Effect of Liquid-phase Oxidation Impurities on Sol
Y分子筛表面高分散铜活性物种构建及

DOI: 10.19906/ki.JFCT.2022043Y 分子筛表面高分散铜活性物种构建及甲醇氧化羰基化性能张志浩 ,许贞军 ,任 坤 ,王佳君 ,付廷俊* ,李 忠*(太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室, 山西 太原 030024)摘 要:本研究采用溶液离子交换法制备了不同载量的CuY 催化剂,结合XRD 、TEM 、H 2-TPR 、XPS 、NH 3-TPD 和CH 3OH-TPD 等分析CuY 微观结构,探讨了铜氨溶液浓度及活化温度对CuY 表面铜物种状态及性能的影响。
发现增大交换溶液浓度虽会降低催化剂孔隙率,但能将铜载量由2.11%显著提升至9.95%,并仍保持着铜物种的高分散,铜粒径不足4 nm 。
溶液交换会破坏表面酸结构而减少表面弱酸位,抑制副反应进而提高DMC 选择性。
低载量催化剂铜物种以离子态铜为主,增加铜含量提升离子态铜含量的同时,也显著增加了CuO x ,能使催化性能迅速提高,甲醇转化率和DMC 收率分别达到9.07%和396.27 mg/(g·h)。
控制催化剂活化温度研究铜物种活化过程发现,适宜温度的活化会促进表面铜物种向分子筛内部孔道的扩散和交换,并减弱甲醇的吸附强度,利于性能的提升。
高载量催化剂相比低载量催化剂能在低温下活化获得更多的Cu +和CuO x 而表现出高催化活性。
本工作研究结果为高性能CuY 催化剂的设计和制备提供了理论基础。
关键词:氧化羰基化;Cu 催化剂;分子筛;催化性能中图分类号: TQ072 文献标识码: AConstruction of highly dispersed active copper species on Y molecular sieve andperformance of methanol oxidation carbonylationZHANG Zhi-hao ,XU Zhen-jun ,REN Kun ,WANG Jia-jun ,FU Ting-jun *,LI Zhong*(State Key Laboratory of Clean and Efficient Coal Utilization , Taiyuan University of Technology , Taiyuan 030024, China )Abstract: The control of copper species on the surface of CuY catalyst is the key to improve the performance of methanol oxidation carbonylation to dimethyl carbonate. In this work, a series of CuY catalysts with different copper loads were prepared by solution ion exchange method, and the N 2-physisorption, XRD, TEM, H 2-TPR, XPS,NH 3-TPD and CH 3OH-TPD were used to characterize the microstructure of the catalyst. The effects of Cu-ammonia solution concentration and activation temperature for structure and properties of CuY surface copper were investigated. The results indicated that although the porosity of the catalyst was reduced by increasing the concentration of solution, the amount of copper was significantly increased from 2.11% to 9.95%, and the high dispersion of copper species was maintained, with the particle size less than 4 nm. The high concentration of solution exchange reduced the weak acid sites on the surface and inhibited side reactions to improve the selectivity of DMC. The copper species of low loading catalysts were mainly ionic copper. Increasing the content of copper increased the content of ionic copper, but also significantly increases the amount of CuO x , which could rapidly improve the catalytic performance, methanol conversion and DMC yield reached 9.07% and 396.27 mg/(g·h),respectively. The activation at suitable temperature promoted the diffusion of copper species from the external surface to the internal pores, increasing the exchange of Cu species with NaY and weakening the adsorption strength of methanol, which was conducive to the improvement of catalytic performance. Compared with low loadingcatalysts, high loading catalysts could be activated to obtain more Cu +and CuO x at low temperature, thus showing higher catalytic performance. The results of this work provided a theoretical basis for the design and preparation of high-performance CuY catalysts.Key words: oxidative carbonylation ;Cu catalyst ;zeolite ;catalytic perform碳酸二甲酯(DMC )是一种重要的化工原料,主要用于生产碳酸二苯酯和聚碳酸酯等[1,2],也可用作油品添加剂及锂电池电解质的有效溶剂[3−5],中国DMC 产能已经达到125.3万吨,特别是近年来新能源汽车和可移动设备的蓬勃发展,DMC 在锂电池领域的需求还将继续快速增长。
预氧化技术

3 Introduction
• ClO2 oxidation prior to chlorination can reduce the levels of THM and total organic halogen (TOX) formation (Lykins and Griese,1986; Linder et al., 2006 ).
(1) the changes of NOM properties with ClO2 pretreatment.
(2) the formation of regulated and emerging DBPs from ClO2 preoxidation and in combination with chlorination or chloramination.
第33页,共33页。
• 与浊度不同,滤后水高锰酸盐指数自运行开始后一直保持稳定,说 明生物过滤对水中易氧化有机物的去除相关性不大;滤后水UV254 变化很小,说明难生物降解(shēnɡ wù jiànɡ jiě)有机物很难在生物 过滤中被去除; O3 —生物过滤对DOC 的去除率稍高。O3 和PPC 预氧化后SUVA 相对于空白试验分别降低和升高(见表1) ,而 O3 —生物过滤出水SUVA 升高较明显(见表2) ,说明O3 预氧化更 有助于生物过滤对可生物降解(shēnɡ wù jiànɡ jiě)有机物的去除。
transformed large aromatic and long aliphatic chain organic structures to small
and hydrophilic organics.
第33页,共33页。
Conclusion
杏鲍菇废弃菌渣中D-氨基葡萄糖盐酸盐的制备工艺及生物学活性分析

张倩如,吴启赐,薛钰,等. 杏鲍菇废弃菌渣中D-氨基葡萄糖盐酸盐的制备工艺及生物学活性分析[J]. 食品工业科技,2023,44(17):263−271. doi: 10.13386/j.issn1002-0306.2022110139ZHANG Qianru, WU Qici, XUE Yu, et al. Preparation and Biological Activity of D-Glucosamine Hydrochloride from the Waste Residues of Pleurotus eryngii [J]. Science and Technology of Food Industry, 2023, 44(17): 263−271. (in Chinese with English abstract).doi: 10.13386/j.issn1002-0306.2022110139· 工艺技术 ·杏鲍菇废弃菌渣中D-氨基葡萄糖盐酸盐的制备工艺及生物学活性分析张倩如1,吴启赐1, *,薛 钰1,林志超1,黄家福1,吕昊坤1,彭 伟1,潘裕添1,林进妹2,*(1.闽南师范大学菌物产业福建省高校工程研究中心,福建漳州 363000;2.闽南师范大学化学化工与环境学院,福建漳州 363000)摘 要:本文以杏鲍菇废弃菌渣为原料,探究了D-氨基葡萄糖盐酸盐(D-glucosamine hydrochloride ,GAH )的制备工艺、液相-质谱(HPLC-MS )、红外光谱、理化指标及其对斑马鱼胚胎发育的影响。
采用单因素和响应面优化试验,获得盐酸水解制备GAH 的最佳条件:盐酸浓度31%,水解时间4 h ,水解温度82 ℃,液固比5 mL/g ,此时GAH 得率可达23.61%。
液相-质谱、红外光谱和理化指标分析显示,GAH 纯化样品纯度是标准品的101.9%,质谱和红外光谱图与标准品一致,各项指标均符合甚至优于美国药典43-国家处方集38(USP43-NF38)的质量标准,砷含量仅0.21 μg/g 。
NaCl引入对MoS2光催化制氢性能的影响

㊀第52卷第3期郑州大学学报(理学版)Vol.52No.3㊀2020年9月J.Zhengzhou Univ.(Nat.Sci.Ed.)Sep.2020收稿日期:2020-01-29基金项目:国家自然科学基金项目(21171147);河南省科技厅科技计划项目(162102210160)㊂作者简介:吴朝军(1972 ),男,河南郏县人,实验师,主要从事光催化研究,E-mail:wchaojun@㊂NaCl 引入对MoS 2光催化制氢性能的影响吴朝军,㊀李怡娴,㊀张文丽,㊀徐㊀婷(郑州大学化学学院㊀河南郑州450001)摘要:利用液相反应法制备MoS 3,将其与NaCl 混合,在N 2气氛下煅烧制得了纳米MoS 2,将所得MoS 2与石墨相氮化碳(CN)复合得到了复合光催化剂CN-MoS 2㊂进而以藻红B 钠盐为敏化剂,三乙醇胺为牺牲剂,对所得催化剂的光催化制氢性能进行了测定,研究了煅烧过程中硬模板NaCl 的引入对MoS 2光催化制氢性能的影响㊂结果表明,NaCl 的引入可显著提升MoS 2的光催化制氢性能㊂关键词:MoS 2;NaCl;光催化制氢;光敏化中图分类号:O643.36㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀文章编号:1671-6841(2020)03-0110-05DOI :10.13705/j.issn.1671-6841.20200300㊀引言能源危机和环境污染是当今世界面临的两大难题,近年来世界各国均在积极发展新的可再生能源㊂在各种新型能源中,氢能因具备燃烧热值高㊁清洁㊁无污染等优点而倍受关注㊂在各种制氢方法中,由于太阳能取之不尽㊁用之不竭,因此太阳能光催化分解水制氢成为目前的研究热点之一㊂然而要实现光催化制氢技术的实际应用,获得稳定㊁高效㊁廉价的优良光催化剂是必要条件之一㊂自1972年Fujishima 和Honda 发现了TiO 2光电极在紫外光照射下可以分解水产生氢气以来,众多光催化剂已经得到了广泛的研究,如氧化物㊁硫化物㊁氮氧化物㊁氮化物㊁磷化物等[1]㊂在各种催化剂中,MoS 2因具有良好的稳定性和优异的催化析氢性能而逐渐成为近年来的研究热点之一[2]㊂MoS 2具有二维层状结构,带隙宽度为1.2~1.9eV,层内的Mo 与S 原子间为共价键,层与层之间为弱的范德华力,层间距约为0.62nm㊂文献[3-4]的研究结果表明,MoS 2的催化析氢活性位点处于纳米片层的边角位置,而其(002)晶面不具有催化析氢活性㊂为了得到具有高催化性能的MoS 2基催化剂,研究人员已经采用了诸多手段对MoS 2进行剥层,以得到具有更多活性位点的少层或单层MoS 