15_Fast-Settling Feedforward Automatic Gain Control Based on a New Gain Control Approach_final
faster transformer 的用法 -回复

faster transformer 的用法-回复题目:Faster Transformer的用法:加速Transformer模型训练与推理引言:随着Transformer模型在自然语言处理任务中的广泛应用,其中的Self-Attention机制成为瓶颈,尤其是在大规模模型和大型语料库上。
为了解决这个问题,学术界和产业界提出了许多加速Transformer模型训练与推理的方法,其中最有代表性的就是Faster Transformer。
本文将一步一步回答关于Faster Transformer的用法,包括其核心原理、效果分析和使用示例。
一、核心原理1.1 Self-Attention机制Transformer模型的核心组成部分是Self-Attention机制,它通过并行计算各个位置与所有位置的相似度,然后根据相似度赋予不同位置的注意力权重。
这种机制能够捕捉到句子中不同位置之间的依赖关系,但同时也引入了计算复杂度。
1.2 Faster Transformer的改进Faster Transformer通过两种方式加速Transformer模型的训练和推理,一是采用稀疏注意力机制,只关注与当前位置关系较近的位置;二是利用矩阵乘法的并行化计算,减少计算时间。
二、效果分析2.1 训练时间Faster Transformer相较于传统Transformer在训练时间上有明显的优势。
稀疏注意力机制能够降低计算复杂度,矩阵乘法并行化计算能够提高硬件资源的利用率,从而加速训练过程。
2.2 推理速度在推理阶段,Faster Transformer同样能够显著提升速度。
通过采用稀疏注意力机制和矩阵乘法的并行化计算,Faster Transformer减少了模型的计算量,从而加速推理过程。
三、使用示例为了更好地理解Faster Transformer的用法,我们将以机器翻译任务为例进行说明。
3.1 数据准备首先,我们需要准备用于机器翻译的训练数据集和验证数据集。
ioctl介绍 -回复

ioctl介绍-回复ioctl是UNIX和类UNIX操作系统中的一个系统调用,用于在用户空间程序和内核之间传递控制命令。
它的全称是Input/Output Control,中文译为输入/输出控制。
ioctl可以对设备文件进行一些特殊的操作,包括设备初始化、参数设置、数据传输等。
ioctl的使用方法比较简单,它接受三个参数:文件描述符fd、请求的命令cmd和可选的参数arg。
文件描述符可以是任意的打开文件或设备文件,命令是一个整数,用于告诉内核进行哪种类型的操作,参数是一个指针,指向用于传递数据的结构。
首先,我们来看一下ioctl的头文件定义。
在C语言中,ioctl的定义位于<sys/ioctl.h>中。
这个头文件包含了一系列宏定义,每个宏定义用于表示一个特定的ioctl命令。
这些宏定义一般以_IOW、_IOR、_IOWR开头,它们分别代表写、读和读写操作。
这些宏定义的命名规则通常是根据设备的类型和功能来命名的,例如,对于tty设备,就有TTYIOCGWINSZ、TTYIOCSWINSZ等宏定义。
然后,我们来看一下如何使用ioctl进行设备文件的一些特殊操作。
首先,我们需要打开一个设备文件或文件描述符。
可以使用open函数来打开一个设备文件,并在成功打开后,得到一个文件描述符。
文件描述符是一个用于标识打开文件的整数值,在后面的操作中,我们可以使用这个文件描述符来操作设备文件。
接下来,我们可以使用ioctl进行各种设备操作。
例如,我们可以使用ioctl 来查询或设置设备的状态。
对于某些具体的设备类型,可能有特定的命令可以查询设备状态。
我们可以使用_IOR宏定义来表示读取操作的命令,然后将这个命令作为参数传递给ioctl函数。
ioctl会根据命令找到对应的操作,并将结果返回给用户空间程序。
除了查询设备状态,ioctl还可以用于设置设备的各种参数。
对于这种情况,我们需要使用或定义相应的_IOWR宏定义来表示写操作的命令。
faster transformer 的用法 -回复

faster transformer 的用法-回复最近几年,深度学习在自然语言处理(NLP)领域取得了巨大的成功。
其中一种非常重要的模型是Transformer,它在各种任务中都取得了最先进的结果。
然而,由于Transformer的复杂性,它的训练和推理过程通常需要很长的时间。
为了解决这个问题,研究人员提出了一种改进的版本,称为"faster transformer"。
