全等三角形判定的练习题

合集下载

(完整版)全等三角形判定综合练习题

(完整版)全等三角形判定综合练习题

全等三角形判定练习题1、如图(1):AD ⊥BC ,垂足为D ,BD =CD 。

求证:△ABD ≌△ACD2、如图(2):AC ∥EF ,AC =EF ,AE =BD 。

求证:△ABC ≌△EDF 。

3、 如图(3):DF =CE ,AD =BC ,∠D =∠C 。

求证:△AED ≌△BFC 。

FE (图2)DCBAFEDC(图1)DCBA4、 如图(4):AB =AC ,AD =AE ,AB ⊥AC ,AD ⊥AE .求证:(1)∠B =∠C ,(2)BD =CE5、如图(5):AB ⊥BD ,ED ⊥BD ,AB =CD ,BC =DE 。

求证:AC ⊥CE 。

E(图4)DCBAE(图5)DCBA6、如图(6):CG =CF ,BC =DC ,AB =ED ,点A 、B 、C 、D 、E 在同一直线上。

求证:(1)AF =EG ,(2)BF ∥DG .7、如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN =BC 。

求证:(1)MN 平分∠AMB ,(2)∠A =∠CBM 。

GFE(图6)DC BANM(图7)CBA8、如图(8):A 、B 、C 、D 四点在同一直线上,AC =DB ,BE ∥CF ,AE ∥DF 。

求证:△ABE ≌△DCF 。

9、如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE =CF 。

求证:AM 是△ABC 的中线。

FE(图8)DC B AMFE(图9)CBA10、如图(10)∠BAC =∠DAE ,∠ABD =∠ACE ,BD =CE . 求证:AB =AC 。

11、如图(11)在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC 上任一点。

求证:PA =PD .12、如图(12)AB ∥CD ,OA =OD ,点F 、D 、O 、A 、E 在同一直线上,AE =DF . 求证:EB ∥CF 。

《全等三角形的判定》练习(含答案)

《全等三角形的判定》练习(含答案)

