高中数学人教B版必修3导学案:§2.2.2用样本的数字特征估计总体的数字特征 Word版含解析
【范文】高中数学必修三导学案2.2.2用样本的数字特征估计总体数字特征(1)

高中数学必修三导学案2.2.2用样本的数字特征估计总体数字特征(1)本资料为woRD文档,请点击下载地址下载全文下载地址www.5y 2.2.2用样本的数字特征估计总体数字特征(1)【学习目标】.正确理解样本数据分布直方图的意义和作用,从样本频率分布直方图中提取基本的数字特征.2.会用样本的基本数字特征估计总体的基本数字特征.【新知自学】阅读教材第71-78页内容,然后回答问题知识回顾:初中我们曾学习过几个数字特征?它们分别有什么特点?新知梳理:.众数、中位数、平均数①众数:样本观测值中出现次数的数,叫做这组数据的众数.②中位数:将一组数据从按大小依次排列,处在最的一个数据,叫做这组数据的中位数数.(当数据个数为奇数时,中位数是按从小到大的顺序排列中间的那个数.当数据个数为偶数时,中位数是按从小到大的顺序排列的最中间两个数的两个数的平均数).③平均数:(1)算术平均数已知数据这组数据的算术平均数为.(2)加权平均数若取值为的频率分别为则这组数据的算术平均数为.【感悟】如何理解平均数,中位数和众数之间的关系?答:平均数,中位数和众数都是总体的数字特征,从不同角度反映了分布的集中趋势,平均数是最常用的指标,也是数据点的“重心”位置,它易受极端值(特别大或特别小的值)的影响,中位数位于数据序列的中间位置,不受极端值的影响,在一组数据中,可能没有众数,也可能有多个众数.2、频率分布直方图中的中位数和平均数、众数①在频率分布直方图中,中位数左边和右边的直方图的面积。
②平均数的估计值等于频率分布直方图中每个小矩形的面积乘于小矩形底边中点的横坐标之和③众数的估计值是最高矩形的底边中点的横坐标。
【感悟】现实中的总体所包含的个体数往往是很多的,如何求得总体的平均数和标准差呢?答:通常的做法是用样本的平均数和标准差去估计总体的平均数和标准差,只要样本的代表性好,这样做就是合理的,也是可以接受的.对点练习:.求下列各组数据的众数、中位数、平均数(1)1,2,3,3,3,4,6,7,7,8,8,8(2)1,2,3,3,3,4,6,7,8,9,92.在一组数据7,8,8,10,12中,下面说法正确的是().(A)中位数等于平均数中位数大于平均数(c)中位数小于平均数(D)无法确定3.已知一频率分布直方图如图所示,分别求出其平均数,中位数和众数.【合作探究】典例精析例题 1.为了检查一批手榴弹的杀伤半径,抽取了其中20颗做试验,得到这20颗手榴弹的杀伤半径,并列表如下:在这个问题中,总体、个体、样本和样本容量各是什么?求出这20颗手榴弹的杀伤半径的众数、中位数和平均数,并估计这批手榴弹的平均杀伤半径.变式训练1.若有一个企业,70%的人年收入1万,25%的人年收入3万,5%的人年收入11万,求这个企业的年平均收入及年收入的中位数和众数.例题2.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重,得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是203040(D)50变式训练 2.下面是某校学生日睡眠时间的抽样频率分布表(单位:h),试估计该学生的日平均睡眠时间.睡眠时间人数频率50.0570.17330.33370.3760.0620.0200【课堂小结】【当堂达标】.10名工人某天生产同一零件,生产的件数是15,17、14、10、15、19、17、16、14、12,则这一天10名工人生产的零件的中位数是().(A)14(件)16(件)(c)15(件)(D)17(件)2.下列说法中,不正确的是().(A)数据2,4,6,8的中位数是4,6数据1,2,2,3,4,4的众数是2,4(c)一组数据的平均数、众数、中位数有可能是同一个数据(D)8个数据的平均数为5,另3个数据的平均数为7,则这11个数据的平均数为3.一组数据按大小关系排列为1,2,4,,6,9.这组数据的中位数为5,那么这组数据的众数为().A.4B.5c.5.5D.6【课时作业】.一名射击运动员连续射靶6次,命中的环数分别是:7、6、7、8、8、7,则这名运动员射击环数的众数是().(A)67(c)8(D)以上答案均不对2.设矩形的长为,宽为,其比满足∶=,这种矩形给人以美感,称黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.5980.6250.6280.5950.639乙批次:0.6180.6130.5920.6220.620上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是().(A)甲批次的总体平均数与标准值更接近乙批次的总体平均数与标准值更接近(c)两个批次总体平均数与标准值接近程度相同(D)两个批次总体平均数与标准值接近程度不能确定3.一个学校有初中生800人,高中生1200人,则是初中生占全体学生的().(A)频数(B)频率(c)概率(D)频率分布4.以下哪一个数不是总体的特征数.(A)总体平均数(B)总体方差(c)总体标准差(D)总体的样本5.光明中学高一年级360名学生选择摄影、棋类、武术、美术四门校本课程情况的扇形统计图如右,从图中可以看出选择美术的学生人数是().(A)18(B)24(c)36(D)546.用简单随机抽样的方法从含有个个体的总体中抽取一个样本,则在抽样过程中,每个个体被抽取的可能性().(A)相等(B)逐渐增大(c)逐渐减少(D)不能确定7.判断甲、乙两个小组学生英语口语测验成绩哪一组比较整齐,需要知道两组成绩的(A)平均数方差(c)众数(D)频率分布8.数、平均数、中位数分别是什么?9.若5,-1,-2,的平均数为1,则=.0.已知个数据的和为56,平均数为8,则=.1.1961年扬基队外垒手马利斯打破了鲁斯的一个赛季打出60个全垒打的记录.下面是扬基队的历年比赛中的鲁斯和马利斯每年击出的全垒打的比较图:鲁斯马利斯083465223685433997664范文94456www.5y 学习永无止境。
高中数学 2.2.2 用样本的数字特征估计总体的数字特征学案 新人教B版必修3(2021年整理)

2016-2017学年高中数学2.2.2 用样本的数字特征估计总体的数字特征学案新人教B版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学2.2.2 用样本的数字特征估计总体的数字特征学案新人教B版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学2.2.2 用样本的数字特征估计总体的数字特征学案新人教B版必修3的全部内容。