本文将详细介绍faster transformer的用法,向读者展示如何使用这个模型来加速训练和推理过程。
1. 什么是Transformer?Transformer是一种基于注意力机制的神经网络模型,最初提出用于机器翻译任务。
它通过同时处理输入序列中的所有位置,而不像传统的循环神经网络(RNN)一样逐个处理。
Transformer的核心思想是自注意力机制(self-attention),它允许模型在编码和解码过程中对输入序列的不同位置进行加权注视。
这使得Transformer能够捕捉输入序列之间的长范围依赖关系。
2. 为什么需要加速Transformer?尽管Transformer在NLP任务中表现出色,但其复杂性导致训练和推理过程非常耗时。
特别是使用大规模数据集和深层网络时,训练一个Transformer模型可能需要数天,甚至数周的时间。
这对于研究人员和开发者来说是一个严重的限制,因为它阻碍了他们快速迭代和调优模型。
因此,加速Transformer的研究成为了一个关键的课题。
3. faster transformer的原理faster transformer提出了两种主要的加速策略:低秩注意力和多头子注意力。
- 低秩注意力:原始的Transformer中,自注意力机制的计算复杂度为O(n^2),因为需要计算输入序列中所有位置的相关性。
而低秩注意力采用分解技术,将注意力矩阵分解为两个低秩矩阵的乘积,从而减少复杂度至O(n)。
gpt4 文章优化指令

gpt4 文章优化指令
GPT-4是OpenAI公司开发的一种基于深度学习的自然语言处理模型。
对于GPT-4的文章优化,以下是一些建议的指令:
1. 主题和结构:明确文章的主题和结构,确保文章从逻辑上清晰、有条理。
指导GPT-4生成文章时,可以在输入中提供明确的主题和段落结构,帮助模型精确理解和生成相关内容。
2. 句子优化:对于生成的句子,可以通过以下指令进行优化:
- 指定句子长度:限制句子的长度,防止生成的句子过长或过短。
- 提供关键词:在输入中明确提供关键词,引导GPT-4生成与关键词相关的句子。
- 强调某些信息:使用适当的词汇和表达方式,强调或突出需要突出的信息。
3. 语法和流畅性:GPT-4通常能够生成符合语法规则的句子,但有时也可能出现不太流畅或错误的表达。
针对语法和流畅性问题,可以考虑:
- 添加示例句子:通过提供示例句子,让GPT-4学习并生成更准确和流畅的句子结构。
- 调整温度参数:通过调整温度参数控制生成的多样性和准
确性,有时可以获得更合适的表达结果。
4. 校对和修改:生成的文章往往需要进行校对和修改才能达到较高的质量。
可以使用GPT-4生成初稿,并在此基础上进行必要的修改、润色和校对工作。
需要注意的是,GPT-4仍然是一种基于模型的生成方法,可能会生成不准确、不合适或不符合预期的内容。
在使用GPT-4进行文章优化时,需要仔细审查和校对生成的内容,确保最终结果的准确性和可读性。
另外,您可以尝试不同的指令和参数组合,以获得满足期望的最佳结果。
神经网络学习笔记(二):feedforward和feedback

神经网络学习笔记(二): feedforward和 feedback
维基百科解释:
Feed-forward, sometimes written feedforward, is a term describing an element or pathway within a control system that passes a controlling signal from a source in its external environment, often a command signal from an external operator, to a load elsewhere in its external environment. A control system which has only feed-forward behavior responds to its control signal in a pre-defined way without responding to how the load reacts; it is in contrast with a system that also has feedback, which adjusts the output to take account of how it affects the load, and how the load itself may vary unpredictably; the load is considered to belong to the external environment of the system.