2㊂目前常用的剥层方法有化学剥层[5]㊁液相超声剥层[6]㊁水(溶剂)热处理[7]等㊂文献[8]利用水合肼辅助液相剥层的方法得到了具有良好导电性和丰富催化活性位点的超薄MoS 2纳米片,并将它与CdS复合实现了高效光催化产氢,其产氢性能达到了238mmol ㊃h -1㊃g -1㊂但整体说来,以上剥层方法不仅操作复杂,而且产率较低,难以满足实际应用的需求㊂文献[9]在石墨相氮化碳(CN)的制备过程中引入NaCl,可以制备出具有优异光催化制氢性能的氮化碳催化剂,其性能可达到未经处理氮化碳活性的5.2倍㊂因此,本文通过在MoS 2的制备过程中引入便于脱除的硬模板NaCl,得到了具有较薄片层结构的MoS 2纳米片,该样品比未经NaCl 处理的MoS 2表现出更加优异的光催化制氢性能㊂1㊀实验部分1.1㊀试剂与仪器实验所用试剂(钼酸铵㊁硫化钠㊁盐酸羟胺㊁浓盐酸㊁无水乙醇㊁尿素)均购自国药集团化学试剂有限公司,以上试剂均为分析纯,且使用之前未经过进一步的纯化㊂㊀第3期吴朝军,等:NaCl 引入对MoS 2光催化制氢性能的影响1.2㊀样品的制备1.2.1㊀MoS 3的制备㊀参照文献[10]方法制备MoS 3㊂具体实验步骤如下:在250mL 三口烧瓶中加入200mL 去离子水,加热至90ħ后在搅拌下依次加入1.76g 钼酸铵㊁5.28g 硫化钠和15.6mL 浓盐酸,于90ħ下搅拌30min 后再加入1.5g 盐酸羟胺,继续在90ħ下反应3h 后停止加热㊂待反应混合物自然冷却至室温后,抽滤,将所得固体粉末依次用去离子水和无水乙醇洗涤数次,放入60ħ真空干燥箱中干燥20h,即得到棕褐色的MoS 3㊂1.2.2㊀MoS 2的制备㊀参照文献[11]方法制备纯MoS 2㊂具体实验步骤如下:将制得的MoS 3置于石英舟中,然后将石英舟放入管式炉中,通氮气30min 排尽空气后以10ħ/min 的升温速率升温至400ħ并保温1h㊂待炉温自然降至室温后取出石英舟,得到的黑色固体粉末即为MoS 2,将其标记为MoS 2-1㊂将一定量的MoS 3与二倍质量的NaCl 混匀,在研钵内研磨30min 后置于石英舟中,用同样的方法煅烧可得灰黑色粉末㊂将该粉末用蒸馏水反复洗涤至无Cl -(用0.1mol /L AgNO 3检验),然后在60ħ真空干燥箱中干燥20h,即得到NaCl 处理的MoS 2,将其标记为MoS 2-2㊂1.2.3㊀CN-MoS 2复合物的制备㊀CN 是由尿素在马弗炉中煅烧得到的[12]㊂具体实验步骤如下:将20g 尿素置于坩埚中,放入马弗炉中以3.5ħ/min 的升温速率升温至550ħ并保温3h㊂待炉温自然降至室温后取出坩埚,得到的黄色固体粉末即为CN,研磨备用㊂将0.2g CN 置于15mL 蒸馏水中,超声30min 后加入0.01g MoS 2,继续超声2h 后室温搅拌24h㊂离心分离,将所得灰绿色固体于60ħ下真空干燥20h,即得到CN-MoS 2,研磨备用㊂将利用MoS 2-1和MoS 2-2制得的复合物分别标记为CN-MoS 2-1和CN-MoS 2-2㊂1.3㊀样品表征采用XᶄPert PRO 型X 射线衍射仪,在2θ为5ʎ~80ʎ范围内,对材料的晶相进行了分析,靶源为Cu 靶,扫描速度为5ʎ/min;利用FEI TECNAI-G20型透射电子显微镜对样品的形貌进行了测定;利用ESCALAB 210型X 射线光电子能谱仪对样品中元素的价态进行了表征㊂1.4㊀光催化产氢测试光催化产氢测试是在250mL 三口瓶中完成的,所使用的光源为30W 的LED 灯,反应器与光源间的距离为5cm㊂具体测试步骤如下:向三口瓶中加入135mL 水和15mL 三乙醇胺(TEOA),用浓盐酸调节溶液的pH 为9㊂然后向溶液中加入50mg 催化剂和0.2g 藻红B 钠盐(EB)㊂超声30min 后盖好瓶塞,在磁力搅拌下通入N 230min 以除去反应容器内的空气㊂开灯光照,在反应过程中一直保持搅拌状态,每隔30min 用500μL 微量注射器从反应体系中取出400μL 气体,利用Agilent 4890D 型气相色谱仪对产生的H 2量进行测定,以计算出反应容器内产生的H 2的物质的量㊂2㊀结果与讨论图1㊀MoS 2-1㊁MoS 2-2㊁CN 以及CN-MoS 2的XRD 图谱Figure 1㊀XRD patterns of MoS 2-1,MoS 2-2,CN and CN-MoS 22.1㊀催化剂的组成、结构和形貌利用X 射线衍射(XRD )和透射电子显微镜(TEM)对制得的2个MoS 2样品进行了表征,以讨论NaCl 引入对MoS 2结构㊁形貌的影响,测定结果如图1和图2所示㊂由图1可知,NaCl 引入对MoS 2的晶相并无明显影响,位于约14ʎ㊁33ʎ㊁39ʎ㊁50ʎ和58ʎ的衍射峰分别对应于MoS 2的(002)㊁(100)㊁(103)㊁(105)㊁(110)晶面(JCPDS 37-1492)[13]㊂由于CN-MoS 2-1和CN-MoS 2-2的XRD 测定结果无明显差别,故图1中仅给出了CN-MoS 2-2的XRD 图谱㊂由图2可知,MoS 2-1和MoS 2-2均为纳米片层结构,但MoS 2-2的颗粒团聚程度较MoS 2-1显著降低,且纳米片层更小㊁更薄㊂在图2(c)和图2(d)中,晶面间距为0.62nm 的晶格条纹对应于MoS 2的111郑州大学学报(理学版)第52卷(002)晶面[14]㊂以上结果表明,通过引入硬模板NaCl,可以得到具有更好分散性㊁颗粒度更小的纳米MoS 2㊂由于MoS 2的催化活性位处于片层的边角位置[3-4],因而更薄㊁更小纳米片的生成将使得MoS 2-2具有更优异的催化性能㊂图2㊀MoS 2-1(a ~c )和MoS 2-2(d ~f )的TEM 图Figure 2㊀TEM images of MoS 2-1(a ~c )and MoS 2-2(d ~f )利用X 射线光电子能谱(XPS)对2个MoS 2样品中元素的价态进行了表征,结果如图3所示㊂在图3(a)中,电子结合能数值为232.3eV 和229.1eV 的2个峰可分别归属为Mo 3d 3/2和Mo 3d 5/2的特征峰,这表明其中的Mo 为+4价,位于226.7eV 的弱峰对应于S 2s 轨道的电子结合能㊂在图3(b)中,位于162.2eV 和163.4eV 的2个特征峰分别对应于S 2p 1/2和S 2p 3/2的电子结合能,证明其中的S 是以S 2-形式存在[15]㊂此外,对比MoS 2-1和MoS 2-2的XPS 图谱还可以发现,NaCl 处理对样品中元素的价态无明显影响㊂图3㊀MoS 2-1和MoS 2-2的高分辨XPS Mo 3d (a )和S 2p (b )图谱Figure 3㊀High resolution XPS Mo 3d (a )and S 2p (b )spectra of MoS 2-1and MoS 2-2此外,在CN-MoS 2-2的XRD 图谱(图1)中,可以清晰观察到CN 和MoS 2的特征衍射峰,说明CN 和MoS 2成功实现了复合㊂该复合催化剂的TEM 结果(图4)不仅进一步证实了MoS 2与CN 的成功复合,在图4(b)中还可清晰观察到对应于MoS 2(002)晶面的晶格条纹(间距为0.62nm)㊂2.2㊀光催化制氢性能以藻红B 钠盐(EB)为敏化剂,三乙醇胺(TEOA)为牺牲剂,对2个MoS 2样品的光催化制氢性能进行了测定,MoS 2-1和MoS 2-2的产氢曲线如图5所示㊂可以看出,虽然在反应刚开始的2h 内,2个样品的活性无太大差别,但MoS 2-2在6h 内的累积产氢量达到了4.2mmol,约为MoS 2-1产氢活性的1.4倍,即通过引入NaCl 得到的MoS 2-2表现出更好的光催化制氢性能㊂在此基础上,对CN 与MoS 2复合物在EB 敏化下的产氢性能进行了测定,以进一步考察NaCl 处理对MoS 2产氢性能的影响,CN 和复合催化剂CN-MoS 2的产氢曲线如图6所示㊂可以看出,类似于纯MoS 2,经NaCl 处理所得的MoS 2-2与CN 的复合物CN-MoS 2-2同样表现出更高的产氢性能,该复合催化剂在6h 内的累积产氢量达到730.9μmol,约为CN-MoS 2-1产氢活性的1.6倍㊂此外,通过对比可以发现,复合物CN-MoS 2-2的光催化产氢性能显著低于纯MoS 2-2,这可能是由于催化剂中MoS 2的含量大幅度减少所致(复211㊀第3期吴朝军,等:NaCl 引入对MoS 2光催化制氢性能的影响图4㊀CN-MoS 2-2的TEM (a )和HRTEM (b )图Figure 4㊀TEM (a )and HRTEM (b )images of CN-MoS 2-2合催化剂中MoS 2的含量约为5%)㊂与文献[16]结果一致,纯CN 在EB 敏化下的产氢活性极低,而MoS 2与CN 的复合使得CN 的光催化产氢性能显著提升㊂NaCl 引入使得MoS 2光催化制氢性能提升可能是由于NaCl 的硬模板作用阻碍了煅烧过程中MoS 2纳米粒子间的团聚,得到了颗粒度更小㊁片层尺寸更小㊁厚度更薄的MoS 2纳米片,从而产生了更多的光催化产氢活性位点㊂图5㊀MoS 2-1和MoS 2-2的产氢曲线Figure 5㊀Time courses of hydrogen evolution over MoS 2-1and MoS 2-2图6㊀CN 和复合催化剂CN-MoS 2的产氢曲线Figure 6㊀Time courses of hydrogen evolution over CN and CN-MoS 2composites3㊀结论通过硬模板NaCl 的简单引入,成功制备了片层尺寸更小㊁厚度更薄的纳米MoS 2催化剂,该MoS 2具有更优异的光催化制氢性能㊂在光敏剂EB 敏化下,6h 的累积产氢量达到了4.2mmol,是未经NaCl 处理的MoS 2产氢活性的1.4倍㊂同样地,该MoS 2与CN 的复合催化剂也表现出了更好的光催化制氢性能㊂该研究为高性能MoS 2基催化剂的制备提供了一种新思路㊂参考文献:[1]㊀谢英鹏,王国胜,张恩磊,等.半导体光解水制氢研究:现状㊁挑战及展望[J].无机化学学报,2017,33(2):177-209.XIE Y P,WANG G S,ZHANG E L,et al.Photocatalytic hydrogen evolution from water splitting using semiconductors:advance,challenge and prospects[J].Chinese journal of inorganic chemistry,2017,33(2):177-209.[2]㊀吴正颖,刘谢,刘劲松,等.二硫化钼基复合材料的合成及光催化降解与产氢特性[J].化学进展,2019,31(8):1086-1102.WU Z Y,LIU X,LIU J S,et al.Molybdenum disulfide based composites and their photocatalytic degradation and hydrogen evolution properties[J].Progress in chemistry,2019,31(8):1086-1102.[3]㊀HINNEMANN B,MOSES P G,BONDE J,et al.Biomimetic hydrogen evolution:MoS 2nanoparticles as catalyst for hydrogen evolution[J].Journal of the American chemical society,2005,127(15):5308-5309.311411郑州大学学报(理学版)第52卷[4]㊀JARAMILLO T F,JØRGENSEN K P,BONDE J,et al.Identification of active edge sites for electrochemical H2evolution fromMoS2nanocatalysts[J].Science,2007,317(5834):100-102.[5]㊀QIAO W,YAN S M,SONG X Y,et al.Monolayer MoS2quantum dots as catalysts for efficient hydrogen evolution[J].RSCadvances,2015,5(118):97696-97701.[6]㊀JIN X X,FAN X Q,TIAN J J,et al.MoS2quantum dot decorated g-C3N4composite photocatalyst with enhanced hydrogenevolution performance[J].RSC advances,2016,6(58):52611-52619.[7]㊀WANG X J,WU Q,JIANG K L,et al.One-step synthesis of water-soluble and highly fluorescent MoS2quantum dots for detec-tion of hydrogen peroxide and glucose[J].Sensors and actuators B:chemical,2017,252:183-190.[8]㊀REDDY D A,PARK H,HONG S,et al.Hydrazine-assisted formation of ultrathin MoS2nanosheets for enhancing theirco-catalytic activity in photocatalytic hydrogen evolution[J].Journal of materials chemistry A,2017,5(15):6981-6991.