2.2.2 用样本的数字特征估计总体的数字特征1.会求样本的平均数、标准差、方差.(重点)2.理解用样本的数字特征估计总体的数字特征的方法。
(重点)3.会应用相关知识解决实际统计问题。
(难点)[基础·初探]教材整理1 样本的平均数阅读教材P65~P66,完成下列问题。
1.定义:样本中所有个体的平均数叫做样本平均数.2。
特点:平均数描述了数据的平均水平,定量地反映了数据的集中趋势所处的水平.用样本的平均数估计总体的平均数时,样本平均数只是总体平均数的近似.3.作用:n个样本数据x1,x2,…,x n的平均数错误!=错误!,则有n错误!=x1+x2+…+x n,也就是把每个x i(i=1,2,…,n)都用错误!代替后,数据总和保持不变。
所以平均数错误!对数据有“取齐”的作用,代表了一组数据的数值平均水平。
一组观察值4,3,5,6出现的次数分别为3,2,4,2,则样本平均值为( )A.4.55 B。
4。
5C.12.5D.1.64【解析】错误!=错误!≈4.55。
【答案】A教材整理2 样本的方差和标准差阅读教材P66“最后一段”至P68,完成下列问题.1.数据的离散程度可以用极差、方差或标准差来描述。
高中数学人教新课标B版必修3--《2.2.2用样本的数字特征估计总体的数字特征》课件3

x 4.91
问题3: 如何从频率散布直方图中估
计平均数,为什么?
21:32
答案:91.5,91.5
计中位数,为什么?
21:32
2 中位数:左边和右边的直方图面积相等
前三个矩形的面积和=0.41
后四个小矩形的面积和=0.48
0.25
0.15
0.13 0.10
0.06 0.22
0.09 0.11
4.91
分总析结::在在样本频数率据散中布,直有5方0%图的中个体,小把于频或率等散于中布位直数方,图也划有5分0%左的个右体两大
0.25
0.15
0.13 0.10
0.06 0.22
0.09 0.11
21:32
18
从锻炼时间样本数据可知,该样本的众数是3.5, 中位数是4.75,平均数是4.825。这与我们从样本频率 散布直方图得出的结论有偏差,你能解释一下原因吗?
因频率散布直方图本身得不出原始的数据内容, 所以由频率散布直方图得到的众数、中位数平 均值的估计往往与样本的实际中位数值不一致.
分析:众数为200,中位数为220,
平均数为300。
因平均数为300,由表格中所列 出的数据可见,只有经理在平均数以 上,其余的人都在平均数以下,故用 平均数不能客观真实地反应该工厂的 工资水平。
二、归纳提升: 众数、中位数、平均数的特点
特征数 众数 中位数 平均数
作用
局限性
众数体现了样本数据 的最大集中点
人教B版高中数学必修三新课标教案用样本的数字特征估计总体的数字特征

凡事豫(预)则立,不豫(预)则废。
2.2.2用样本的数字特征估计总体的数字特征教学目标:1.通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。
2.进一步体会用样本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。
教学重点:通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。
进一步体会用样本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。
教学过程:1. 本均值:nx x x x n +++=Λ21 2.样本标准差:nx x x x x x s s n 222212)()()(-++-+-==Λ 3.通过例1、例2、例3、例4、例5熟悉上述两个公式4.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。
在随机抽样中,这种偏差是不可避免的。
虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。
5.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)如果把一组数据中的每一个数据乘以一个共同的常数k ,标准差变为原来的k 倍(3)一组数据中的最大值和最小值对标准差的影响,区间)3,3(s x s x +-的应用;“去掉一个最高分,去掉一个最低分”中的科学道理课堂练习:第73页,练习A,练习B小结:通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。
进一步体会用样本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。
课后作业:第74页,习题2-2A 第4、5、6题,。
第二章 2.2.2 用样本的数字特征估计总体的数字特征-人教B版高中数学必修3学案

2.2.2 用样本的数字特征估计总体的数字特征学习目标 1.能合理地选取样本,并从中提取基本的数字特征.2.了解众数、中位数、平均数的概念,会计算方差和标准差.3.进一步体会用样本估计总体的思想,会用样本的数字特征估计总体的数字特征.知识点一 众数、中位数、平均数思考1 平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点? 答案 平均数与样本的每一个数据有关,它可以反映出更多的关于样本数据总体的信息,但它的缺点是平均数受数据中极端值的影响较大.思考2 在电视大奖赛中,计算评委打分的平均值时,为什么要去掉一个最高分和一个最低分? 答案 为了避免平均值受数据中个别极端值的影响,增大它在估计总体时的可靠性,故计算评委打分时要去掉一个最高分和一个最低分. 梳理 众数、中位数、平均数定义 (1)众数:一组数据中出现次数最多的数.(2)中位数:把一组数据按从小到大(或从大到小)的顺序排列,处在中间位置的数(或中间两个数的平均数)叫做这组数据的中位数.(3)平均数:如果n 个数x 1,x 2,…,x n ,那么x =1n (x 1+x 2+…+x n )叫做这n 个数的平均数.知识点二 方差、标准差思考1 当样本数据的标准差为0时,该组数据有何特点? 答案 当样本数据的标准差为0时,该组数据都相等. 思考2 标准差、方差的意义是什么?答案 标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小. 