记录一次idea2021.3启动不了

记录⼀次idea2021.3启动不了订阅专栏⽬前在⽤的是2020.1,想升级⼀下最新的2021.2。
官⽹上下载的最新的,安装。
安装完成后,⾸次启动,发现⾃动的在下载2020.1在⽤的插件。
恩,很智能嘛。
插件下载完后,没动静了。
双击图⾯图标,依然没有动静,+++,真不能夸。
这下⼦完了,启不来了。
问题描述:2021.2启动不了,双击桌⾯图标,没有响应;CMD⾥输⼊idea有报错。
进⼊到安装⽬录C:\JetBrains\IntelliJ IDEA 2021.2\bin(我⾃⼰选的,默认不在这⾥),打开CMD。
输⼊idea,发现有报错。
OpenJDK 64-Bit Server VM warning: Option UseConcMarkSweepGC was deprecated in version 9.0 and will likely be removed in a future release.=========================================================== Jetbrains License Crack ============== https://zhile.io ===========================================================@See: https://zhile.io/2018/08/17/jetbrains-license-server-crack.html@Version: 3.2.0, @Build Date: 2020-04-10Exception in thread "main" ng.reflect.InvocationTargetExceptionat java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)at java.base/ng.reflect.Method.invoke(Method.java:566)at java.instrument/sun.instrument.InstrumentationImpl.loadClassAndStartAgent(InstrumentationImpl.java:513)at java.instrument/sun.instrument.InstrumentationImpl.loadClassAndCallPremain(InstrumentationImpl.java:525)Caused by: ng.RuntimeException: ng.NullPointerExceptionat fuck_the_regulations_v320.en.b(en.java)at fuck_the_regulations_v320.dH.premain(dH.java)... 6 moreCaused by: ng.NullPointerException... 8 more*** ng.instrument ASSERTION FAILED ***: "result" with message agent load/premain call failed at ./src/java.instrument/share/native/libinstrument/JPLISAgent.c line: 422FATAL ERROR in native method: processing of -javaagent failed, processJavaStart failed错误信息⼀⼤堆,关键的⼀句FATAL ERROR in native method: processing of -javaagent failed, processJavaStart failed问题1:这个参数不是我添加进去的,哪来的打开idea.bat,在代码最后处,加上输出#这⾥是我加⼊的echo %CLASS_PATH%echo %ACC%echo %IDE_PROPERTIES_PROPERTY%#下⾯的这些是原始的"%JAVA_EXE%" ^-cp "%CLASS_PATH%" ^%ACC% ^"-XX:ErrorFile=%USERPROFILE%\java_error_in_idea_%%p.log" ^"-XX:HeapDumpPath=%USERPROFILE%\java_error_in_idea.hprof" ^-Djava.system.class.loader=ng.PathClassLoader =JetBrains -Didea.paths.selector=IntelliJIdea2021.2 -Didea.jre.check=true ^%IDE_PROPERTIES_PROPERTY% ^com.intellij.idea.Main ^%*重新执⾏idea.bat(在CMD⾥哦),发现如下输出-Djb.vmOptionsFile="C:\Users\cpp\AppData\Roaming\JetBrains\IntelliJIdea2021.2\idea64.exe.vmoptions" "-Xms128m" "-Xmx1012m" "-XX:ReservedCodeCacheSize=240m" "-XX:+UseConcMarkSweepGC" "-XX:SoftRefLRUPolicyMSPerMB=50" OpenJDK 64-B看到 -javaagent 这个参数了吗。
3GPP TS 36.331 V13.2.0 (2016-06)

3GPP TS 36.331 V13.2.0 (2016-06)Technical Specification3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA);Radio Resource Control (RRC);Protocol specification(Release 13)The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.KeywordsUMTS, radio3GPPPostal address3GPP support office address650 Route des Lucioles - Sophia AntipolisValbonne - FRANCETel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16InternetCopyright NotificationNo part may be reproduced except as authorized by written permission.The copyright and the foregoing restriction extend to reproduction in all media.