全等三角形的判定一、选择题1.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( )A .①B .②C .③D .①和②【答案】C .【解析】解带③去可以利用“角边角”得到全等的三角形.故选C .2.如图,已知:∠A=∠D ,∠1=∠2,下列条件中能使△ABC ≌△DEF 的是()A .∠E=∠B B .ED=BC C .AB=EFD .AF=CD【答案】D .【解析】添加AF=CD ,∵AF=CD ,∴AF+FC=CD+FC ,∴AC=FD ,在△ABC 和△DEF 中12A DAC DF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA ),故选D .3.下列关于两个三角形全等的说法:①三个角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和其中一个角的对边对应相等的两个三角形全等;④有两边和一个角对应相等的两个三角形全等.正确的说法个数是( )A .1个B .2个C .3个D .4个【答案】B .【解析】①不正确,因为判定三角形全等必须有边的参与;②正确,符合判定方法SSS ;③正确,符合判定方法AAS ;④不正确,此角应该为两边的夹角才能符合SAS .所以正确的说法有两个.故选B .4.在△ABC 和△A ˊB ′C ′中,已知∠A=∠A ′,AB=A ′B ′,在下面判断中错误的是( )A .若添加条件AC=A ′C ′,则△ABC ≌△A ′B ′C ′B .若添加条件BC=B ′C ′,则△ABC ≌△A ′B ′C ′C .若添加条件∠B=∠B ′,则△ABC ≌△A ′B ′C ′D .若添加条件∠C=∠C ′,则△ABC ≌△A ′B ′C ′【答案】B.【解析】A ,正确,符合SAS 判定;B ,不正确,因为边BC 与B ′C ′不是∠A 与∠A ′的一边,所以不能推出两三角形全等;C ,正确,符合AAS 判定;D ,正确,符合ASA 判定;故选B .5.如图,在等腰△ABC 中,AB=AC ,∠A=20°,AB 上一点D 使AD=BC ,过点D 作DE ∥BC 且DE=AB ,连接EC ,则∠DCE 的度数为( )A .80°B .70°C .60°D .45°【答案】B.【解析】如图所示,连接AE .∵AE=DE,∴∠ADE=∠DAE,∵DE∥BC,∴∠DAE=∠ADE=∠B,∵AB=AC,∠BAC=20°,∴∠DAE=∠ADE=∠B=∠ACB=80°,在△ADE 与△CBA 中,DAE ACB AD BCADE B ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴AE=AC,∠AED=∠BAC=20°,∵∠CAE=∠DAE﹣∠BAC=80°﹣20°=60°,∴△ACE 是等边三角形,∴CE=AC=AE=DE,∠AEC=∠ACE=60°,∴△DCE 是等腰三角形,∴∠CDE=∠DCE,∴∠DEC=∠AEC﹣∠AED=40°,∴∠DCE=∠CDE=(180﹣40°)÷2=70°.故选B .6.如图:AB=AC ,∠B=∠C,且AB=5,AE=2,则EC 的长为( )A .2B .3C .5D .2.5【答案】B.【解析】在△ABE 与△ACF 中,∵A AAB AC B C∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△ACF(ASA ),∴AC=AB=5∴EC=AC﹣AE=5﹣2=3,故选B.二、填空题.7.如图,AB=AC ,要使△ABE≌△ACD,依据ASA ,应添加的一个条件是 .【答案】∠C=∠B .【解析】添加∠C=∠B,在△ACD 和△ABE 中,A AAB AC C B∠=∠⎧⎪=⎨⎪∠=∠⎩,8.如图,AB∥CF,E 为DF 中点,AB=20,CF=15,则BD= 5 .【答案】5.【解析】∵AB∥FC,∴∠ADE=∠EFC,∵E 是DF 的中点,∴DE=EF,在△ADE 与△CFE 中,ADE EFC DE EFAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE≌△CFE,∴AD=CF,∵AB=20,CF=15,∴BD=AB﹣AD=20﹣15=5.9.如图,∠1=∠2,∠3=∠4,BC=5,则BD= .【答案】5. 【解析】∵∠ABD+∠3=180°∠ABC+∠4=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB 和△ACB 中,1=2AB ABABD ABC ∠∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADB≌△ACB(ASA ),∴BD=BC=5.10.如图,要测量一条小河的宽度AB 的长,可以在小河的岸边作AB 的垂线 MN ,然后在MN 上取两点C ,D ,使BC=CD ,再画出MN 的垂线DE ,并使点E 与点A ,C 在一条直线上,这时测得DE 的长就是AB 的长,其中用到的数学原理是: .【答案】ASA ,全等三角形对应边相等 .【解析】∵AB⊥MN,DE⊥MN,∴∠ABC=∠EDC=90°,在△ABC 和△EDC 中,ABC EDC BC DCACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC≌△EDC(ASA ),∴DE=AB.11.如图,在四边形ABCD 中,AB∥DC,AD∥BC,对角线AC 、BD 相交于点O ,则图中的一对全等三角形为 .(写出一对即可)【答案】△ABC ≌△ADC.【解析】△ABC≌△ADC,理由如下:∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,在△ABC 与△ADC 中,BAC DCA AC CADAC BCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC≌△ADC(ASA ),∴AB=DC,BC=DA ,在△ABO 与△CDO 中,BAO DCO AOB COD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO≌△CDO(AAS ),同理可得:△BCO≌△DAO,三、解答题12.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A=∠F,∠EBC=∠FCB.求证:BE=CD .【答案】证明见解析.【解析】∵∠EBC=∠FCB,∠EBC+∠ABE=180°,∠FCB+∠FCD=180°,∴∠ABE=∠FCD,在△ABE 与△FCD 中,A F AB FCABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE≌△FCD(ASA ),∴BE=CD.13.如图,点D 在AB 上,DF 交AC 于点E ,CF∥AB,AE=EC .求证:AD=CF .【答案】答案见解析.【解析】∵CF∥AB,∴∠A=∠ACF,∠ADE=∠CFE.在△ADE 和△CFE 中,A ACF ADE CFE AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△CFE(AAS ).∴AD=CF.14. 如图,锐角△ABC 中,∠BAC=60°,O 是BC 边上的一点,连接AO ,以AO 为边向两侧作等边△AOD 和等边△AOE,分别与边AB ,AC 交于点F ,G .求证:AF=AG .【答案】答案见解析.【解析】∵△AOD 和△AOE 是等边三角形,∴∠E=∠AOF=60°,AE=AO ,∠OAE=60°,∵∠BAC=60°,∴∠FAO=∠EAG=60°﹣∠CAO, 在△AFO 和△AGE 中, FAO EAG AO AEAOF E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AFO≌△AGE(ASA ), ∴AF=AG.。