[9]㊀YANG F,LIU D Z,LI Y X,et al.Salt-template-assisted construction of honeycomb-like structured g-C3N4with tunable bandstructure for enhanced photocatalytic H2production[J].Applied catalysis B:environmental,2019,240:64-71. [10]YIN M C,JIA F F,QIAO F F,et al.Facile wet-chemical synthesis and efficient photocatalytic hydrogen production of amor-phous MoS3sensitized by Erythrosin B[J].Materials characterization,2017,128:148-155.[11]YIN M C,ZHANG W L,LI H,et al.Insight into the factors influencing the photocatalytic H2evolution performance of molyb-denum sulfide[J].New journal of chemistry,2019,43(3):1230-1237.[12]郑鹏飞.基于石墨相氮化碳的复合材料的制备及其光催化产氢性能研究[D].郑州:郑州大学,2016.ZHENG P F.Preparation and photocatalytic hydrogen production over g-CN based composite materials[D].Zhengzhou:Zheng-zhou University,2016.[13]HOU Y,WEN Z,CUI S,et al.Constructing2D porous graphitic C3N4nanosheets/nitrogen-doped graphene/layered MoS2ternary nanojunction with enhanced photoelectrochemical activity[J].Advanced materials,2013,25(43):6291-6297. [14]JO W K,LEE J Y,SELVAM N C S.Synthesis of MoS2nanosheets loaded ZnO-g-C3N4nanocomposites for enhanced photocata-lytic applications[J].Chemical engineering journal,2016,289:306-318.[15]WANG H W,SKELDON P,THOMPSON G E.XPS studies of MoS2formation from ammonium tetrathiomolybdate solutions[J].Surface and coatings technology,1997,91(3):200-207.[16]YUAN Y J,SHEN Z K,WU S T,et al.Liquid exfoliation of g-C3N4nanosheets to construct2D-2D MoS2/g-C3N4photocatalystfor enhanced photocatalytic H2production activity[J].Applied catalysis B:environmental,2019,246:120-128.Effect of NaCl Introduction on Photocatalytic HydrogenProduction Performance of MoS2WU Chaojun,LI Yixian,ZHANG Wenli,XU Ting(College of Chemistry,Zhengzhou University,Zhengzhou450001,China) Abstract:MoS3was prepared by liquid-phase reaction method,and nanosized MoS2was prepared by mix-ing the MoS3with NaCl and calcining under -MoS2composite photocatalyst was synthe-sized by combining the MoS2with graphic carbon nitride(CN).Furthermore,the photocatalytic hydro-gen production performances of the obtained catalysts were determined by using Erythrosin B sodium salt and triethanolamine as sensitizer and sacrificial agent,respectively.The effect of introducing hard tem-plate NaCl during the calcination process on the photocatalytic hydrogen production performance of MoS2 was investigated.The results showed that the introduction of NaCl resulted in a significant enhancement in the photocatalytic hydrogen production performance of MoS2.Key words:MoS2;NaCl;photocatalytic hydrogen production;photosensitization(责任编辑:孔㊀薇)。
水凝胶负载BiOI活化过一硫酸盐降解尼泊金甲酯

关键词:水凝胶;碘氧化铋;过一硫酸盐;尼泊金甲酯号:1000-6923(2019)08-3249-06
Activation of peroxymonosulfate by hydrogel supported BiOI for methylparaben degradation. HU You-you, LI Zheng-kui* (State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China). China Environmental Science, 2019,39(8):3249~3254 Abstract:P(HEA-APTMACl)-BiOI was prepared by chemical precipitation method and the hydrogel synthesized by radiation polymerization was used as catalyst carriers. The catalyst was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). These results showed that BiOI was successfully loaded on the hydrogel. The p(HEA-APTMACl)-BiOI/peroxymonosulfate (PMS) presented high methylparaben (MP) degradation efficiency under visible light, and the effects of several operating parameters (PMS dosage, BiOI loadings and initial MP concentration) on the MP degradation efficiency were also explored. The results demonstrated that there was a synergistic effect between p(HEA-APTMACl), BiOI and PMS. In addition, the MP (0.328mmol/L) degradation efficiency reached 99% within 2h when PMS concentration was 1.5mmol/L and the catalyst dosage was 0.1g. The addition of Cl- accelerated the degradation rate of MP, while the SO42- lead to hysteresis in MP degradation. Moreover, the MP degradation efficiency was reduced by the presence of HCO3-, but it was little influenced by NO3- and H2PO4-. Key words:hydrogel;BiOI;peroxymonosulfate;methylparaben
气液界面Marangoni效应对传质系数的影响

消除传质过程中 N2 向液相的 经电恒温装置后在气液接触 由 使
与气相传质后流入溶剂回收罐
电恒温装置由电加热器和 PID 控制仪表组成 PID 控制仪表控制电加热器对气体和液体加热 其温度稳定于 (25 0.1) 气液相间的质量传递 传质状况 温
因为本文考察的重点是 气液相保持相同温度以消除 使测量数据真实地反映 减少传质介质与 各
气液相传热对传质的干扰
另外气液接触所在区域用空气浴维持恒 此外为了减少振动的影响
使其温度与气液相温度相同
环境之间的热交换 装置组成元件如泵 施
气液接触器等均采取了防震措 气液接触长度为 液体由上部
主视图 Front view 图2 侧视图 Side view 气液接触器结构图
气液接触器结构如图 2 所示 15c m 气体流道宽 14c m 进口进入 厚度
2
实
验
本文建立了一套气液接触传质设备 N2 与液体 逆流接触将液体中使表面张力降低的溶质解吸出 来 从而可能引发 Marangoni 对流 提高传质速率 实验流程如图 1 所示 纯 N2 由气瓶经水罐预饱和水 蒸气后 经电恒温装置由下部进入气液接触器 与 液膜逆向流动接触传质后放空 溶液先由 N2 预饱和 扩散 然后由泵输送 器内呈液膜下流 储罐中的异丙醇稀
(5)
传质过程中如果液相 Marangoni 效应发生
否则 F 等于 1 因此根
据实验结果计算 F 的值即可判断 Marangoni 效应是否发生以及 Marangoni 效应对传质速率的影响程度
4
实验结果与讨论
图 3 和 4 中绘出了不同气速下按式 (2) 计算的实验总的液相传质系数 KLexp 随液相进出口浓度差∆C 从图中可以看出 KLexp 值总体上随浓度差∆ C 的增大而增大 但在浓度差很小和很大时
木犀草素在离子液体修饰电极上的电催化氧化及其测定

国家 自 然科学基金 (0 7 0 1 、 26 57 ) 盐城工学院 自然科 学基金 ( K 20 0 9 资助项 目 X Y090 ) 通讯联系人 : 红波, , 李 男 硕士 , 讲师 ; — a : bhm 6 .o ; Em i l c e @13 cr 研究方向 : 电化学检测 lh n 生物
盐缓 冲溶液 ( H为 40—80 中, p . . ) 运用循环伏安法 ( V) C 和差示脉冲溶 出伏安法 ( P V) D S 研究 了木犀草 素在修
饰 电极上的电化学行 为, 建立了测定木犀草素含量的新方法。实验结果表明 , 该修饰 电极 上木犀草素氧化 、 还 原峰 电位均负移 , 峰电流增大。在 一 . 0 7V电位区间 ,H= . 0 2~ . p 70的磷酸盐缓 冲溶液体系 中, 木犀草 素在 修 饰 电极表面发生 的是 受 吸 附 控 制 的 准 可 逆 等 电 子 等 质 子 电 极 反 应 , 电子 转 移 系 数 =0 5 吸 附 量 为 ., 4 6×1 。 o m ; . 0 m de 木犀草素氧化峰电流与其浓度在 10× 0 ~16×1 一 m LL范围内呈 良好 的线性 关 . 1 。 . 0 o/
系 , 出限达到 3 2×1 ‘ o/ , 检 . 0 m LL 回收率为 9 . % ~12 0 ; 87 0 . % 该法操作 简单 、 速 、 快 灵敏 、 准确 ; 可用于野 菊
花 中类 黄酮 的测 定 。
关键词 木犀草素 , 离子液体 , 修饰 电极 , 类黄酮 , 电化学
中图分类号 : 6 7 1 0 5 . 文献标识码 : A 文章编号 :0 00 1 (0 0 0 - 7 -5 10 -58 2 1 )80 80 9
在复合金属氧化物催化剂上丙烷直接氧化制丙烯酸

收稿:2006年6月,收修改稿:2006年12月 3通讯联系人 e 2mail :jiwj @在复合金属氧化物催化剂上丙烷直接氧化制丙烯酸3杨秀娟 冯汝明 李 丽 季伟捷33 陈 懿(南京大学化学化工学院介观化学教育部重点实验室 南京210093)摘 要 丙烷直接氧化制丙烯酸是近年来催化氧化的热点课题。
M oVT e (Sb )NbO 复合金属氧化物催化剂是该反应最重要的一类催化剂。
本文对该类催化剂的制备化学包括活化方式以及决定催化性能的主要活性相结构等方面的新近认识进行了系统评述;依据丙烷催化转化的反应途径,总结了有关催化剂元素组分在反应中的作用与功能的最新进展,调变催化剂的粒子尺寸与形貌、晶相组成与结构、表面酸碱性与氧化还原性将是获得优良催化性能的关键因素。