© 2016, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).All rights reserved.UMTS™ is a Trade Mark of ETSI registered for the benefit of its members3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational PartnersLTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM AssociationBluetooth® is a Trade Mark of the Bluetooth SIG registered for the benefit of its membersContentsForeword (18)1Scope (19)2References (19)3Definitions, symbols and abbreviations (22)3.1Definitions (22)3.2Abbreviations (24)4General (27)4.1Introduction (27)4.2Architecture (28)4.2.1UE states and state transitions including inter RAT (28)4.2.2Signalling radio bearers (29)4.3Services (30)4.3.1Services provided to upper layers (30)4.3.2Services expected from lower layers (30)4.4Functions (30)5Procedures (32)5.1General (32)5.1.1Introduction (32)5.1.2General requirements (32)5.2System information (33)5.2.1Introduction (33)5.2.1.1General (33)5.2.1.2Scheduling (34)5.2.1.2a Scheduling for NB-IoT (34)5.2.1.3System information validity and notification of changes (35)5.2.1.4Indication of ETWS notification (36)5.2.1.5Indication of CMAS notification (37)5.2.1.6Notification of EAB parameters change (37)5.2.1.7Access Barring parameters change in NB-IoT (37)5.2.2System information acquisition (38)5.2.2.1General (38)5.2.2.2Initiation (38)5.2.2.3System information required by the UE (38)5.2.2.4System information acquisition by the UE (39)5.2.2.5Essential system information missing (42)5.2.2.6Actions upon reception of the MasterInformationBlock message (42)5.2.2.7Actions upon reception of the SystemInformationBlockType1 message (42)5.2.2.8Actions upon reception of SystemInformation messages (44)5.2.2.9Actions upon reception of SystemInformationBlockType2 (44)5.2.2.10Actions upon reception of SystemInformationBlockType3 (45)5.2.2.11Actions upon reception of SystemInformationBlockType4 (45)5.2.2.12Actions upon reception of SystemInformationBlockType5 (45)5.2.2.13Actions upon reception of SystemInformationBlockType6 (45)5.2.2.14Actions upon reception of SystemInformationBlockType7 (45)5.2.2.15Actions upon reception of SystemInformationBlockType8 (45)5.2.2.16Actions upon reception of SystemInformationBlockType9 (46)5.2.2.17Actions upon reception of SystemInformationBlockType10 (46)5.2.2.18Actions upon reception of SystemInformationBlockType11 (46)5.2.2.19Actions upon reception of SystemInformationBlockType12 (47)5.2.2.20Actions upon reception of SystemInformationBlockType13 (48)5.2.2.21Actions upon reception of SystemInformationBlockType14 (48)5.2.2.22Actions upon reception of SystemInformationBlockType15 (48)5.2.2.23Actions upon reception of SystemInformationBlockType16 (48)5.2.2.24Actions upon reception of SystemInformationBlockType17 (48)5.2.2.25Actions upon reception of SystemInformationBlockType18 (48)5.2.2.26Actions upon reception of SystemInformationBlockType19 (49)5.2.3Acquisition of an SI message (49)5.2.3a Acquisition of an SI message by BL UE or UE in CE or a NB-IoT UE (50)5.3Connection control (50)5.3.1Introduction (50)5.3.1.1RRC connection control (50)5.3.1.2Security (52)5.3.1.2a RN security (53)5.3.1.3Connected mode mobility (53)5.3.1.4Connection control in NB-IoT (54)5.3.2Paging (55)5.3.2.1General (55)5.3.2.2Initiation (55)5.3.2.3Reception of the Paging message by the UE (55)5.3.3RRC connection establishment (56)5.3.3.1General (56)5.3.3.1a Conditions for establishing RRC Connection for sidelink communication/ discovery (58)5.3.3.2Initiation (59)5.3.3.3Actions related to transmission of RRCConnectionRequest message (63)5.3.3.3a Actions related to