梳理 标准差、方差的概念及计算公式(1)标准差是样本数据到平均数的一种平均距离,一般用s 表示.s = 1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2](x n 是样本数据,n 是样本容量,x 是样本平均数). (2)标准差的平方s 2叫做方差.s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2](x n 是样本数据,n 是样本容量,x 是样本平均数).(3)标准差(或方差)越小,数据越稳定在平均数附近.s =0时,每一组样本数据均为x . 知识拓展:平均数、方差公式的推广:1.若数据x 1,x 2,…,x n 的平均数为x ,那么mx 1+a ,mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m x +a .2.设数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则 a .s 2=1n[(x 21+x 22+…+x 2n )-n x 2]; b .数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2; c .数据ax 1,ax 2,…,ax n 的方差为a 2s 2.知识点三 用样本的基本数字特征估计总体的基本数字特征 1.样本的基本数字特征包括众数、中位数、平均数、标准差.2.平均数向我们提供了样本数据的重要信息,但是平均数有时也会使我们作出对总体的片面判断,因为这个平均数掩盖了一些极端的情况,而这些极端情况显然是不能忽视的.因此,还需要用标准差来反映数据的分散程度.3.现实中的总体所包含的个体数往往是很多的,虽然总体的平均数与标准差客观存在,但是我们无从知道.所以通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差.虽然样本具有随机性,不同的样本测得的数据不一样,与总体的数字特征也可能不同,但只要样本的代表性好,这样做就是合理的,也是可以接受的.1.中位数是一组数据中间的数.( × ) 2.众数是一组数据中出现次数最多的数.( √ )3.一组数据的标准差越小,数据越稳定,且稳定在平均数附近.( √ )题型一 众数、中位数和平均数的理解与应用 命题角度1 众数、中位数、平均数的计算例1 某公司的33名职工的月工资(单位:元)如下表:(1)求该公司职工月工资的平均数;(2)若董事长、副董事长的工资分别从5 500元、5 000元提升到30 000元、20 000元,那么公司职工月工资新的平均数又是什么? 解 (1)公司职工月工资的平均数为x =5 500+5 000+3 500×2+3 000+2 500×5+2 000×3+1 500×2033=69 00033≈2 091(元).(2)若董事长、副董事长的工资提升后,职工月工资的平均数为x =30 000+20 000+3 500×2+3 000+2 500×5+2 000×3+1 500×2033=108 50033≈3 288(元).反思与感悟 (1)众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量. (2)众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中部分数据多次重复出现时,众数往往更能反映问题.(3)中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能在所给的数据中,也可能不在所给的数据中.(4)平均数的大小与一组数据里每个数据均有关系,任何一个数据的变动都会引起平均数的变动.(5)因为平均数与每一个样本数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质,也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于全体样本数据的信息.但平均数受数据的极端值的影响较大,使平均数在估计总体时可靠性降低.跟踪训练1 对于数据3,3,2,3,6,3,10,3,6,3,2,有下列结论: ①这组数据的众数是3;②这组数据的众数与中位数的数值不相等; ③这组数据的中位数与平均数的数值相等; ④这组数据的平均数与众数的数值相等. 其中正确结论的个数为( ) A .1 B .2 C .3 D .4 答案 A解析 在这11个数中,数3出现了6次,频率最高,故众数是3;将这11个数按从小到大的顺序排列得2,2,3,3,3,3,3,3,6,6,10,中间数据是3,故中位数是3;而平均数x =2×2+3×6+6×2+1011=4.故只有①正确.命题角度2 用频率分布直方图估算众数、中位数、平均数 例2 已知一组数据:125 121 123 125 127 129 125 128 130 129 126 124 125 127 126 122 124 125 126 128 (1)填写下面的频率分布表:(2)作出频率分布直方图;(3)根据频率分布直方图或频率分布表求这组数据的众数、中位数和平均数. 解 (1)频率分布表如下:(2)频率分布直方图如下:(3)在[125,127)中的数据最多,取这个区间的中点值作为众数的近似值,得众数126,事实上,众数的精确值为125.图中虚线对应的数据是125+2×58=126.25,事实上中位数为125.5.使用“组中值”求平均数:x =122×0.1+124×0.15+126×0.4+128×0.2+130×0.15=126.3,平均数的精确值为x =125.75.反思与感悟 (1)利用频率分布直方图估计数字特征: ①众数是最高的矩形的底边中点的横坐标; ②中位数左右两侧直方图的面积相等;③平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.(2)利用直方图求众数、中位数、平均数均为估计值,与实际数据可能不一致.跟踪训练2 一批乒乓球,随机抽取100个进行检查,球的直径频率分布直方图如图.试估计这个样本的众数、中位数和平均数.解 众数=39.99+40.012=40;四个矩形的面积分别是0.02×5=0.1, 0.02×10=0.2, 0.02×25=0.5, 0.02×10=0.2.中位数为39.99+0.225=39.998;平均数为39.96×0.1+39.98×0.2+40×0.5+40.02×0.2=39.996.题型二 标准差、方差的应用例3 计算数据89,93,88,91,94,90,88,87的方差和标准差(标准差结果精确到0.1). 