偶函数,所以(1)(1)f f -= ,因()f x 关于2x =,所以(1)(2)(332)1f f f ⋅-=== .考点:考查偶函数的概念,轴对称的概念.简单题.16.数列{}n a 满足111n na a +=-,22a =,则1a = . 【答案解析】12解析:∵111n n a a +=- ,22a = ∴12111112112a a a a =⇒-==⇒- 考点:考查递推数列的概念,简单题.三、解答题(本大题共8小题)17.(12分)四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(I) 求C 和BD ;(II)求四边形ABCD 的面积.【答案解析】解析:(I )1,3,2,180AB BC CD DA A C ====+=︒2222cos BD BC CD B C C CD ∴⋅=+-222cos(180-)2AD AB BD AB AD C +-=⋅︒22222332cos 112co 222s C C ∴+⋅⋅=⋅⋅-++1cos 602C C ∴=⇒=︒ 22222332cos 6077BD BD ∴+⋅⋅︒=⇒-==(II)由(I ) 得,四边形ABCD 的面积S =11sin sin 22AB AD A BC DC C ⋅+⋅⋅ 1112sin(18060)23sin 602223⋅⋅︒-︒+⋅⋅︒== 考点:考查余弦定理的应用,中等题.18.(12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,D A BC P A ⊥平面,E 为PD 中点. (I)证明:PB ||平面AEC ;(II)设AP =1,3AD =,三棱锥P-ABD 的体积34V =,求A 到平面PBC 的距离. 【答案解析】解析:(I)连接EF ,因为四边形ABCD 是矩形,故F 为AC 中点,又因为E 为PD 中点,故EF 是△PBD 的中位线,从而||EF PB ,故||.PB AEC 面(II)设AB=a ,因3,1AD PA ==则11113()(3)13232P ABD V AB AD PA a -⋅⋅⋅=⋅⋅⋅==所以32a = 过A 作AG 垂直PB 于G.因为,,ABCD BC ABCD PA A C P B ⊥⊂⇒⊥面面又因为AB BC ⊥所以BC PAB ⊥面 ,又BC PBC ⊂面故 PAB A PBC G PBC ⊥⇒⊥面面面所以AG 为点A 到面PBC 的距离.因22223131()22PB PA AB ++=== 所以113221313PA AB PB AG PA AB AG PB ⋅⋅=⋅⇒== 故点A 到面PBC 的距离为313. 考点:考查空间点线面的位置关系与空间距离.中等题.19.(12分)某市为了考核甲乙两部门的工作情况,随机访问了50位市民,根据这50为市民对这两部门的平分(评分越高表明市民的评价越高),绘制茎叶图如下:(I)分别估计该市的市民对甲,乙两部门评分的中位数;(II)分别估计该市的市民对对甲,乙两部门的评分高于90的概率;(III)根据茎叶图分析该市的市民对甲,乙两部门的评价.【答案解析】解析:(I)甲部门的得分共50个,50个数字从小到大排列起来位于中间位置的数为第25,第26个数,它们分别是:75,75,故甲部门得分的中位数是75.乙部门的得分也是50个数,它们从小到大排列起来的第25,26个数字分别是:66,68,故乙部门的中为数为6668627+=. (II)市民对甲,乙两部门的评分各有n =50个,对甲部门评分高于90分的分数有m =5个,对乙部门的评分高于90分的s =8个,故对甲部门评分高于90分的概率为5500.1m n ==,对乙部门的评分高于90的概率为8500.16n s ==. (III )观察茎叶图的形状,甲的分数在茎6,7处形成单峰,出现在这里面的数据频率为3450,其中位数为75,乙的分数在茎5,6,7处形成单峰,出现在这个单峰里面的数据频率为2950,中位数为67.因为3450>2950,75>67,这说明市民对甲部门的评价基本在75分附近,对乙部门的评价基本在67分左右.整体看市民对甲部门的评价更好.考点:考查使用茎叶图及样本的数字特征估计总体的能力,中等题.20. (12分)设12,F F 分别是椭圆22221(0):x y C a a b b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点是N .(I)若直线MN 的斜率为34,求C 的离心率; (II)若直线MN 在y 轴上的截距为2,且1|MN |5||F N =,求a ,b .【答案解析】解析:解析:(I )∵2MF x ⊥轴(不妨设M 在x 轴的上方)∴M 的坐标满足方程组222221(,)x b M c a a y b x c ⎧⎪⇒⎨⎪⎩=+= ∵MN 的斜率为34∴2234322b a ac cb =⇒= ∵222222()3a c a a c c b =-⇒-= 又∵222(1)32320c e e e e e a⇒+-⇒-=== ∴椭圆离心率为12e = . (II)∵MN 在y 轴上的截距为2,O 为12,F F 的中点∴M 的坐标为(c ,4)(不妨设M 在x 轴的上方)由(I )得24b a= (*) ∵1||5||MN NF =∴11||4||MF NF =作1NF x ⊥轴于T ,由于△1NTF ∽ △12MF F ,故有24,4M N N y c y c x =--=- ∴321,14N M N y y c x =-=-=- ,即,3()12c N -- 把N 点的坐标代人椭圆方程得:2221419c a b+= ∴2222222)111(9(9544**)4a b b a b a b +=⇒-=- 把(*)与(**)联立得:772a b ==⎧⎪⎨⎪⎩ 考点:考查椭圆的几何性质以及直线与椭圆的位置关系,难题.21. (12分)已知函数32()32f x x x ax =-++.