transmission of RRCConnectionResumeRequest message (64)5.3.3.4Reception of the RRCConnectionSetup by the UE (64)5.3.3.4a Reception of the RRCConnectionResume by the UE (66)5.3.3.5Cell re-selection while T300, T302, T303, T305, T306, or T308 is running (68)5.3.3.6T300 expiry (68)5.3.3.7T302, T303, T305, T306, or T308 expiry or stop (69)5.3.3.8Reception of the RRCConnectionReject by the UE (70)5.3.3.9Abortion of RRC connection establishment (71)5.3.3.10Handling of SSAC related parameters (71)5.3.3.11Access barring check (72)5.3.3.12EAB check (73)5.3.3.13Access barring check for ACDC (73)5.3.3.14Access Barring check for NB-IoT (74)5.3.4Initial security activation (75)5.3.4.1General (75)5.3.4.2Initiation (76)5.3.4.3Reception of the SecurityModeCommand by the UE (76)5.3.5RRC connection reconfiguration (77)5.3.5.1General (77)5.3.5.2Initiation (77)5.3.5.3Reception of an RRCConnectionReconfiguration not including the mobilityControlInfo by theUE (77)5.3.5.4Reception of an RRCConnectionReconfiguration including the mobilityControlInfo by the UE(handover) (79)5.3.5.5Reconfiguration failure (83)5.3.5.6T304 expiry (handover failure) (83)5.3.5.7Void (84)5.3.5.7a T307 expiry (SCG change failure) (84)5.3.5.8Radio Configuration involving full configuration option (84)5.3.6Counter check (86)5.3.6.1General (86)5.3.6.2Initiation (86)5.3.6.3Reception of the CounterCheck message by the UE (86)5.3.7RRC connection re-establishment (87)5.3.7.1General (87)5.3.7.2Initiation (87)5.3.7.3Actions following cell selection while T311 is running (88)5.3.7.4Actions related to transmission of RRCConnectionReestablishmentRequest message (89)5.3.7.5Reception of the RRCConnectionReestablishment by the UE (89)5.3.7.6T311 expiry (91)5.3.7.7T301 expiry or selected cell no longer suitable (91)5.3.7.8Reception of RRCConnectionReestablishmentReject by the UE (91)5.3.8RRC connection release (92)5.3.8.1General (92)5.3.8.2Initiation (92)5.3.8.3Reception of the RRCConnectionRelease by the UE (92)5.3.8.4T320 expiry (93)5.3.9RRC connection release requested by upper layers (93)5.3.9.1General (93)5.3.9.2Initiation (93)5.3.10Radio resource configuration (93)5.3.10.0General (93)5.3.10.1SRB addition/ modification (94)5.3.10.2DRB release (95)5.3.10.3DRB addition/ modification (95)5.3.10.3a1DC specific DRB addition or reconfiguration (96)5.3.10.3a2LWA specific DRB addition or reconfiguration (98)5.3.10.3a3LWIP specific DRB addition or reconfiguration (98)5.3.10.3a SCell release (99)5.3.10.3b SCell addition/ modification (99)5.3.10.3c PSCell addition or modification (99)5.3.10.4MAC main reconfiguration (99)5.3.10.5Semi-persistent scheduling reconfiguration (100)5.3.10.6Physical channel reconfiguration (100)5.3.10.7Radio Link Failure Timers and Constants reconfiguration (101)5.3.10.8Time domain measurement resource restriction for serving cell (101)5.3.10.9Other configuration (102)5.3.10.10SCG reconfiguration (103)5.3.10.11SCG dedicated resource configuration (104)5.3.10.12Reconfiguration SCG or split DRB by drb-ToAddModList (105)5.3.10.13Neighbour cell information reconfiguration (105)5.3.10.14Void (105)5.3.10.15Sidelink dedicated configuration (105)5.3.10.16T370 expiry (106)5.3.11Radio link failure related actions (107)5.3.11.1Detection of physical layer problems in RRC_CONNECTED (107)5.3.11.2Recovery