解 ①x =90+18[(-1)+3+(-2)+1+4+0+(-2)+(-3)]=90+18×0=90;②计算x i -x (i =1,2,…,8),得各数据为-1,3,-2,1,4,0,-2,-3; ③计算(x i -x )2(i =1,2,…,8),得各数据为1,9,4,1,16,0,4,9; ④计算方差:s 2=18(1+9+4+1+16+0+4+9)=448=5.5;⑤计算标准差:s = 5.5≈2.3.所以这组数据的方差为5.5,标准差约为2.3.反思与感悟 (1)方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.(2)样本标准差反映了各样本数据围绕样本平均数波动的大小,标准差越小,表明各样本数据在样本平均数周围越集中;反之,标准差越大,表明各样本数据在样本平均数的两边越分散.(3)若样本数据都相等,则s =0.(4)当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数字特征,而样本数据的离散程度是由标准差来衡量的.跟踪训练3 甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和(1)中算得的结果,对两人的训练成绩作出评价.解 (1)由题图可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分. x 甲=10+13+12+14+165=13,x 乙=13+14+12+12+145=13,s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4, s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. (2)由s 2甲>s 2乙可知乙的成绩较稳定.从折线图来看,甲的成绩基本上呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩无明显提高.1.某市2017年各月的平均气温(℃)数据的茎叶图如图,则这组数据的中位数是( )A .19B .20C .21.5D .23答案 B解析 由茎叶图知,平均气温在20℃以下的有5个月,在20℃以上的也有5个月,恰好是20℃的有2个月,由中位数的定义知,这组数据的中位数为20.故选B.2.设样本数据x 1,x 2,…,x 10的平均数和方差分别为1和4,若y i =x i +a (a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的平均数和方差分别为( ) A .1+a,4 B .1+a,4+a C .1,4 D .1,4+a答案 A解析 ∵x 1,x 2,…,x 10的平均数x =1,方差s 21=4, 且y i =x i +a (i =1,2,…,10),∴y 1,y 2,…,y 10的平均数y =110·(y 1+y 2+…+y 10)=110·(x 1+x 2+…+x 10+10a )=110·(x 1+x 2+…+x 10)+a =x +a =1+a ,其方差s 22=110·[(y 1-y )2+(y 2-y )2+…+(y 10-y )2]=110[(x 1-1)2+(x 2-1)2+…+(x 10-1)2]=s 21=4.故选A.3.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 答案 6解析 由已知得,所求平均数为4+6+5+8+7+66=6.4.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________. 答案 16解析 设样本数据x 1,x 2,…,x 10的标准差为s ,则s =8,可知数据2x 1-1,2x 2-1,…,2x 10-1的标准差为2s =16.5.某校医务室抽查了高一10位同学的体重(单位:kg)如下: 74,71,72,68,76,73,67,70,65,74.(1)求这10个学生体重数据的平均数、中位数、方差、标准差; (2)估计高一所有学生体重数据的平均数、中位数、方差、标准差.解 (1)这10个学生体重数据的平均数为x =110×(74+71+72+68+76+73+67+70+65+74)=71.这10个学生体重数据从小到大依次为65,67,68,70,71,72,73,74,74,76,位于中间的两个数是71,72,∴这10个学生体重数据的中位数为71+722=71.5.这10个学生体重数据的方差为 s 2=110×[(74-71)2+(71-71)2+(72-71)2+(68-71)2+(76-71)2+(73-71)2+(67-71)2+(70-71)2+(65-71)2+(74-71)2]=11,这10个学生体重数据的标准差为s =s 2=11.(2)由样本估计总体得高一所有学生体重数据的平均数为71,中位数为71.5,方差为11,标准差为11.1.利用直方图求数字特征:①众数是最高的矩形的底边的中点.②中位数左右两边直方图的面积应相等.③平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和. 2.标准差的平方s 2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.3.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.一、选择题1.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各1人,则该小组数学成绩的平均数,众数,中位数分别为( ) A .85分,85分,85分 B .87分,85分,86分 C .87分,85分,85分 D .87分,85分,90分答案 C解析 平均数为100+95+90×2+85×4+80+7510=87,众数为85,中位数为85,故选C.2.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( )A .a >b >cB .b >c >aC .c >a >bD .c >b >a 答案 D解析 由已知得a =110×(15+17+14+10+15+17+17+16+14+12)=14.7,b =12×(15+15)=15,c =17,∴c >b >a .故选D. 3.样本a,3,5,7的平均数是b ,且a ,b 是方程x 2-5x +4=0的两根,则这个样本的方差是( ) A .3 B .4 C .5 D .6 答案 C解析 x 2-5x +4=0的两根是1,4. 当a =1时,a,3,5,7的平均数是4; 当a =4时,a,3,5,7的平均数不是1.