全等三角形的判定练习题

全等三角形的判定练习题

全等三角形的判定练习题一、选择题1. 下列哪组条件可以判定两个三角形全等?A. 两边和其中一边的对角相等B. 两角和其中一角的对边相等C. 两边和它们的夹角相等D. 两角和其中一边相等A. ∠A=∠DB. ∠B=∠EC. ∠C=∠FA. SAS(边角边)B. ASA(角边角)C. AAS(角角边)D. SSS(三边)二、填空题1. 若两个三角形的______相等,且它们的夹角相等,则这两个三角形全等。

2. 在全等三角形中,对应边______相等,对应角______相等。

3. 要判定两个三角形全等,至少需要知道它们的______个元素相等。

三、判断题1. 若两个三角形的两边和它们的夹角分别相等,则这两个三角形一定全等。

()2. 两个等腰三角形的底角相等,则这两个三角形全等。

()3. 两个等边三角形的边长相等,则这两个三角形全等。

()四、解答题1. 在△ABC中,AB=AC,∠B=∠C,求证:△ABC是等腰三角形。

2. 已知△ABC和△DEF,AB=DE,BC=EF,∠B=∠E,求证:△ABC≌△DEF。

3. 在△ABC中,AB=AC,∠A=40°,∠B=70°,求∠C的度数。

4. 已知△ABC和△DEF,AB=DE,BC=EF,AC=DF,求证:△ABC≌△DEF。

5. 在△ABC中,AB=8cm,AC=10cm,∠A=60°,求BC的长度。

五、作图题1. 请作出一个三角形,使其与给定三角形全等,已知条件是两边及其夹角。

2. 请作出一个三角形,使其与给定三角形全等,已知条件是两角及其夹边。

3. 请作出一个三角形,使其与给定三角形全等,已知条件是三边。

六、综合题1. 在平面直角坐标系中,点A(2, 3),点B(6, 3),点C和点D在x轴上,且△ABC≌△ABD,求点C和点D的坐标。

2. 在四边形ABCD中,AB=CD,AD=BC,且∠ABC=∠CDA=90°,证明:△ABC≌△CDA。

三角形全等判定专题训练题

三角形全等判定专题训练题

三角形全等判定专题训练题1.给定三角形ABC,AD垂直于BC,垂足为D,且BD=CD。

证明△ABD≌△ACD。

2.给定平行四边形ABCD,AC=EF,AC平行于EF,且F在AD上。

证明△ABC≌△EDF。

3.给定三角形ABC和DEF,DF=CE,AD=BC,∠D=∠C。

证明△AED≌△BFC,其中AE=BD。

4.给定等腰直角三角形ABC,AB=AC,AD=AE,AB垂直于AC,AD垂直于AE。

证明∠B=∠C且BD=CE。

6.给定四边形ABCDE,CG=CF,BC=DC,AB=ED,且A、B、C、D、E在同一直线上。

证明AF=EG且BF平行于DG。

7.给定三角形ABC,AC垂直于BC,___平分∠ABC,且交AC于点M,N是AB的中点,且BN=BC。

证明___平分∠AMB且∠A=∠___。

8.给定四边形ABCD,AC=DB,BE平行于CF,AE平行于DF。

证明△ABE≌△DCF。

9.给定三角形ABC,AE和BC相交于点M,F在AM上,BE平行于CF,且BE=CF。

证明AM是△ABC的中线。

10.给定四边形ABCD,且∠BAC=∠DAE,∠ABD=∠ACE,BD=CE。

证明AB=AC。

11.给定三角形ABC和△DBC,且∠1=∠2,∠3=∠4,P是BC上的任意一点。

证明PA=PD。

12.给定四边形ABCD,AB平行于CD,OA=OD,且F、D、O、A、E在同一直线上,AE=DF。

证明EB平行于CF。

13.给定三角形ABC和△EDC,且△ABC≌△EDC。

证明BE=AD。

14.给定等腰直角三角形ABC,AC=BC,AE是BC的中线,CF⊥AE于F,BD⊥CB交CF的延长线于点D。

证明AB=BD。

15、证明:由图可知,∠BAC=90°,且AB=2AC,因此由勾股定理可得BC=√5AC,而DE=AC,BF=2AC,EF=BC-AC=√5AC-AC=(√5-1)AC,因此AE=AC+EF=2AC+(√5-1)AC=(1+√5)AC,所以△ABC≌△AED。