关键词 丙烷 直接氧化 复合金属氧化物催化剂 丙烯酸中图分类号:O643136;O621125+4 文献标识码:A 文章编号:10052281X (2007)0520643208Direct Oxidation of Propane to Acrylic Acid over MoVTe(Sb)NbOMixed Metal Oxide C atalystsYang Xiujuan Feng Ruming Li Li Ji Weijie33 Chen Yi(K ey Laboratory of Mes oscopic Chemistry ,M OE ,School of Chemistry and Chemical Engineering ,Nanjing University ,Nanjing 210093,China )Abstract The direct oxidation of propane to acrylic acid has become a hot spot in catalytic oxidation of light alkanes in recent years.The M oVT e (Sb )NbO mixed metal oxide catalysts are the m ost im portant catalysts for this reaction.This article intends to review recent progress in preparation methodologies and in understanding vital crystalline structures which are closely related to catalytic performance.The latest knowledge on the functions of the constituent elements in the catalysts is summarized in terms of the reaction pathways of propane oxidation.It is recognized that m odification of particle size and m orphology ,phase com position and structure ,surface acidity and redox property of catalyst are critical to achieve superb catalyst performance and stability.K ey w ords propane ;direct oxidation ;mixed metal oxide catalysts ;acrylic acid 饱和烷烃资源丰富且价格低廉,通过选择性催化(氨)氧化可以转化为醛、腈、酸等化合物[1—3]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
230火炸药学报Chinese Journal of Explosives & Propellants第41卷第3期 2 0 18年6月DOI:10.14077/j. issn.1007-7812.2018.03.003Effect of Liquid-phase Oxidation Impurities on Solubility of Water in Hydrocarbon FuelsA. A. Boriaev(Saint Petersburg StateUniversityofArchitecture and Civil Engineering , 4 VtorayaKrasnoarmeyskayaSaint Petersburg , 199005,Russia )Abstract : The effect of liquid-phase oxidation impurities on the solubility of water in hydrocarbon fuels was studied.The results show that the concentration of polar surfactant molecules i n the first region increases (true soluduring fuel oxidation ,and since the oxidation groups ( — COOH ,一O =O ,一OH ,etc. ) have similar dipolemoment#,the dielectric loss tangent tan # increases linearly in this region withsurfactant concentration. Upon further oxidation , micelle structures begin to form at a certain point. Micelle formation leadsto asharpdecrease inmoment attributable to t he monomer unit #/%,where % is the number of molecules in a micelle. A several-fold decrease in the dipole moment leads to a sharp drop in tan #. Upon further increase in the number and size of micelles , the dipole moment remains practically unchanged , and the dielectric loss tangent begins to increase linearly again with surfactant concentration. If the critical concentration for micelle formation is achieved upon further oxidation of hydrocarbon liquids ,micelle formation processes occur spontaneously in the solution ,and the true solution becomes a colloidal system (so l ). The resultingmicelles arestructuredwithhydrocarbonradicals ofmoloutside and hydrophilic (polar ) groups toward the inside. Water molecules are located inside micelles and held so securely that water m olecules do not aggregate as temperature decreases. The reason for significant differences in the equilibrium solubility of water in hydrocarbon fuels is the different oxidation factors of product samfrom the accumulation of various concentrations of oxidation products ,which are natural surfactants ,in hydrocarbonfuels.Keywords : water solubility ; hydrocarbon fuels;oxidation factor CLC number :T J55;O65Document Code : AArticle ID :1007-7812(2018)03-0230-06Introduct#onAppearance of free water in a hydrocarbon fuel during operation affects many performance properties : it reduces the corrosion resistance of structural materials , increases static , and promotes biochemical decomposition , fuel oxidation , release of hydrogen (which is an explosion hazard) in tribo- chemical reactions , etc. Emulsified water lowers an important performance characteristic—low-temperature pump ability—due to the deposition of ice crystals on fuel system pipeline filters at freezing temperatures.Dehydration is important for improving the quality of hydrocarbon fuels ; this process requires modern ,high-performance technologies [1"3]. Kobyzev S. V. [1] proposes an expanded multi-element mathematical model of hydrocarbon fuel dehydration as a part of pre-launch preparation. The paper discloses the following models based on the proposed integrated mathematical model : the modii of mass transfer into an isolated gas bubble,the m odii of mass transfer from the fuel liquid phase tothedisperse gasphasewi t h int h e prepara t i o n unit volume,the modii of mass transfer on the liquid surfacein thepreparationunit,and themodel ofmass transfer on theliquid surface accoun t i n g for surface bubbling.Aleksandrov A. A. et a l [2] consider characteristicsof hydrocarbon full dehydration processes based on fuel sparging and the cyclic technology of discharge and super saturation using dry nitrogen. The specific consumption of nitrogen and time for fuel dehydration operations was compared and gave recommendations on their application in full storage and preparation systems and at launch sites.Goncharov R. A. et a l [3] present results of theoretical studies of heat and mass transfer processes in devices for cooling and dehydration of hydrocarbon fuels at launch and technical areas of launch sites.The causes of reduced low-temperature pump ability and emulsion water in full cannot be eliminated without knowing the natural laws and specifics of how water dissolves in hydrocarbon fuels in the presence of oxidation products , which generally have a complex chemical composition that partially changes during storage. Of great importance references [4"11] studied the oxidation mechanism,which leads to a wide variety of chemical substances (oxidation products),as well as the effect of the hydrocarbon fuel oxidation factor on water solu-Received date :2017-12-10 ; Revised date :2018-01-18Biography : A. A. Boriaev( 1953一),male ,D r.,research field: energeticmaterials. E-mail: sasal953@yandex. ru第41卷第3期 A. A. Boriaev:Effect of Liquid-phase Oxidation Impurities on Solubility of Water in Hydrocarbon231bility,which ultimately leads to various concentrations of chemical compounds that are products of oxidation reactions.M aX. et a l [4] described the study of a novel oxidative desulfurization (ODS) method