曲线y =f(x)在点(0,2)处的切线与x 轴交点的横坐标为-2.(I) a ;(II)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.【答案解析】解析:(I )32232))36((f x x f x ax x a x x =⇒'=-++-+ ∵切点为(0,2),切线过点(-2,0) ∴切线的斜率为22100---= ∴(0)1a f '==(II)由(I )知,1a =,故32()32f x x x x =-++记32()()(2)3(1)4g x f x kx x x k x =--=-+-+ ,∴2()36(1)x g x x k -+-'=∴3612(1)2412k k ∆=+-=+(1)当210k ∆≥≤-<即时 由16()3+30k g x x =-'=⇒,26+33k x =+ 21k -≤<∴1201,12x x ≤≤<<∴1()0x x g x '≥⇔< 或2x x >12()0x x g x x '≤⇔<<∴()g x 在区间12(),,,()x x -+∞∞ 上递增,在区间12(,)x x 上递减∴()g x 的极小值为322222()3(1)4g x x x k x =-+-+∵222222261()31230g x k k x x x x -+--⇒==-'= ∴22222222()(2)(1)4g x x x x x k x =--+-+ 222222221(1)42(1)34(123)x k x x k x k x x -=+-+=-+-≤-<⋅- 记222(1)4(12)()2((1)33)k x x x h x h k x x -+≤=---<⇒'=--由2210(1)23k k -≤<⇒<--≤,由41222x x ≤⇒-<-≤-< ∴2(1)0()0342k x x h -≤⇒'-<-≤- ∴()h x 在区间[1,2)递减2()(2)(1)03h x h k ⇒≥=--> ∴2212()g()()(00)g x h x x x g ⇒≥>>= (∵12(,)x x 是减区间)∴当21k -≤<时,方程()0g x =只有一根.(2) 当20k ∆<<-即时,有26(0))3(1g x k x x -+-=>',从而()g x 在R 上递增∴当2k <-时,方程()0g x =只有一根.综上所述,方程()0g x =在R 上只有一根,即曲线()f x 直线2y kx =-只有唯一交点. 考点:考查利用导数综合研究函数性质的能力,难度压轴题.22.(10分)选修4-1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,PC =2PA ,D 为PC 中点,AD 的延长线交O 于点E ,证明:(I) BE =EC(II) 22DE B AD P ⋅=【答案解析】解析:(I)连接OA ,OD 交BC 于F ,设PAD α∠=,因PA 是O 的切线,则90-EAO OEA α∠=∠=︒∵2,2PC PA PC PD ==∴P A D P PD A ⇒=是等腰三角形∴ PDA EDF α∠=∠=∵(90)90EDF OEA αα∠+∠=+︒-=︒∴OE BC ⊥故OE 平分弧BC ,从而BE = EC.(II)∵2,2PC PC PA D PB P ⋅==∴22PA PB PD ⋅=由(I )知PD PA =∴222PA PA PB PB PA ⋅⇒==∴()()DE BD DC BD PA PD PB PA A PA D PA PB ⋅=⋅=⋅=-⋅=-⋅2()PA PB PC PA PB PC PA PA PB PB ⋅=⋅-⋅=⋅-=-()PC PD PB DC PB PA PB ⋅-=⋅=⋅=把2PA PB =代人上式,得222PA PB B P PB P B ⋅=⋅=∴22DE B AD P ⋅=考点:考查与园有关的角的知识和圆幂定理的应用.难度中等.23. (10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为 2cos ,[0,]2πρθθ=∈. (I)求C 的参数方程(II)设点D 在C 上,C 在D 处的切线与直线2:3l y x =+垂直,根据(I)中你得到的参数方程,确定D 的坐标.【答案解析】解析:(I )∵极坐标方程为2cos ,[0,]2πρθθ=∈∴22cos ρρθ= ∴对应的普通方程为:220()02x y x y =≥+- ,即22(01)1()x y y -+=≥∴对应的参数方程为[0,]sin 1cos ,x y ϕϕπϕ⎧∈=+⎨=⎩(II)设半圆的圆心为A ,则A (1,0),又由(I )知,可以设D 点坐标为(1cos n ),si ϕϕ+ ∴直线DA 的斜率tan k ϕ=∵切线与直线32y x =+垂直∴tan 3=3([0,])πϕϕϕπ⇒=∈∴3,sin 231cos ϕϕ==+ 即D 点坐标为3(3,2) 考点:本题考查园的极坐标方程参数方程以及参数方程的简单应用,难度中等题.24. (10分)选修4-5:不等式选讲设函数()||||()10af x x x a a =++->. (I)证明:()2;f x ≥(II)若(3)5f <,求a 的取值范围.【答案解析】解析:(I )∵()||||()10a f x x x a a =++-> ∴1111,2x ,(12),a aa a x f xa a a x a x x aa ⎧⎪⎪⎪+-≤≤⎨-+-<-=⎪⎪-+>⎪⎩∴()f x 在递增(,)a +∞,在递减(-1)a ∞,-,在[]1,a a -上为常数∴()f x的最小值为()(11)2f a f a a a ≥-=+==∴()2f x ≥(II )(1)当3a ≥时,1(3)5f a a +<=∴25522510a a a ⇒<<-+<∴3a ≤<(2)当03a <<时,2(3)61510f a a a a <⇒-+-->=∴a <或a >故132a +<<综上所述15(22a +∈考点:考查带有绝对值的不等式的应用能力,考查函数与不等式的关系,中等题.。