全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

全等三角形的判定〔SSS〕1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,那么∠ACD的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•那么下面的结论中不正确的选项是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3、在△ABC和△A1B1C1中,AB=A1B1,BC=B1C1,那么补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS〞证明______≌_______得到结论.5、如图,AB=CD,AC=BD,求证:∠A=∠D.6、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导以下结论:⑴∠D=∠B;⑵AE∥CF.7、如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的根底上,求证:DE∥BF.D C BA 全等三角形的判定(SAS)1、如图1,AB ∥CD ,AB=CD ,BE=DF ,那么图中有多少对全等三角形( )A.3B.4C.5D.62、如图2,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B.AD ∥BC C.∠A=∠C D.∠ABC=∠CDA4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD 〔 〕 6、如图6,AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,AB=AD ,假设AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明. ①AB=DE ; ②AC=DF ; ③∠ABC=∠DEF ; ④BE=CF.9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .⑴试判断AC 与CE 的位置关系,并说明理由.⑵如图⑵,假设把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC与-.BE 的位置关系还成立吗?(注意字母的变化)全等三角形〔三〕AAS 和ASA【知识要点】1.角边角定理〔ASA 〕:有两角及其夹边对应相等的两个三角形全等. 2.角角边定理〔AAS 〕:有两角和其中一角的对边对应相等的两个三角形全等. 【典型例题】例1.如图,AB ∥CD ,AE=CF ,求证:AB=CD例2.如图,:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD.例4.如图:AB=CD ,AD=BC ,O 是BD 中点,过O 点的直线分别交DA 和BC 的延长线于E ,F.求证:AE=CF.A-.例5.如图,321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 上,点E 在BC 上,AF=CE ,EF 的对角线BD 交于O ,请问O 点有何特征?【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠那么△ABC 与△C B A ''' .2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .3.在△ABC 和△C B A '''中,以下条件能判断△ABC 和△C B A '''全等的个数有〔 〕 ①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个 D. 4个4.如图,MB=ND ,NDC MBA ∠=∠,以下条件不能判定是△ABM ≌△CDN 的是〔 〕A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN 5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出以下结论:ABD C EO12 3AFDOB EC①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是_________ _________。

(完整版)全等三角形判定测试题(含答案)

(完整版)全等三角形判定测试题(含答案)