for liquid hydrocarbon fuels. The ODS method was applied to a model jet fuel and a real jet fuel ((P-8) in a batch system at ambient conditions. The remarkable advantagesofthenewODSmethod are that ODS can be performed in the presence of O2 at ambient conditions without using peroxides and aqueous solvent and thus without involving a biphasic oil-aqueous-solution system.Fernandez-Tarrazo E et al. [5] explored the applicability of one-step irreversible Arrhenius kinetics of first-order reactions to a numerical description of the combustion of partially premixed hydrocarbons. Computations of planar premixed flames were used to select three model parameters : heat of reaction q , activation temperature T a, and preexponential factor B.You X. et al. C 6] proposed a detailed kinetic modll for the combustion of normal alkanes up to n-dodecane above 850 K. The modil was validated against experimental data. Combined withthebaseC "—C4model,the simplified m odil predicted fuel pyrolysis rate and product distribution , laminar flame speeds,and ignition delays as closely as the detailed reaction model.Murugan P. et al. C 7] investigated low-temperature oxidation (LTO) of Fosterton crude oil mixed with its reservoir sand in a t ubular reactor. The general model for an nt h order reaction was used to obtain the kinetic parameters of the coke oxidation reaction. The activation energy , frequency factor and order of the reactions were determined using the model.Al-Hamamre Z. et a l [8] stated that a very high temperature fue--air mixture was necessary for the thermal partial oxidation of hydrocarbon fuels in order to have a high reaction temperature , which accelerated the reaction kinetics. For diesel fuel and due to the ignition delay time behavior , varying oxidation behavior may occur at various preheating tem-peraNures.Li D. et a l [9] described enhanced autoxidation experiments of hydrocarbon fuels , which were performed simultaneously. The therma--oxidation stabilities for these fuels under various conditions were compared using ultraviolet-visible spectrometry and infrared spectra.Thomas S. et a l C 10] described pyrolysis and fuel-rich oxidation experiments in an isothermal laminar-flow reactor , using the model fuel catechol (ortho-dihydroxybenzene ), a phenol-type compound representative of structural entities in coal , wood and biomass , to better understand the effects of oxygen on the formation and destruction of polycyclic aromatic hydrocarbons (PAH) during the burning of complex solid fuels. The PAH products , ranging in size from two to nine fused aromatic rings,had been analyzed by gas chromatography with flame-ionization and mass spectrometric detection , and by high-pressure liquid chromatography with diode-array ultraviolet-visible absorbance detection.Shakeri A. et al. C 11] presented a new approach to reduce large detailed or skeletal mechanisms of hydrocarbon fuel oxidation to a low-cost skeletal mechanism. The method involved an integrated procedure including a Sensitivity Analysis (SA) and a Gradual Evaluation of Ignition Error (GEIE).According to the literature review , the composition ofhydrocarbon fuel oxidation products depends on oxidation reaction conditions , and is characterized by various reaction mechanisms and the variety of generated chemical compounds including significant concentrations of oxidation products,which can be considered surfactants based on their structures.The authors found no published data on the effect of the hydrocarbon fuel oxidation factor and , correspondingly , the effect of impurities generated from the liquid-phase oxidation reaction on the solubility of water in hydrocarbon fuels. Asshown below,it is impossible to create an effective procedurefor dehydrating hydrocarbon fuels without assessing the impact of oxidation factor , since during our experiments we found a significant difference in the nature of equilibrium water solubility curves for various batches of the same hydrocarbon fuel.Studying the solubility of water in hydrocarbon fuels is associated with an important performance characteristic : low- temperature pump ability , which causes various emergencies due to fuel supply failure C 12].The conducted experiments determined the reasons for significant differences in the equilibrium solubility of water as a function of temperature for various batches of the same hydrocarbon fuel. The main reason is the different oxidation factors of product samples , resulting from the accumulation of oxidation products , which are natural surfactants , in hydrocarbon fuels. Surfactants are organic substances containing a hydrocarbon radical and one or several active polar groups. The surfactant hydrocarbon portion may consist of paraffinic ,isoparaffinic,naphthenic aromatic , and other hydrocarbons of various structure. For the most common active group/are oxygen-containing (ether carboxyl hydroxyl etc. ) and nitrogen-containing (nitro-,amino-,amido -, etc.)groups+1 Experimental-theoretical studiesIt is known that water dissolved in a hydrocarbon liquid follows Henry’s law like a dissolved gas:C=Clm •• % (1)•i S H $ Owhere !;h 2o is the partial pressure of water vapor in the space above the fuel surface ; !S h 2o is the saturated water va-232火炸药学报第41卷第3期〇1-------------■-------------■-------------■--------------223 243 263 283 303T/K(b)Fig. 1 Limit water solubility versus temperature for variousbatches of hydrocarbon fuelConsidering differences in storage conditions for study samples of hydrocarbon fuels from various batches, it was assumed that various oxidation factors of fuel samples may affect water solubility, despite the fact that analysis of the main parameters of oxidation factor using current standardized methods (presence of soluble gums, acidity—determination according to state standards (GOST) or technical specifications for fuels) showed there are practically no liquid-phase oxidation products. We assumed that surfactants accumulating in the fuel during its oxidation play the determining role in changes of the equilibrium water solubility in hydrocarbon fuels.Thus, the foregoing defines the need to carry out a set of experiments to confirm this assumption.This paper presents the results of experimental studies of the oxidation factorZ effect and the effect of artificially introduced surfactants on water solubility in naphthene-base fuel.According to standards, oxidation parameters of naphthene-base fuel (acidity and gums) must not exceed 0. 