∴a =1,b =4,则方差s 2=14×[(1-4)2+(3-4)2+(5-4)2+(7-4)2]=5.4.如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ) A .2,5 B .5,5 C .5,8 D .8,8 答案 C解析 由茎叶图及已知得x =5,又乙组数据的平均数为16.8,即9+15+10+y +18+245=16.8,解得y =8,选C.5.某高三学生在连续五次月考中的数学成绩为(单位:分):90,90,93,94,93,则该学生在这五次月考中数学成绩数据的平均数和方差分别为( ) A .92,2.8 B .92,2 C .93,2 D .93,2.8答案 A解析 该学生在这五次月考中数学成绩数据的平均数为 x =15×(90+90+93+94+93)=92,方差为s 2=15×[(90-92)2+(90-92)2+(93-92)2+(94-92)2+(93-92)2]=2.8.故选A.6.高三学生李丽在一年的五次数学模拟考试中的成绩为(单位:分):x ,y,105,109,110.已知该同学五次数学成绩数据的平均数为108,方差为35.2,则|x -y |的值为( ) A .15 B .16 C .17 D .18 答案 D解析 由题意得,x +y +105+109+1105=108,①(x -108)2+(y -108)2+9+1+45=35.2,②由①②解得⎩⎪⎨⎪⎧ x =99,y =117或⎩⎪⎨⎪⎧x =117,y =99,所以|x -y |=18.故选D.7.某省农科所经过5年对甲、乙两棉种的实验研究,将连续5年棉花产量(千克/亩)的统计数据用茎叶图表示,如图所示,则平均产量较高与产量较稳定的分别是( )A .甲棉种;甲棉种B .乙棉种;甲棉种C .甲棉种;乙棉种D .乙棉种;乙棉种答案 C解析 根据茎叶图的数据知,甲棉种产量为68,69,70,71,72;乙棉种产量为68,68,69,69,71. ∴甲棉种的平均值x 甲=15×(68+69+70+71+72)=70;乙棉种的平均值x 乙=15×(68+68+69+69+71)=69.甲的方差s 2甲=15×[(68-70)2+(69-70)2+(70-70)2+(71-70)2+(72-70)2]=2, 乙的方差s 2乙=15×[(68-69)2+(68-69)2+(69-69)2+(69-69)2+(71-69)2]=1.2. ∴甲棉种平均产量较高,乙棉种产量较稳定.故选C. 二、填空题8.如图所示的茎叶图是甲、乙两组各5名学生的数学竞赛成绩(70分~99分),若甲、乙两组学生的平均成绩一样,则a =________;甲、乙两组学生的成绩相对稳定的是________.答案 5 甲组解析 由题意可知75+88+89+98+90+a 5=76+85+89+98+975=89,解得a =5.因为s 2甲=15×[(-14)2+(-1)2+0+92+62]=3145,s 2乙=15×[(-13)2+(-4)2+0+92+82]=3305,所以s 2甲<s 2乙,故成绩相对稳定的是甲组. 9.已知一组数据x 1,x 2,…,x 10的方差是2,且(x 1-3)2+(x 2-3)2+…+(x 10-3)2=380,则这组数据的平均数x =________. 答案 -3或9解析 ∵数据x 1,x 2,…,x 10的方差为2, ∴110[(x 1-x )2+(x 2-x )2+…+(x 10-x )2]=2, 即(x 1-x )2+(x 2-x )2+…+(x 10-x )2=20.又∵(x 1-3)2+(x 2-3)2+…+(x 10-3)2=380,∴90-10x 2+(2x -6)×10x =360,∴x 2-6x -27=0,解得x =-3或x =9.10.一组数据2,x,4,6,10的平均数是5,则此组数据的标准差是________.答案 2 2解析 ∵一组数据2,x,4,6,10的平均数是5,∴2+x +4+6+10=5×5,解得x =3,∴此组数据的方差s 2=15×[(2-5)2+(3-5)2+(4-5)2+(6-5)2+(10-5)2]=8, ∴此组数据的标准差s =2 2.11.某企业三个分厂生产同一种电子产品,三个分厂的产量分布如图所示.现在用分层抽样方法从三个分厂生产的产品中共抽取100件进行使用寿命的测试,则第一分厂应抽取的件数为________;测试结果为第一、二、三分厂取出的产品的平均使用寿命分别为1 020小时,980小时,1 030小时,估计这个企业生产的产品的平均使用寿命为________小时.答案 50 1 015解析 由分层抽样可知,第一分厂应抽取100×50%=50(件).由样本的平均数估计总体的平均数,可知这批电子产品的平均使用寿命为1 020×50%+980×20%+1 030×30%=1 015(小时).三、解答题12.从甲、乙两班某项测试成绩中各随机抽取5名同学的成绩,得到如图所示的茎叶图.已知甲班成绩数据的中位数为13,乙班成绩数据的平均数为16.(1)求x ,y 的值;(2)试估计甲、乙两班在该项测试中整体水平的高低.(注:方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数) 解 (1)由茎叶图知甲班成绩数据依次为9,12,10+x,20,26,所以中位数为10+x =13,得x =3;乙班成绩数据的平均数x 乙=15(9+15+10+y +18+20)=16, 得y =8.(2)乙班整体水平较高.理由:由题意及(1)得x 甲=15×(9+12+13+20+26)=16, s 2甲=15×[(9-16)2+(12-16)2+(13-16)2+(20-16)2+(26-16)2]=38,x 乙=16, s 2乙=15×[(9-16)2+(15-16)2+(18-16)2+(18-16)2+(20-16)2]=745=14.8. 因为s 2甲>s 2乙,所以乙班的整体水平较高.13.某工厂36名工人的年龄数据如表所示.(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的平均数x 和方差s 2;(3)36名工人中年龄在x -s 与x +s 之间的有多少人?所占的百分比是多少(精确到0.01%)? 解 (1)由系统抽样,将36名工人分为9组(4人一组),每组抽取一名工人.因为在第一分段里抽到的是年龄为44的工人,即编号为2的工人,故所抽样本的年龄数据为44,40,36,43,36,37,44,43,37.(2)平均数x =44+40+36+43+36+37+44+43+379=40; 方差s 2=19×[(44-40)2+(40-40)2+(36-40)2+(43-40)2+(36-40)2+(37-40)2+(44-40)2+(43-40)2+(37-40)2]=1009. (3)由(2)可知s =103.由题意,年龄在⎝⎛⎭⎫40-103,40+103内的工人共有23人,所占的百分比为2336×100%≈63.89%. 14.从某企业生产的某种产品中随机抽取100件,测量这些产品的某项质量指标,由测量结果得到如下频数分布表:(1)在图中作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?解(1)频率分布直方图如图:(2)质量指标值的样本平均数为80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104. 所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.。