2020年全国2卷 文科数学真题(pdf版含解析)

2020年全国2卷文科数学真题(解析版)一、选择题:(每小题5分,共60分.)1.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A.∅B.{–3,–2,2,3)C.{–2,0,2}D.{–2,2}【答案】D【详解】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =- .故选:D.考点:集合的运算2.(1–i )4=()A.–4B.4C.–4iD.4i【答案】A 【详解】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-.故选:A.考点:复数的运算3.如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称a i ,a j ,a k 为原位大三和弦;若k –j =4且j –i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.15【答案】C【详解】根据题意可知,原位大三和弦满足:3,4k j j i -=-=.∴1,5,8i j k ===;2,6,9i j k ===;3,7,10i j k ===;4,8,11i j k ===;5,9,12i j k ===.原位小三和弦满足:4,3k j j i -=-=.∴1,4,8i j k ===;2,5,9i j k ===;3,6,10i j k ===;4,7,11i j k ===;5,8,12i j k ===.故个数之和为10.故选:C .考点:数列的运算4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名 B.18名C.24名D.32名【答案】B【详解】由题意,第二天新增订单数为50016001200900+-=,故需要志愿者9001850=名.故选:B考点:统计与概率5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是()A.a +2bB.2a +bC.a –2bD.2a –b【答案】D【详解】由已知可得:11cos 601122a b a b ︒⋅=⋅⋅=⨯⨯= .A :因为215(2)221022a b b a b b +⋅=⋅+=+⨯=≠ ,所以本选项不符合题意;B :因为21(2)221202a b b a b b +⋅=⋅+=⨯+=≠ ,所以本选项不符合题意;C :因为213(2)221022a b b a b b -⋅=⋅-=-⨯=-≠ ,所以本选项不符合题意;D :因为21(2)22102a b b a b b -⋅=⋅-=⨯-= ,所以本选项符合题意.故选:D.考点:向量的运算6.记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =()A.2n –1B.2–21–nC.2–2n –1D.21–n –1【答案】B【详解】设公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩,所以1111(1)122,21112n n n n nn n a q a a qS q ----=====---,因此1121222n n n n n S a ---==-.故选:B.考点:数列基本量的运算7.执行右面的程序框图,若输入的k =0,a =0,则输出的k 为()A.2B.3C.4D.5【答案】C【详解】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值模拟程序的运行过程0,0k a ==第1次循环,2011a =⨯+=,011k =+=,210>为否第2次循环,2113a =⨯+=,112k =+=,310>为否第3次循环,2317a =⨯+=,213k =+=,710>为否第4次循环,27115a =⨯+=,314k =+=,1510>为是退出循环输出4k =.故选:C.考点:算法的运算8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为()A.5 B.25 C.355D.55【答案】B【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心到直线230x y --=的距离均为2555d -==;所以,圆心到直线230x y --=的距离为5.故选:B.考点:圆的方程与点线距问题9.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32【答案】B【详解】 2222:1(0,0)x y C a b a b-=>>∴双曲线的渐近线方程是by x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩故(,)D a b 联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩故(,)E a b -∴||2ED b=∴ODE 面积为:1282ODE S a b ab =⨯==△ 双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =当且仅当a b ==取等号∴C 的焦距的最小值:8故选:B.考点:双曲线的性质10.设函数331()f x x x=-,则()f x ()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减【答案】A【详解】因为函数()331f x x x=-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-,所以函数()f x 为奇函数.