5 and 2. 0 mg per 100 mL, respectively. Experiments have shown that water solubility in hydrocarbon fuels can vary considerably (Figure 1). However, water solubility for products with zero parameters of acidity and gums varies over a wide range as well [1314] , which indicates insufficient sensitivity of the methods used to determine these parameters at low oxidation factors of hydrocarbon fuels [15"17].which corresponds to the standards for production, while experiments have shown that permissible variations of these parameters in the standards could not have a significant effect on water solubility.por pressure ; % is t he relative humidity ; CI im is the limit or maximum possible value ofwater dissolution at a given tem-peraNure .The value of CI im = /( 3) is similar to the Henry’s law constant for gases, which is a physical constant for individual liquid/gas systems ,i . e . it is constant for hydrocarbon liquid/ water systems.The limit solubility CI im determines the equilibrium solubility of water in the fuel and is a function of temperature. As for most liquid/gas systems , water solubility decreases as temperature decrease and , in accordance with thermodynamic laws of supersaturated solutions , free water forms in the product mass in the form of micro-droplets , followed by crystallization at temperatures below freezing. Ice crystals block up filters in fuel lines and stop fuel supply. This,in its turn , leads to emergencies. It should be noted that the equilibrium temperature corresponding to Cfm is referred to as the “cloud point,, since , during experimental determination of the solubility curve (to perform analysis) , a slight decrease in tem-peraNure relaNive No Nhe equilibrium NemperaNure leads N o clouding of the product due to formation of a new , finely dispersed phase (free water or ice). After experimental determination of the function Ciim= f(T ') , it is easy to establish permissible limits for the dissolved water content in hydrocarbon fuels that exclude the possibility of ice crystal formation at specified low-temperature operating conditions.In the course of our experiments to determine the equilibrium function C \iia = f {T ) for hydrocarbon fuels , we found a significant difference in the nature of equilibrium water solubility curves for various batches of the same hydrocarbon fuel. Figure 1 shows experimental curves for the naphthene- base hydrocarbon fuel (Figure 1(a)) and T-6 hydrocarbon fuel (Figure 1(b )).The results made it more difficutt to determine reasonable limits for the permissible water concentration in hydrocarbon fuels to prevent fuel system failure due to the formation of ice crystals when fuel temperature decreases. For example ,at a residual water concentration in fuel of Cw ==0. 001 _ , ice crystals may form on curve 1 is possible only at temperatures below 40 ' , on curves 2 and 3 — at temperatures below 14 ' , and on curve 4 — at temperatures below 6 ' (Figure 1(a )). The same tendency is also observed for T-6 hydrocarbon fuel (Figure 1(b )).This fundamental difference in results requires an explanation to prevent emergencies in equipment operation and use oVhydrocarbonVuels.We have previously ascertained that the hydrocarbon group composition has significant influence on water solubility in hydrocarbon fuels. The fractional composition of fuels and the content of mechanical impurities have a particular influence as well. However , their influence has a definite valuer /K s%/o I X MU第41卷第3期 A. A. Boriaev:Effect of Liquid-phase Oxidation Impurities on Solubility of Water in Hydrocarbon233Experimental researchTo assess the effect of oxidation products on water solubility in hydrocarbon fuels, stripped, silica-gel-filtered naphthene-base fuel was selected from a certain batch, and samples with various oxidation factors were prepared under the same conditions (samples were prepared with air sparging through the product layer at100 ' %. After oxidation, various physical and chemical parameters were determined for each fuel sample that reacted with a defined quantity of oxy-gen.Surface tension was determined in accordance withGOST R 50003-92 (ISO 304-85). Electrical and physical parameters (dielectric permittivity and dielectric loss tangent) were measured using an AC bridge with an automatic balancer and a transducer (three-electrode, contact, temperature- controlled sensor) [18].The limit water solubility within the temperature range of 20 ' to —40 ' was determined by creating 100% humidity in the volume above the fuel layer while stirring. The limit fuel dryness was determined as the amount of water remaining in the fuel after drying under vacuum for 1 hour. The content of soluble gums was determined in accordance with GOST 32404-2013, and acidity was determined according to ISO 3012-74. The content of water dissolved in the fuel was determined according to GOST 2477-2014. The total amount of reacted oxygen was determined with a LCMS-IT-TOF hybrid liquid chromatograph/mass spectrometer. All measurements were carried out at t = 20The resulting experimental data are shown in Figure 2. In which,e is dielectric permittivity ; &w f is surface tension at the water/fuel interface; &a f is surface tension at the air/fuel interface ; tand is dielectric loss tangent ; C—3 is limit water solubility at —30 '; C L M is limit dryness; C g is content of soluble gums; A is acidly.Fig 2. Changes in physical and chemical parameters of thehydrocarbon fuel depending on its oxidation factor(the total quantity of reacted oxygen)The data presented in Fi g ure 2 show that an increase in fuel