全等三角形判定测试题班级_________ 学号 __________ 姓名______________ 分数_______一、选一选,看完四个选项后再做决定呀! (每小题3分,共30分)1已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为【】(A)50°(B)80°( C) 50°或80°(D)40°或65°D , E, F分别是BC, AD , CE的中点,且S^ABC =4 5 6 7 84 工人师傅常用角尺平分一个任意角•做法如下:如图2所示,/ AOB是一个任意角,在边OA, OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M ,N重合.过角尺顶点C的射线OC即是/ AOB的平分线•这种做法的道理是【】.(A) HL ( B) SSS ( C) SAS( D) ASA5 利用三角形全等所测距离叙述正确的是( )A. 绝对准确B. 误差很大,不可信C. 可能有误差,但误差不大,结果可信D. 如果有误差的话就想办法直接测量,不能用三角形全等的方法测距离6 在图3所示的3 X3正方形网格中,/ 1 + Z 2+Z 3+Z 4+/5等于【】.2.如图1所示,在△ ABC中,已知点9(A) 145°( B) 180°(C) 225°( D) 270°7•根据下列条件,能判定厶ABC^A A'B'C'的是【】.(A)AB=A'B‘,BC=B'C; / A=Z A'(B)Z A= / A', / B= / B AC= B C '(C)Z A= / A', / B= / B; / C= / C'(D)AB=A'B‘,BC=B'C ;△ ABC 的周长等于△A'B'C'的周长8 如图 4 所示,△ ABC 中,/ C=90 °,点 D 在AB 上,BC=BD , DE 丄AB 交AC 于点E. △ ABC的周长为12,A ADE的周长为6•则BC的长为【】.(A) 3 ( B) 4 ( C) 5 (D) 69 将一副直角三角尺如图5所示放置,已知AE // BC ,则/ AFD的度数是【平方厘米,则S A BEF 的值为【 】(A) 5厘米 (B ) 7厘米(C ) 9厘米 (D ) 11厘米】.(A ) 45°(B ) 50°(C )60°( D ) 75°(B ) 1平方厘米(C ) 1平方厘米2(D )-平方厘米4(A ) 2平方厘米图1则第三边长为【3.已知一个三角形的两边长分别是2厘米和9厘米,且第三边为奇数,、填一填,要相信自己的能力!(每小题3分,共30分)1 11•在ABC 中,若A= 2 B3 C,则ABC 是 -------------------- 三角形.2. 如图7所示,BD 是 ABC 的中线, AD 2 , AB BC 5,贝U ABC 的周长是 _________________ .3. 如图8所示所示,在 ABC 中,BD , CE 分别是AC 、AB 边上的高,且BD 与CE 相交于点0,如果 BOC 135,那么 A 的度数为 ________________ .4. 有5条线段,长度分别为 1厘米、2厘米、3厘米、4厘米、5厘米,以其中三条线段为 边长,共可以组成 ________________ 个形状不同的三角形.的大小等于 _____ 度.方向的长度 DF 相等,则△ ABC ^A DEF ,理由是 ________ 7. 如图11所示,AD // BC , AB // DC ,点O 为线段AC 的中点,过点 O 作一条直线分别与AB 、CD 交于点M 、N .点E 、F 在直线MN 上,且OE=OF .图中全等的三角形共有 __________ 对.8. 如图12所示,要测量河两岸相对的两点 A 、B 的距离,在AB 的垂线BF 上取两点C 、D , 使BC=CD ,过D 作BF 的垂线 DE ,与AC 的延长线交于点 E ,则/ ABC= / CDE=90° , BC=DC ,Z 1= _______ , △ ABC 也 _________ ,若测得 DE 的长为25米,则河宽 AB 长为 9. 如图13所示,有一底角为35。

八年级数学-全等三角形的判定练习(含答案)

八年级数学-全等三角形的判定练习(含答案)