又因为函数3y x =在()0,+¥上单调递增,在(),0-¥上单调递增,而331y x x-==在()0,+¥上单调递减,在(),0-¥上单调递减,所以函数()331f x x x=-在()0,+¥上单调递增,在(),0-¥上单调递增.故选:A .考点:函数的奇偶性与单调性11.已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.B.32C.1D.2【答案】C【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC 是面积为21393224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ===.故选:C.考点:外接圆与球12.若2233x y x y ---<-,则()A.ln(1)0y x -+>B.ln(1)0y x -+< C.ln ||0x y -> D.ln ||0x y -<【答案】A【详解】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.故选:A.考点:构造新函数,单调性;二、填空题:本题共4小题,每小题5分,共20分.13.若2sin 3x =-,则cos 2x =__________.【答案】19【详解】22281cos 212sin 12()1399x x =-=-⨯-=-=.故答案为:19.考点:三角函数给值求值14.记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S =__________.【答案】25【详解】设公差d ,可得1152a d a d +++=整理可得:66d =解得:1d =∴()1010(101)1022045252S ⨯-=-+=-+=故答案为:25.考点:等差数列基本量计算15.若x ,y 满足约束条件1121,x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,,则2z x y =+的最大值是__________.【答案】8【详解】不等式组表示的平面区域为下图所示:平移直线12y x =-,当直线经过点A 时,直线1122y x z =-+在纵轴上的截距最大,此时点A 的坐标是方程组121x y x y -=-⎧⎨-=⎩的解,解得:23x y =⎧⎨=⎩,因此2z x y =+的最大值为:2238+⨯=.故答案为:8.考点:线性规划16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.考点:空间点线面的位置关系三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若3b c a -=,证明:△ABC 是直角三角形.【详解】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<,所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==,即222b c a bc +-=①,又33b c a -=②,将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC 是直角三角形.考点:解三角形18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,202180i i x x =-=∑(,2021)9000i i y y =-=∑(,201)800ii ix y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r)niix y x y --∑((=1.414.【详解】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑,地块数为200,该地区这种野生动物的估计值为2006012000⨯=(2)样本(,)i i x y的相关系数为20()220.943iix x y y r --=≈∑(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.考点:变量间的相关性19.已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.【详解】解:(1)因为椭圆1C 的右焦点坐标为:(c,0)F ,所以抛物线2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,因为椭圆1C 的方程为:22221x y a b+=,所以当x c =时,有222221c y b y a b a +=⇒=±,因此,A B 的纵坐标分别为2b a ,2ba-;又因为抛物线2C 的方程为24y cx =,所以当x c =时,有242y c c y c =⋅⇒=±,所以,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⋅=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,),(0,),2C 的准线为x c =-.由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =.考点:椭圆与抛物线20.如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积.