oxidation factor leads to changes in all parameters except surface tension at the product/air interface. The horizontalaxis, showing the total quantity of reacted oxygen, can be divided into three characteristic regions : the first region is the interval of 0 — 55cm3/L,the second region is the interval of 55 — 88cm3/L and the third region is the interval of 88 — 165 cm3/L. Gums and acidity (GOST parameters for fuel) begin to grow only in the third region, not reacting to oxidation prior tothat.Inthe first region, thesurfacethe product/air interface and the dielectric loss tangent tan § change most significantly. Their change indicates the appearance of oxygen compounds in the fuel. A sharp decrease in surface tension & is evidence that these compounds are surfactants. Baseduponthenatureofchanges ininflections in the second region) , surfactants are in the molecular ,unassociated state (true surfactant solution in the hydrocarbon liquid up to an oxidation factor of 55 cm3/L).Upon further oxidation in the second region, the surfactant concentration reaches critical micelle concentration (CMC) , and the full can be considered a colloidal surfactant solution in the hydrocarbon liquid with all properties inherent to them, in particular the capacity for solubilization, i. e. for increase in solubility of any substance due to its introduction into micelles. In this case, the solubilization of water molecules into surfactant micelles is observed.This is confirmed by a sharp increase in the limit dryness C(IM after CMC (the second region). As surfactant concentration increases after CMC, even more water remains in the fuel. It is not removed by vacuum drying, which is evidence that it is solubilized by micelles.Changes in electrical and physical parameters are notable as well. The tan^ increases more than three-fold upon increase in the oxidation factor in the first region. The value then drops sharply back to baseline and then increases slowly.According to the Debye theory, there is a relationship between tan # and the concentration of polarmolecules (here, oxy groups ):t a n #=4(7. /e+2、"27)T (,,5%(2 )1+«2 •where ( is theBoltzmann constant ; e is dielectric permi-- tivity ; % is angular frequency of measurement, and & is relax-NionNime.The mult.pl.er 4(7.is constant at constant tempera-27(3ture. The c hange in the dielectric permittivity e does not significantly affect tan# and, therefore, the second multiplier is also constant. The same is the case for the third multiplier if measurements are carried out at a constant angular frequency and the position of the dispersion area (accounted for by the value &=----) remains unchanged.%a n gTherefore :tan#= 4'2C3)m 1c I s o s .b o s )/(V /J)234火炸药学报第41卷第3期where B is a constant multiplier.Thus, the concentration of polar surfactant molecules in the first region increases (true solution) during fuel oxidation, and since the oxidation groups (— COOH,—〇=0,—OH, etc. ) have similar dipole moment tan 8 increases linearly in this region with surfactant concentration. Upon further oxidation, micelle structures begin to form at a certain point. Micelle formation leads to a sharp decrease in the dipole moment attributable to the monomer unit ji/n,where is the number of molecules in a micelle. A several-fold decrease in the dipole moment leads to a sharp drop in tan#. Upon further increase in the number and size of micelles, the dipole moment remains practically unchanged, and the dielectric loss tangent begins to increase linearly again with surfactant concentration.The deviation of the dielectric permittivity diagram from linearity is also explained by the decrease in dipole moment per surfactant molecule '/n.Figures 3 and 4 present the infrared spectra of hydrocarbon fuel samples observed using a UV-1800 spectrometer.5-M=0. 8;6-M=10(M is a dimensionless coefficient)Fig. 3 IR spectra of naphthene-base fuel samples“limit dryness” for naphthene-base fuelWater dissolved in non-polar solvents has an asymmetrical oscillation frequency of y= 3 705 cm 1and a symmetrical oscillation frequency of y = 3 614 cm 1. Infrared spectra were determined for fuel samples with equilibrium solubility o f0. 000 6 — 0. 001 5 _ (mass fraction) , and the spectral bands corresponding to these oscillations are almost negligible (absorption increases somewhat at y = 3 630 cm 1 ). The most pronounced absorption band in the spectrum is at y=3 550 cm 1 ,increasing with fuel oxidation factor and 4<limit dryness”.Experimental data support the conclusion that the absorption band at y= 3 550 cm 1corresponds to bound water molecules in non-polar organic solvents.The absorption band in the IR spectrum at y=3 550 cm 1 corresponding to water molecules bound to each other, and the relationship between its intensity and 4<limit dryness” confirms micelle formation concentration upon fuel oxidation. Most likely, this band corresponds to the bound (solubilized) water located inside inverse surfactant micelles-products of liquid-phase oxidation.Apparently, the initial product contains a certain amount of neutral resins—substances of liquid or semi-liquid consistency with very weak surfactant properties. They have heterogeneous composition and are a mixture of various aromatic hydrocarbons with long chains$condensed aromatic and naphthenic aromatic compounds with short chains, phenolic and nitrogen bases , and other compounds.Neutral resins readily enter into oxidation , bodying and condensation reactions , reacting to form asphaltenes , carbe- nes , and carboids. Asphaltenes are quite strong surfactants at the hydrocarbon/ water interface. Due to their surfactant properties , resinous asphaltenes play an important role in the production , transport , and refining of oil , increasing its we-- tability. Naphthenic (carboxylic) acids , which are widespread oil-soluble surfactants , are also oxidation products. Colloidal surfactants are of particular interest. The main distinctive feature of these substances is their ability to form thermodynamically stable heterogeneous