of physical layer problems (107)5.3.11.3Detection of radio link failure (107)5.3.12UE actions upon leaving RRC_CONNECTED (109)5.3.13UE actions upon PUCCH/ SRS release request (110)5.3.14Proximity indication (110)5.3.14.1General (110)5.3.14.2Initiation (111)5.3.14.3Actions related to transmission of ProximityIndication message (111)5.3.15Void (111)5.4Inter-RAT mobility (111)5.4.1Introduction (111)5.4.2Handover to E-UTRA (112)5.4.2.1General (112)5.4.2.2Initiation (112)5.4.2.3Reception of the RRCConnectionReconfiguration by the UE (112)5.4.2.4Reconfiguration failure (114)5.4.2.5T304 expiry (handover to E-UTRA failure) (114)5.4.3Mobility from E-UTRA (114)5.4.3.1General (114)5.4.3.2Initiation (115)5.4.3.3Reception of the MobilityFromEUTRACommand by the UE (115)5.4.3.4Successful completion of the mobility from E-UTRA (116)5.4.3.5Mobility from E-UTRA failure (117)5.4.4Handover from E-UTRA preparation request (CDMA2000) (117)5.4.4.1General (117)5.4.4.2Initiation (118)5.4.4.3Reception of the HandoverFromEUTRAPreparationRequest by the UE (118)5.4.5UL handover preparation transfer (CDMA2000) (118)5.4.5.1General (118)5.4.5.2Initiation (118)5.4.5.3Actions related to transmission of the ULHandoverPreparationTransfer message (119)5.4.5.4Failure to deliver the ULHandoverPreparationTransfer message (119)5.4.6Inter-RAT cell change order to E-UTRAN (119)5.4.6.1General (119)5.4.6.2Initiation (119)5.4.6.3UE fails to complete an inter-RAT cell change order (119)5.5Measurements (120)5.5.1Introduction (120)5.5.2Measurement configuration (121)5.5.2.1General (121)5.5.2.2Measurement identity removal (122)5.5.2.2a Measurement identity autonomous removal (122)5.5.2.3Measurement identity addition/ modification (123)5.5.2.4Measurement object removal (124)5.5.2.5Measurement object addition/ modification (124)5.5.2.6Reporting configuration removal (126)5.5.2.7Reporting configuration addition/ modification (127)5.5.2.8Quantity configuration (127)5.5.2.9Measurement gap configuration (127)5.5.2.10Discovery signals measurement timing configuration (128)5.5.2.11RSSI measurement timing configuration (128)5.5.3Performing measurements (128)5.5.3.1General (128)5.5.3.2Layer 3 filtering (131)5.5.4Measurement report triggering (131)5.5.4.1General (131)5.5.4.2Event A1 (Serving becomes better than threshold) (135)5.5.4.3Event A2 (Serving becomes worse than threshold) (136)5.5.4.4Event A3 (Neighbour becomes offset better than PCell/ PSCell) (136)5.5.4.5Event A4 (Neighbour becomes better than threshold) (137)5.5.4.6Event A5 (PCell/ PSCell becomes worse than threshold1 and neighbour becomes better thanthreshold2) (138)5.5.4.6a Event A6 (Neighbour becomes offset better than SCell) (139)5.5.4.7Event B1 (Inter RAT neighbour becomes better than threshold) (139)5.5.4.8Event B2 (PCell becomes worse than threshold1 and inter RAT neighbour becomes better thanthreshold2) (140)5.5.4.9Event C1 (CSI-RS resource becomes better than threshold) (141)5.5.4.10Event C2 (CSI-RS resource becomes offset better than reference CSI-RS resource) (141)5.5.4.11Event W1 (WLAN becomes better than a threshold) (142)5.5.4.12Event W2 (All WLAN inside WLAN mobility set becomes worse than threshold1 and a WLANoutside WLAN mobility set becomes better than threshold2) (142)5.5.4.13Event W3 (All WLAN inside WLAN