人教B版高中数学必修三2.2.2 用样本的数字特征估计总体的数字特征.doc

0.5 人数(人) 时间(小时)20 10 5 0 1.0 1.5 2.0 15图2.2.2-1高中数学学习材料鼎尚图文*整理制作2.2.2 用样本的数字特征估计总体的数字特征 【目标要求】1.清楚用样本估计总体的数字特征.2.了解数字特征与频率分布直方图的联系. 【巩固教材——稳扎马步】1.下面哪个数不为总体特征数 ( ) A.总体平均数 B.总体方差 C.总体标准差 D.总体样本2.总体方差,能反映出它每个个体特征 ( ) A.平均水平 B.分布规律 C.波动大小 D.最大值和最小值3.有甲、乙两种水稻,测得每种水稻各10穴的分蘖数后,计算出样本方差分别为112=甲s ,4.32=乙s ,由此可以估计 ( )A . 甲种水稻比乙种水稻分蘖整齐B .乙种水稻比甲种水稻分蘖整齐C .甲、乙两种水稻分蘖整齐程度相同D .甲、乙两种水稻分蘖整齐程度不能比较 4.如果数据x 1,x 2,x 3,…,x n 的平均数为Ex,方差为Dx ,则数据3x 1+5,3x 2+5,…,3x n +5的平均数和方差分别是 ( ) A .3Ex 和 3Dx B .3Ex+5和 3Dx +5 C .3Ex+5和 9Dx D .3Ex+5和(3Dx+5)2 5.从湖中打一网鱼,共M 条,做上记号再放回湖中,数天后再打一网鱼共有n 条,其中有k 条有记号,则能估计湖中有鱼 ( ) A .条k n M ⋅B .条n k M ⋅C .条k M n ⋅D .条Mk n ⋅ 【重难突破——重拳出击】6.甲,乙两个同学在五次检测中所得分数如下:甲:60,80,90,90,80. 乙:100,70,70,70,90.则两人成绩稳定程度为 ( ) A.两人相同 B.甲比乙稳定 C.乙比甲稳定 D .无法比较 7.如图2.2.2-1,某校为了了解学生的课外阅读情况, 随机调查了50名学生,得到他们在某一天 各自课外阅读所用时间的数据,结果用右 侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为( )A .0.6小时 B.0.9小时图2.2.2-2 C .1.0小时 D .1.5小时8.甲乙二人参加某体育项目训练,为了便于研究,把最近五次训练成绩分别用实线和虚线连结,如图2.2.2-2,所示,下面错误的是 ( ) A.乙的第二次成绩与第五次成绩相同 B.第三次测试乙的成绩与甲的成绩相同 C.五次测试乙的成绩比甲的稳定 D .五次测试乙的成绩都比甲的成绩高 9.一个样本的数据有1f 个1x ,2f 个2x ,…,n f 个n x ,那么它的平均数是______________.10.一个容量为的样本,其中每个数据与其平均数之差的绝对值都不小于1且不超过2,那么它的方差2s 的范围是______________. 【巩固提高——登峰揽月】11.样本(x 1,x 2,x 3,…,x n )的均值为x , 求证:()21212x n x x x ni i ni i -=-∑∑==12.对划艇运动员甲、乙二人在相同的条件下进行了6次测试,测得他们最大速度的数据如下,甲:27,38,30,37,35,31;乙:33,29,38,34,28,36. 根据以上数据,试判断他们谁更优秀.【课外拓展——超越自我】13.某班40人随机平均分成两组,两组学生一次考试的成绩情况如下表:1 2 3 4 5 6 7 8 9 10 11 121 2 3 4 5 6 7 8 9 10 (月份) (件)1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 (月份)(件) 图2.2.2-3 求全班的平均成绩和标准差.14.某公司为了评价甲、乙两位营销员去年的营销业绩,统计了这两人去年12个月的营销业绩(所推销商品的件数)分别如下图2.2.2-3, 所示:甲 乙 (1)利用图中信息,完成下表:平均数 中位数方差甲 7乙1.5(2)假若你是公司主管,请你根据(1)中图表信息,应用所学的统计知识,对两人的营销业绩作出评价.2.2.2 用样本的数字特征估计总体的数字特征1.D ;2.C ;3.B ;4.C ;5.A ;6.B ;7.B ;8.D ;9.∑∑==⋅n i iini ifx f11;10.[1,4];11.略;12. 33=甲x ,=2甲S 8.18;33=乙x ,2乙S 2.15=;乙甲x x =,22乙甲S S >,故乙比甲更优秀.统计量组别 平均 标准差 第一组 90 6 第二组 80 413.平均值为85,方差为51.14.略。
高中数学必修三导学案-用样本的数字特征估计总体的数字特征

§2.2.2用样本的数字特征估计总体的数字特征(1)正确理解样本数据标准差的意义和作用,学会计算数据的标准差。
(2)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释。
(3)会用样本的基本数字特征估计总体的基本数字特征。
(4)形成对数据处理过程进行初步评价的意识。
重点:用样本平均数和标准差估计总体的平均数与标准差。
难点:能应用相关知识解决简单的实际问题。
在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法。
用样本的频率分布去估计总体的分布,当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图。