disperse systems (associative ormicellar colloids). The main characteristics of colloidal surfactants are high surface activity , capacity for spontaneous micelle formation , and capacity of surfactant solutions to solubilize , i e. to increase the solubility of a substance because its molecules penetrate into micelles.3 ConclusionsThus , we can conclude that if CMC is achieved upon further oxidation of hydrocarbon liquids , micelle formation processes occur spontaneously in the solution , and the true solution becomes a colloidal system (sol). The resulting m- celles are structured with hydrocarbon radicals of molecules toward the outside and hydrophilic (polar) groups toward the inside. Water molecules are located inside micelles and held so securely that water molecules do not aggregate as temperature decreases. These processes explain the experimental data we obtained showing significant differences in the equilibrium solubility of water as a function of temperature for various batches of the same hydrocarbon fuiLThe conducted experiments determined the reasons for significant differences in the equilibrium solubility of water as a function of temperature for various batches of thesame hy第41卷第3期 A. A. Boriaev:Effect of Liquid-phase Oxidation Impurities on Solubility of Water in Hydrocarbon235drocarbon fuel. The main reason is the different oxidation factors of product samples, resulting from the accumulation of oxidation products, which are natural surfactants, in hydrocarbon fuels. Surfactants are organic substances containing a hydrocarbon radical and one or several active polar groups. The surfactant hydrocarbon portion may consist of paraffinic , isoparaffinic , naphthenic aromatic , and other hydrocarbons of various structure. For the most common active groups are oxygen-containing (eth er,carboxyl , hydroxyl , etc. %and nitrogen-containing (nitro-,amino-,amido-,etc. % groups. Thus,dehydration is important for improving the quality of hydrocarbon fuels; this process requires modern,high-performance technologies based on well-understood natural laws and specific mechanisms of how water dissolves in hydrocarbon fuels,one of which is the effect of liquid-phase oxidation impurities on water solubility.References![1] Kobyzev S V. Modelirovanie obezvozhivanija uglevodorod-nogo gorjuchego s primeneniem azota pri vypolnenii tehno-logicheskih operaci- podgotovki raketnogo topliva na starto-vom kom plekse)]. Engineering Bulletin of the BaumanMoscow State Technical University,2014(11% :11-15. )]Aleksandrov A A,Zolin A V,Kobyzev S V,et al.Sravniteinyi analiz tehnologi- obezvozhivanija raketnogo topliva s primeneniem azota dlja nazemnyh komple-ksov kosmodromov )].Bulletin of the Bauman Moscow State Technical University,Mechanical Engineering Series,2013 (1% :12-22.[3] Goncharov R A,Zolin A V,Kobyzev S V,et a l Mod-elirovanie teplomassoobmennyh processov podgotovkiuglevodorodnogo gorjuchego pered zapravkoj v to-plivnye baki rakety na startovom komplekse [C] " 7t hInternational Aerospace Congress. Moscow:Ho-ruzhevski A I,2012:242-243.[4] M aX,Zhou A,Song C. A novel method for oxidativedesulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled withselective adsorption )].Catalysis Today,2007,123(1-4% :276-284.)]Fernandez-Tarrazo E,Sanchez A L , Linan A , et a l A simple one-step chemistry model for partially premixedhydrocarbon combustion[J]. Combustion and Flame,2006,147 (1/2%:32-38.[6] You X,Egolfopoulos F N , Wang H. Detailed and simplified kinetic models of n-dodecane oxidation:the roleof fuel cracking in aliphatic hydrocarbon combustion[J]. Proceedings of the Combustion Institute,2009,32(1% 403-410.[7] Murugan P,Mahinpey N,M a n iT,et a l Effect oflow-temperature oxidation on the pyrolysis and combustion of whole oil [J]. Energy,2010 , 35 (5%:2317-2322.[8] Al-Hamamre Z,Trimis D. Investigation of the intermediate oxidation regime of diesel fuel [J]. Combustionand Flame,2009,156(9% :1791-1798.[9] Li D,Fang W,Xing Y,et a l Spectroscopic studies onthermal-oxidation stability of hydrocarbon fuels [J].Fuel,2008,87 (15/16% :3286-3291.[10] Thomas S,Wornat M J. The effects of oxygen on theyields of polycyclic aromatic hydrocarbons formed during the pyrolysis and fuel-rich oxidation of catechol [J].Fuel,2008,87(8% : 768-781.[11] Shakeri A, Mazaher K,Owliya M. Using sensitivity analysis and gradual evaluation of ignition delay error toproduce accurate low-cost skeletal mechanisms for oxidation oV hydrocarbon Vuels under high-temperaturecondtons [ J ]. Energy Fuels,2017,31 (10%:11234-11252.[12] Borjaev A A,Korichev A A. Himmotologija. Avtomo-b ln y e topliva ipro cessy,protekajushhie v toplivnyhsistemah avtomobil'noi tehniki [M]. Saint Petersburg:Publishing House of the Saint Petersburg State University of Service and Economics,2014:208.[13] Kobyzev S V. Metodika rascheta koefficientov massoo--dachi pri osushke uglevodorodnogo raketnogo topliva[J]. Science and Education. Bauman Moscow State Technical University (electronic iournal% ,2011(11%. Available a t:http:// technomag. edu. ru/doc/245147. h--ml (accessed:24+09+2012%+[14] Sorenson K L. Comparative studies on oxygen masstransfer for the design and development of a single-usefermentor [D]. http:/ digitalcommons. usu. edu/etd/738 (accessed:23+11+2017%+2010+[15] Masood R M A,Rauh C,Delgado A. CFD simulationof bubble column flows:an explicit algebraic reynoldsstress model approach [J ]. International Journal ofMultiphase Flow,2014 (66% :11-25.[16 ] Gilbert D E,Wagoner D E,Smith F. Guidelines forDevelopment of a Quality Assurance Program:Determination of Phosphorus in Gasoline,Vol. XII [R].Washington D C. :US E P A2013:70.[17] Clark A Q,Smith A G,Threadgold S,et al. Dispersedwater and particulates in iet fuel:size analysis under operational conditions and application to coaleser disarming [J]. Industrial j Engineering Chemical Research,2011,50(9% :5749-5765.[18] Litvinenko A N,Shlejfer A A. Sposob podgotovki otv-erzhdennogo uglevodorodnogo topliva k primeneniju iustanovka dlja ego osushhestvlenija:R U,2289064[P]. 1990.。