【详解】(1) ,M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA ∴在等边ABC 中,M 为BC 中点,则BC AM ⊥又 侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BB MN BC⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN∴BC ⊥平面1A AMN又 11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF=11//B C EF∴//EF BC∴又BC ⊥ 平面1A AMN∴EF ⊥平面1A AMN EF ⊂ 平面11EB C F ∴平面11EB C F ⊥平面1A AMN(2)过M 作PN 垂线,交点为H ,画出图形,如图//AO 平面11EB C FAO ⊂平面1A AMN ,平面1A AMN ⋂平面11EB C F NP=//AO NP ∴又 //NO AP ∴6AO NP == O 为111A B C △的中心.∴1111sin 606sin 6033ON A C =︒=⨯⨯︒=故:ON AP ==,则3AM AP ==,平面11EB C F ⊥平面1A AMN ,平面11EB C F ⋂平面1A AMN NP =,MH ⊂平面1A AMN∴MH ⊥平面11EB C F又 在等边ABC 中EF APBC AM=即2AP BC EF AM ⋅===由(1)知,四边形11EB C F 为梯形∴四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP ++=⋅⨯=四边形111113B EBC F EB C F V S h -∴=⋅四边形,h 为M 到PN的距离sin 603MH =︒=,∴1243243V =⨯⨯=.考点:立体几何的平行与垂直证明,点面距问题21.已知函数f (x )=2ln x +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0时,讨论函数g (x )=()()f x f a x a--的单调性.【详解】(1)函数()f x 的定义域为:(0,)+∞()2()202ln 120()f x x c f x x c x x c ≤+⇒--≤⇒+--≤*,设()2ln 12(0)h x x x c x =+-->,则有22(1)()2x h x x x-'=-=,当1x >时,()0,()h x h x '<单调递减,当01x <<时,()0,()h x h x '>单调递增,所以当1x =时,函数()h x 有最大值,即max ()(1)2ln11211h x h c c ==+-⨯-=--,要想不等式()*在(0,)+∞上恒成立,只需max ()0101h x c c ≤⇒--≤⇒≥-;(2)2ln 1(2ln 1)2(ln ln )()(0x a x a g x x x a x a+---==>--且)x a ≠因此22(ln ln )()()x a x x x a g x x x a --+'=-,设()2(ln ln )m x x a x x x a =--+,则有()2(ln ln )m x a x '=-,当x a >时,ln ln x a >,所以()0m x '<,()m x 单调递减,因此有()()0m x m a <=,即()0g x '<,所以()g x 单调递减;当0x a <<时,ln ln x a <,所以()0m x '>,()m x 单调递增,因此有()()0m x m a <=,即()0g x '<,所以()g x 单调递减,所以函数()g x 在区间(0,)a 和(,)a +∞上单调递减,没有递增区间.考点:导数中恒成立问题,单调性分类讨论(二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【详解】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=;由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=.(2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即53,22P ⎛⎫ ⎪⎝⎭;设所求圆圆心的直角坐标为(),0a ,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=,∴所求圆的极坐标方程为17cos 5ρθ=.考点:极坐标与参数方程[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式4)(≥x f 的解集;(2)若4)(≥x f ,求a 的取值范围.【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x a x a aa a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .考点:绝对值不等式的解法,绝对值三角不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试
文科数学(必修+选修Ⅱ)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷
注意事项:
全卷满分150分,考试时间120分钟。
考生注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
选择题
(1)已知集合{|A x x =是平行四边形},{|B x x =是矩形},{|C x x =是正方形},{|D x x =是菱形},则
(A )A B ⊆ (B )C B ⊆ (C )D C ⊆ (D )A D ⊆
(2
)函数1)y x =≥-的反函数为
(A ))0(12≥-=x x y (B )
)1(12≥-=x x y (C ))0(12≥+=x x y (D ))1(12
≥+=x x y (3)若函数()sin
([0,2])3x f x ϕϕπ+=∈是偶函数,则=ϕ
(A )2π
(B )32π (C )23π (D )35π
(4)已知α为第二象限角,