八年级数学-全等三角形的判定练习(含答案)一、选择题1.如图,点E、F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.AD∥BC B.DF∥BE C.∠D=∠B D.∠A=∠C 【答案】C.【解析】∠D=∠B,理由是:∵在△ADF和△CBE中AD BCD BDF BE=⎧⎪∠=∠⎨⎪=⎩∴△ADF≌△CBE(SAS),即选项C正确;具备选项A、选项B,选项D的条件都不能推出两三角形全等,故选C.2.如图,若已知AE=AC,用“SAS”说明△ABC≌△ADE,还需要的一个条件是()A.BC=DE B.AB=AD C.BO=DO D.EO=CO【答案】B.【解析】在△ABC与△ADE中AE ACA AAB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△ADE(SAS),故选B.3.如图,AB=CD,AB∥CD,判定△ABC≌△CDA的依据是()A.SSS B.SAS C.ASA D.HL 【答案】B.【解析】∵AB∥CD,∴∠BAC=∠DCA,在△ABC与△CDA中,AB CDBAC DCAAC CA=⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△CDA(SAS).故选B.4.如图所示,AB=BD,BC=BE,要使△ABE≌△DBC,需添加条件()A.∠A=∠D B.∠C=∠E C.∠D=∠ED.∠ABD=∠CB E【答案】D.【解析】∵AB=BD,BC=BE,∴要使△ABE≌△DBC,需添加的条件为∠ABE=∠DBC,又∠ABE﹣∠DBE=∠DBC﹣∠DBE,即∠ABD=∠CBE,∴可添加的条件为∠ABE=∠DBC或∠ABD=∠CBE.综合各选项,D选项符合.故选D.5.如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是()A.SSS B.SAS C.ASA D.AAS【答案】B.【解析】∵△ABD和△A CE都是等边三角形,∴AD=AB,AC=AE,又∵∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,∴△ADC≌△ABE(SAS).故选B.6.如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD,则∠ECA的度数为()A.30° B.35° C.40° D.45°【答案】C.【解析】在BC上截取BF=AB,连DF,则有△ABD≌△FBD(SAS),∴DF=DA=DE,又∵∠ACB=∠ABC=40°,∠DFC=180°﹣∠A=80°,∴∠FDC=60°,∵∠EDC=∠ADB=180°﹣∠ABD﹣∠A=180°﹣20°﹣100°=60°,∴△DCE≌△DCF(SAS),故∠ECA=∠DCB=40°.故选C.7.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=40°,则∠DEF的度数是()A.75° B.70° C.65° D.60°【答案】B.【解析】∵AB=AC,∴∠B=∠C=12(180°﹣∠A)=70°,在△BDE和△CEF中,BD CEB CBE CF=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CEF(SAS),∴∠BDE=∠CEF,∵∠CED=∠B+∠BDE,即∠CEF+∠DEF=∠B+∠BDE,∴∠DEF=∠B=70°;故选B.8.如图,AD∥BC,AD=CB,要使△ADF≌△CBE,需要添加的下列选项中的一个条件是()A.AE=CF B.DF=BE C.∠A=∠C D.AE=EF 【答案】A.【解析】只有选项A正确,理由是:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵AD∥BC,∴∠A=∠C,在△ADF和△CBE中,AD BCA CAF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CBE(SAS),故选A.二、填空题9.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,AD=EC,AE=10,AC=6,则CD 的长为.【答案】2.【解析】∵AB∥EF,∴∠A=∠E,∵AD=EC,∴AD+DC=EC+DC,即AC=ED,在△ABC和△EFD中AB EFA EAC ED=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△EFD(SAS),∴AC=ED=6,∴CD=AC+ED﹣AE=6+6﹣10=2,10.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件.(只要填一个)【答案】AC=DF.【解析】补充AC=DF.∵∠1=∠2,BC=EF,AC=DF∴△ABC≌△DEF,11.如图,△ABC中,AB=AC,点D,E在BC边上,当时,△ABD≌△ACE.(添加一个适当的条件即可)【答案】BD=CE.【解析】BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中AB ACB CBD CE=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△ACE(SAS).12.如图,已知AC=AE,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个).【答案】AB=AD.【解析】AB=AD,理由是:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,在△ABC和△ADE中,AB ADBAC DAEAC AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△ADE(SAS),13.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D,下列结论:①∠EAB=∠FAC;②∠C=∠EFA;③AD=AC;④AF=AC.其中正确的结论是(填写所有正确结论的序号).【答案】①②④.【解析】在△ABC与△AEF中,AB AEB EBC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△AEF(SAS),∴∠EAB=∠FAC,∠C=∠EFA,AF=AC,∴①②④正确;由已知条件不能得出AD=AC,③不正确.三、解答题14.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.【答案】证明见解析.【解析】∵∠1=∠2,∴∠ACB=∠DCE,在△ABC和△DE C中,CA CDACB DCEBC EC=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEC(SAS).15.如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.【答案】证明见解析.【解答】证明:∵BC=DE,∴BC+CD=DE+CD,即BD=CE,在△ABD与△FEC中,AB EFB EBD EC=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△FEC(SAS),∴∠ADB=∠FCE.16.已知:如图,在△ABC、△AD E中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E 三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【答案】(1)证明见解析;(2)BD⊥CE.【解析】(1)∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.。