一、情景设置:美国NBA在2006——2007年度赛季中,甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下:甲运动员得分:12,15,20,25,31,31,36,36,37,39,44,49.乙运动员得分:8,13,14,16,23,26,28,38,39,51,31,29.如果要求我们根据上面的数据,估计、比较甲,乙两名运动员哪一位发挥得比较稳定,就得有相应的数据作为比较依据,即通过样本数据对总体的数字特征进行研究,用样本的数字特征估计总体的数字特征.二、探究新知:知识探究(一):众数、中位数和平均数数的概念,这些数据都是反映样本信息的数字特征,对一组样本数据如何求众数、中位数和平均数?思考2:在城市居民月均用水量样本数据的频率分布直方图中(参考课本72页图2-2-5),你认为众数应在哪个小矩形内?由此估计总体的众数是什么?思考3:在频率分布直方图中,每个小矩形的面积表示什么?中位数左右两侧的直方图的面积应有什么关系?思考4:在城市居民月均用水量样本数据的频率分布直方图中,从左至右各个小矩形的面积分别是0.04,0.08,0.15,0.22,0.25,0.140.06,0.04,0.02.由此估计总体的中位数是什么?思考5:平均数是频率分布直方图的“重心”在城市居民月均用水量样本数据的频率分布直方图中,各个小矩形的重心在哪里?从直方图估计总体在各组数据内的平均数分别为多少?思考6:根据统计学中数学期望原理,将频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数. 由此估计总体的平均数是什么?思考7:从居民月均用水量样本数据可知,该样本的众数是2.3,中位数是2.0,平均数是1.973,这与我们从样本频率分布直方图得出的结论有偏差,你能解释一下原因吗?思考8:一组数据的中位数一般不受少数几个极端值的影响,这在某些情况下是一个优点,但它对极端值的不敏感有时也会额成为缺点,你能举例说明吗?样本数据的平均数大于(或小于)中位数说明什么问题?你怎样理解“我思考3:对于样本数据x1,x2,…,xn ,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算?思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s 表示.假设样本数据x1,x2,…,nx 的平均数为,则标准差的计算公式是:那么标准差的取值范围是什么?标准差为0的样本数据有何特点?思考5:对于一个容量为2的样本:()1212,x x x x 〈, 则1221,22x x x xx s +-==在数轴上,这两个统计数据有什么几何意义?由此说明标准差的大小对数据的离散程度有何影响? 知识补充:1.标准差的平方称为方差,有时用方差代替标准差测量样本数据的离散度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.3.3.对于城市居民月均用水量样本数据,其平均数 1.973x =,标准差s=0.868.在这100个数据中,落在区间(),x s x s -+=[1.105,2.841]外的有28个;落在区间()2,2x s x s -+=[0.237,3.709]外的只有4个;落在区间()3,3x s x s -+=[-0.631,4.577]外的有0个.一般地,对于一个正态总体,数据落在区间(),x s x s -+、()2,2x s x s -+、()3,3x s x s -+内的百分比分别为68.3%、95.4%、99.7%,这个原理在产品质量控制中有着广泛的应用(参考教材P79“阅读与思考”). 三、典例分析:例 1 计算甲、乙两名运动员的射击成绩的标准差,比较其射击水平的稳定性. 甲:7 8 7 9 5 4 9 10 7 4乙:9 5 7 8 7 6 8 6 7 7例2 画出下列四组样本数据的条形图,说明他们的异同点.(1) 5,5,5,5,5,5,5,5,5;(2) 4,4,4,5,5,5,6,6,6;(3) 3,3,4,4,5,6,6,7,7;(4) 2,2,2,2,5,8,8,8,8.分析:先画出数据的直方图,根据样本数据算出样本数据的平均数,利用标准差的计算公式即可算出每一组数据的标准差。
高中数学新人教版B版精品教案《人教版B高中数学必修3 2.2.2 用样本的数字特征估计总体的数字特征》6

三、教法、学法分析
(一)教法
基于本节课的内容特点和高一学生的年龄特征,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:
1.通过学生熟悉的实际生活问题引入课题,创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主动参与的积极性.
(一)地位与作用
统计思想和方法“螺旋”式地从小学渗透到中学,这有助于人们在生活、生产实践中通过分析统计数据做出决策。 教会学生分析处理统计数据是高中数学课程标准的重要内容,有着广泛的实际应用。在上一节我们已经学习了用图、表来组织样本数据,并且学习了如何通过图、表所提供的信息,用样本的频率分布估计总体的分布情况。本节课是在前面所学内容的基础上,进一步学习如何通过样本的情况来估计总体,从而使我们能从整体上更好地把握总体的规律,为现实问题的解决提供更多的帮助。并为后面选修学习随机变量的数字特征做铺垫。本小节内容课标规定3课时完成,主要有两部分内容:用样本平均数估计总体平均数;用样本标准差估计总体标准差,本节课为第1课时用样本平均数估计总体平均数。
2.2.2用样本的数字特征估计总体的数字特征一)
科目:数学
教学对象:高一学生
课时:1
主讲教师:陈术卓
一、教学内容、学情分析
本小节是高中数学人教B版的必修三第二章第二节的内容,其主要介绍用样本的数字特征估计总体的数字特征:众数,中位数,平均数;方差,标准差;由于作统计图表的操作性很强,所以教学中要使学生在明确图、表含义的前提下,让学生能利用频率颁布直方图估计总体的众数,中位数,平均数能用样本的众数,中位数,平均数估计总体的众数,中位数,平均数,并结合实际,对问题作出合理判断,制定解决问题的有效方法 初步体会、领悟“用数据说话”的统计思想方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、知识点归纳整理:
1. 中位数:把n 个数据按大小顺序排列,处于最中间位置 的一个数据或中间两数的平均数叫这组数据的中位数
2.众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数 (可能有多个或没有众数)
3.平均数:n 个数x 1,x 2,…,x n ,
x =
1
n
( x 1+x 2+…+x n ) 叫n 个数的算术平均数,简称平均数
4. 方差和标准差的符号和计算公式是怎样的?它们反映了这组数据哪方面的特征?