3
sin 5α=,则sin 2α= (A )2524-
(B )2512-
(C )2512 (D )2524 (5)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为
(A )2211612x y += (B )22
1
128x y +=
(C )22184x y += (D )22
1124x y +=
(6)已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,则n S =
(A )12-n (B )1)23(-n (C )1)32(-n (D )121-n
(7)6位选手依次演讲,其中选手甲不再第一个也不再最后一个演讲,则不同的演讲次序共有
(A )240种 (B )360种 (C )480种 (D )720种
(8)已知正四棱柱
1111ABCD A B C D -中 ,2AB =
,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为
(A )2 (B
(C
(D )1
(9)ABC ∆中,AB 边的高为CD ,若CB a =u u u r r ,CA b =u u u r r ,0a b ⋅=r r ,||1a =r ,||2b =r ,则AD =u u u r
(A )1133a b -r r (B )2233a b -r r (C )3355a b -r r (D )
4455a b -r r (10)已知
1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=
(A )14 (B )35 (C )34 (D )4
5
(11)已知ln x π=,5log 2y =,1
2z e -=,则
(A )x y z << (B )z x y << (C )z y x << (D )y z x <<
(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,13AE BF ==。
动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为
(A )8 (B )6 (C )4 (D )3
绝密★启用前
2012年普通高等学校招生全国统一考试
文科数学(必修+选修Ⅱ)
第Ⅱ卷
注意事项:
1、答题前,考试在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2、每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅰ卷共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求。
二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上
(13)8)21(x x +
的展开式中2x 的系数为____________.
(14)若,x y 满足约束条件1030
330x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则3z x y =-的最小值为____________.
(15
)当函数sin (02)y x x x π=≤<取得最大值时,x =___________.
(16)已知正方体
1111ABCD A B C D -中,E 、F 分别为11BB CC 、的中点,那么异面直线AE 与
1D F 所成角的余弦值为____________.
三. 解答题:本大题共6小题,共70分。
解答应写出文字说明,证明过程或演算步骤
(17)(本小题满分10分) (注意:在试题卷上作答无效) ABC ∆中,内角A 、B 、C 成等差数列,其对边a 、b 、c 满足223b ac =,求A 。
(18)(本小题满分12分) (注意:在试题卷上作答无效)
已知数列{}n a 中, 11a =,前n 项和23n n n S a +=。
(Ⅰ)求2a ,
3a ; (Ⅱ)求
{}n a 的通项公式。
(19)(本小题满分12分)(注意:在试题卷上作答无效)
如图,四棱锥P ABCD
-中,底面ABCD为菱形,PA⊥底面
ABCD
,AC=2
PA=,E是PC上的一点,2
PE EC
=。
(Ⅰ)证明:PC⊥平面BED;
(Ⅱ)设二面角A PB C
--为90o,求PD与平面PBC所成角的
大小。
(20)(本小题满分12分)(注意:在试题卷上作答无效)
乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换。
每次发球,胜方得1分,负方得0分。
设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立。
甲、乙的一局比赛中,甲先发球。
(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;
(Ⅱ)求开始第5次发球时,甲得分领先的概率。
(21)(本小题满分12分)(注意:在试题卷上作答无效)
已知函数
ax
x
x
x
f+
+
=2
3
3
1
)
(
(Ⅰ)讨论
()
f x的单调性;
(Ⅱ)设
()
f x有两个极值点
2
1
,x
x,若过两点))
(
,
(
1
1
x
f
x,))
(
,
(
2
2
x
f
x的直线l与x轴的交
点在曲线
)
(x
f
y=上,求a的值。
(22)(本小题满分12分)(注意:在试题卷上作答无效)
已知抛物线
2
:(1)
C y x
=+与圆
222
1
:(1)()(0)
2
M x y r r
-+-=>
有一个公共点A,且在点
D
A处两曲线的切线为同一直线l.
(Ⅰ)求r;
(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离。
精品文档
精品文档
精品文档。