全等三角形的判定方法50道经典题

全等三角形的判定方法50道经典题

全等三角形的判定方法50道经典题以下是全等三角形判定的50道经典题:1. 给定两个三角形的三边长,判断它们是否全等。

2. 给定两个三角形的一个角和两个侧边,判断它们是否全等。

3. 给定两个三角形的两个角和一个侧边,判断它们是否全等。

4. 给定两个三角形的一个角和两个高,判断它们是否全等。

5. 给定两个三角形的两个角和一个高,判断它们是否全等。

6. 给定两个三角形的两个角和一个中线,判断它们是否全等。

7. 给定两个三角形的一个角和两个角平分线,判断它们是否全等。

8. 给定两个三角形的两个角和一个外接圆半径,判断它们是否全等。

9. 给定两个三角形的一个角和一个内切圆半径,判断它们是否全等。

10. 给定两个三角形的一个角和一个内心到边的距离,判断它们是否全等。

11. 给定两个三角形的两个角和一个重心到边的距离,判断它们是否全等。

12. 给定两个三角形的两个角和一个垂心到边的距离,判断它们是否全等。

13. 给定两个三角形的一个角和一个外心到边的距离,判断它们是否全等。

14. 给定两个三角形的两个角和一个外心到边的距离,判断它们是否全等。

15. 给定两个三角形的两个角和一个垂足到边的距离,判断它们是否全等。

16. 给定两个三角形的两个角和一个内心到边的角平分线的距离,判断它们是否全等。

17. 给定两个三角形的一个角和一个外心到边的角平分线的距离,判断它们是否全等。

18. 给定两个三角形的两个角和一个内角平分线的夹角,判断它们是否全等。

19. 给定两个三角形的一个角和两个角平分线的夹角,判断它们是否全等。

20. 给定两个三角形的两个角和一个内心到边的角平分线的夹角,判断它们是否全等。

21. 给定两个三角形的两个角和一个内心到边的角平分线的夹角,判断它们是否全等。

22. 给定两个三角形的一个角和两个角平分线的夹角之和,判断它们是否全等。

23. 给定两个三角形的两个角和一个内心到边的角平分线的夹角之和,判断它们是否全等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形一、填空题1._______________________________的两个图形叫做全等形.2.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.3.如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.图1-1 图1-2 图1-34.如图1-1所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC=_____ (2)如果AC=DB,请指出其他的对应边_____________________;(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_________________,对应角_________________.5.如图1-2,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.6.一个图形经过平移、翻折、旋转后,_____________变化了,但______________都没有改变,即平移、翻折、旋转前后的图形________________二、选择题7.已知:如图1-3,ΔABD≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD8.下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4B.3C.2D.19.如图1-4,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD=6,AD=4,那么BC等于()A.6 B.5C.4D.无法确定图1-4 图1-5 图1-610.如图1-5,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC11.如图1-6,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°三、解答题12.已知:如图1-7所示,以B为中心,将Rt△EBC绕B点逆时针旋转90°得到△ABD,若∠E=35°,求∠ADB的度数.图1-7图1-8图1-9一、填空题13.如图1-8,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠a的度数为______.14.已知:如图1-9,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.15.如图1-10,AB⊥BC,ΔABE≌ΔECD.判断AE与DE的关系,并证明你的结论.图1-10三角形全等的判定(一)一、填空题图2-1 图2-2 图2-31.已知:如图2-1,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .分析:要证RM 平分∠PRQ ,即∠PRM =______,只要证______≌______证明:∵ M 为PQ 的中点(已知),∴______=______ 在△______和△______中,⎪⎩⎪⎨⎧===),______(____________,),(PM RQ RP 已知 ∴______≌______( ). ∴ ∠PRM =______(_____________________________). 即RM 平分∠PRQ .2.已知:如图2-2,AB =DE ,AC =DF ,BE =CF . 求证:∠A =∠D .分析:要证∠A =∠D ,只要证______≌______.证明:∵BE =CF ( ), ∴BC =______.在△ABC 和△DEF 中,⎪⎩⎪⎨⎧===______,______,______,AC BC AB ∴______≌______( ). ∴ ∠A =∠D (______________________________).3.如图2-3,CE =DE ,EA =EB ,CA =DB ,求证:△ABC ≌△BAD .证明:∵CE =DE ,EA =EB ,∴______+______=______+______,即______=______.在△ABC 和△BAD 中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______已证已知 ∴△ABC ≌△BAD ( ).4.已知:如图2-4,AD =BC .AC =BD .试证明:∠CAD =∠DBC .三角形全等的判定(二)一、填空题1.已知:如图3-1,AB 、CD 相交于O 点,AO =CO ,OD =OB .求证:∠D =∠B .分析:要证∠D =∠B ,只要证______≌______证明:在△AOD 与△COB 中,⎪⎩⎪⎨⎧=∠=∠=),______(),______(______),(OD CO AO∴ △AOD ≌△______ ( ).