答: 方差和标准差分别用S 2
和s 表示.用 表示一组数据的平均数,x 1、x 2、… x n 表示n 个数据,则这组数据 方差的计算公式是
()()()
2222121...n s x x x x x x n ⎡
⎤=
-+-++-⎢⎥⎣
⎦ 标准差的计算公式是
222121
[()()()]n s x x x x x x n
=
-+-++-
方差和标准差反映的是一组数据与平均值的离散程度或一组数据的稳定程度. 方差反映数据波动大小,方差越大,则波动越大, 越不稳定
标准差用来表示稳定性,标准差越大,数据的离散程度就越大,也就越不稳定.标准差越小,数据的离散程度就越小,也就越稳定.从标准差的定义可以看出,标准差s≥0,当s=0时,意味着所有的样本数据都等于样本平均数
练习1:这三组数据的平均数、方差和标准差。
平均数 方差 标准差
1、2、3、4、5 3 2
11、12、13、14、15 13 2
3、6、9、12、15 9 18
撰稿人:赵志岩
2 2 2
3 x
练习2:请你用上面发现的结论来解决以下的问题。
已知数据a 1,a 2,a 3,…,a n 的平均数为X ,方差Y, 标准差Z , 则 ①数据a 1+3,a 2 + 3,a 3 +3 ,…,a n +3平均数为---------,方差为-------, 标准差为----------。
②数据a 1-3,a 2 -3,a 3 -3 ,…,a n -3平均数为 ----------,方差为--------, 标准差为----------。
③数据3a 1,3a 2 ,3a 3 ,…,3a n 的平均数为-----------,方差为-----------, 标准差为----------。
④数据2a 1-3,2a 2 -3,2a 3 -3 ,…,2a n -3的平均数为 ----------,
方差为---------,标准差为----------。
二、典例分析:
例1 甲、乙两人同时生产内径为25.40 mm 的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm): 甲
25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.45 25.38 25.42 25.39 25.43 25.39 25.40 25.44 25.40 25.42 25.35 25.41 25.39 乙
25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.49 25.36 25.34 25.33 25.43 25.43 25.32 25.47 25.31 25.32 25.32 25.32 25.48
从生产的零件内径的尺寸看,谁生产的质量较高? 解:用计算器计算可得
甲x ≈25.401,乙x ≈25.406;
s 甲≈0.037,s 乙≈0.068.
从样本平均数看,甲生产的零件内径比乙的更接近内径标准(25.40 mm);从样本标准差看,由于s 甲<s 乙,因此甲生产的零件内径比乙的稳定程度高得多.于是,可以作出判断,甲生产的零件的质量比乙的高一些.
变式训练
某地区全体九年级的3 000名学生参加了一次科学测试,为了估计学生的成绩,从不同学校的不同程度的学生中抽取了100名学生的成绩如下:
100分12人,90分30人,80分18人,70分24人,60分12人,50分4人.
请根据以上数据估计该地区3 000名学生的平均分、合格率(60或60分以上均属合格). 解:运用计算器计算得:
100
4
50126024701880309012100⨯+⨯+⨯+⨯+⨯+⨯=79.40,
(12+30+18+24+12)÷100=96%,
所以样本的平均分是79.40分,合格率是96%,由此来估计总体 3 000名学生的平均分是79.40分,合格率是96%.
例2 甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm 2
),试根据这组数据估计哪一种水稻品种的产量比较稳定.
[(9.8-10)2 +(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2
]÷5=0.02. 乙品种的样本平均数也为10,样本方差为
[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)2
]÷5=0.24. 因为0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定. 三、知能训练 (1)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为____________.
(2)若给定一组数据x 1,x 2,…,x n ,方差为s 2
,则ax 1,ax 2,…,ax n 的方差是____________. (3)在相同条件下对自行车运动员甲、乙两人进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:
试判断选谁参加某项重大比赛更合适?
拓展提升
某养鱼专业户在一个养鱼池放入一批鱼苗,一年以后准备出售,为了在出售以前估计卖掉鱼后有多少收入,这个专业户已经了解到市场的销售价是每千克15元,请问,这个专业户还应该了解什么?怎样去了解?请你为他设计一个方案.
解:这个专业户应了解鱼的总重量,可以先捕出一些鱼(设有x 条),作上标记后放回鱼塘,过一段时间再捕出一些鱼(设有a 条),观察其中带有标记的鱼的条数,作为一个样本来估计总体,则
鱼塘中鱼的总条数
鱼的条数鱼塘中所有带有标记的条鱼中带有标记的条数)
(x a a
这样就可以求得总条数,同时把第二次捕出的鱼的平均重量求出来,就可以估计鱼塘中
的平均重量,进而估计全部鱼的重量,最后估计出收入. 课堂小结
1.用样本的数字特征估计总体的数字特征分两类:
用样本平均数估计总体平均数,平均数对数据有“取齐”的作用,代表一组数据的平均水平.
用样本标准差估计总体标准差.样本容量越大,估计就越精确,标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度.
2.用样本估计总体的两个手段(用样本的频率分布估计总体的分布;用样本的数字特征估计总体的数字特征),需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本容量越大,估计的结果也就越精确.。