∴ ∠D =∠B (______).2.已知:如图3-2,AB ∥CD ,AB =CD .求证:AD ∥BC .分析:要证AD ∥BC ,只要证∠______=∠______,又需证______≌______.证明:∵ AB ∥CD ( ),∴ ∠______=∠______ ( ), 在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______∴ Δ______≌Δ______ ( ).∴ ∠______=∠______ ( ). ∴ ______∥______( ).一、解答题3.已知:如图3-3,AB =AC ,∠BAD =∠CAD .求证:∠B =∠C .图3-34.已知:如图3-4,AB =AC ,BE =CD .求证:∠B =∠C .图3-45.已知:如图3-5,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.图3-56.如图3-6,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.图3-6三角形全等的条件(三)一、填空题1.(1)全等三角形判定方法3“角边角”(即__________________)指的是_________________________________________________________________________________________________________;(2)全等三角形判定方法4“角角边”(即________________________)指的是__________________________________________________________________________________________________.图4-12.已知:如图4-1,PM=PN,∠M=∠N.求证:AM=BN.分析:∵PM=PN,∴要证AM=BN,只要证P A=______,只要证______≌______.证明:在△______与△______中,⎪⎩⎪⎨⎧∠=∠=∠=∠),______(______),______(______),______(______∴ △______≌△______ ( ).∴P A =______ ( ).∵PM =PN ( ),∴PM -______=PN -______,即AM =______.3.已知:如图4-2,AC BD .求证:OA =OB ,OC =OD .分析:要证OA =OB ,OC =OD ,只要证______≌______.证明:∵ AC ∥BD ,∴ ∠C =______.在△______与△______中,⎪⎩⎪⎨⎧==∠∠=∠),______(______),______(),______(C AOC∴______≌______ ( ).∴ OA =OB ,OC =OD ( ).图4-2二、选择题4.能确定△ABC ≌△DEF 的条件是 ( )A .AB =DE ,BC =EF ,∠A =∠EB .AB =DE ,BC =EF ,∠C =∠EC .∠A =∠E ,AB =EF ,∠B =∠DD .∠A =∠D ,AB =DE ,∠B =∠E5.如图4-3,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC 全等的图形是 ()图4-3A .甲和乙B .乙和丙C .只有乙D .只有丙6.AD 是△ABC 的角平分线,作DE ⊥AB 于E ,DF ⊥AC 于F ,下列结论错误的是( )A .DE =DFB .AE =AFC .BD =CD D .∠ADE =∠ADF三、解答题7.阅读下题及一位同学的解答过程:如图4-4,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,图4-4⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A∴ △AOD ≌△COB (ASA ).问:这位同学的回答及证明过程正确吗?为什么?8.已知:如图4-5,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .图4-59.已知:如图4-6,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.图4-610.已知:AM是ΔABC的一条中线,BE⊥AM的延长线于E,CF⊥AM于F,BC=10,BE=4.求BM、CF的长.11.填空题(1)已知:如图4-7,AB=AC,BD⊥AC于D,CE⊥AB于E.欲证明BD=CE,需证明Δ______≌△______,理由为______.(2)已知:如图4-8,AE=DF,∠A=∠D,欲证ΔACE≌ΔDBF,需要添加条件__________,证明全等的理由是__________;或添加条件__________,证明全等的理由是__________;也可以添加条件__________,证明全等的理由是__________.图4-7 图4-812.如图4-9,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?图4-913.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l 的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.图4-10(2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.图4-11直角三角形全等的条件(四)一、填空题1.判定两直角三角形全等的“HL”这种特殊方法指的是_____.2.直角三角形全等的判定方法有_____ (用简写).图5-13.如图5-1,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则ΔABC≌_____,全等的根据是_____.4.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和这个角的邻边对应相等;()(3)一个锐角和斜边对应相等;()(4)两直角边对应相等;()(5)一条直角边和斜边对应相等.()二、选择题5.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等6.如图5-2,AB=AC,AD⊥BC于D,E、F为AD上的点,则图中共有()对全等三角形.A.3B.4C.5D.6三、解答题7.已知:如图5-3,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC:(2)AD∥BC.图5-38.已知:如图5-4,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC;图5-4。

相关文档
最新文档