mobility set becomes worse than a threshold) (143)5.5.5Measurement reporting (144)5.5.6Measurement related actions (148)5.5.6.1Actions upon handover and re-establishment (148)5.5.6.2Speed dependant scaling of measurement related parameters (149)5.5.7Inter-frequency RSTD measurement indication (149)5.5.7.1General (149)5.5.7.2Initiation (150)5.5.7.3Actions related to transmission of InterFreqRSTDMeasurementIndication message (150)5.6Other (150)5.6.0General (150)5.6.1DL information transfer (151)5.6.1.1General (151)5.6.1.2Initiation (151)5.6.1.3Reception of the DLInformationTransfer by the UE (151)5.6.2UL information transfer (151)5.6.2.1General (151)5.6.2.2Initiation (151)5.6.2.3Actions related to transmission of ULInformationTransfer message (152)5.6.2.4Failure to deliver ULInformationTransfer message (152)5.6.3UE capability transfer (152)5.6.3.1General (152)5.6.3.2Initiation (153)5.6.3.3Reception of the UECapabilityEnquiry by the UE (153)5.6.4CSFB to 1x Parameter transfer (157)5.6.4.1General (157)5.6.4.2Initiation (157)5.6.4.3Actions related to transmission of CSFBParametersRequestCDMA2000 message (157)5.6.4.4Reception of the CSFBParametersResponseCDMA2000 message (157)5.6.5UE Information (158)5.6.5.1General (158)5.6.5.2Initiation (158)5.6.5.3Reception of the UEInformationRequest message (158)5.6.6 Logged Measurement Configuration (159)5.6.6.1General (159)5.6.6.2Initiation (160)5.6.6.3Reception of the LoggedMeasurementConfiguration by the UE (160)5.6.6.4T330 expiry (160)5.6.7 Release of Logged Measurement Configuration (160)5.6.7.1General (160)5.6.7.2Initiation (160)5.6.8 Measurements logging (161)5.6.8.1General (161)5.6.8.2Initiation (161)5.6.9In-device coexistence indication (163)5.6.9.1General (163)5.6.9.2Initiation (164)5.6.9.3Actions related to transmission of InDeviceCoexIndication message (164)5.6.10UE Assistance Information (165)5.6.10.1General (165)5.6.10.2Initiation (166)5.6.10.3Actions related to transmission of UEAssistanceInformation message (166)5.6.11 Mobility history information (166)5.6.11.1General (166)5.6.11.2Initiation (166)5.6.12RAN-assisted WLAN interworking (167)5.6.12.1General (167)5.6.12.2Dedicated WLAN offload configuration (167)5.6.12.3WLAN offload RAN evaluation (167)5.6.12.4T350 expiry or stop (167)5.6.12.5Cell selection/ re-selection while T350 is running (168)5.6.13SCG failure information (168)5.6.13.1General (168)5.6.13.2Initiation (168)5.6.13.3Actions related to transmission of SCGFailureInformation message (168)5.6.14LTE-WLAN Aggregation (169)5.6.14.1Introduction (169)5.6.14.2Reception of LWA configuration (169)5.6.14.3Release of LWA configuration (170)5.6.15WLAN connection management (170)5.6.15.1Introduction (170)5.6.15.2WLAN connection status reporting (170)5.6.15.2.1General (170)5.6.15.2.2Initiation (171)5.6.15.2.3Actions related to transmission of WLANConnectionStatusReport message (171)5.6.15.3T351 Expiry (WLAN connection attempt timeout) (171)5.6.15.4WLAN status monitoring (171)5.6.16RAN controlled LTE-WLAN interworking (172)5.6.16.1General (172)5.6.16.2WLAN traffic steering command (172)5.6.17LTE-WLAN aggregation with IPsec tunnel (173)5.6.17.1General (173)5.7Generic error handling (174)5.7.1General (174)5.7.2ASN.1 violation or encoding error (174)5.7.3Field set to a not comprehended value (174)5.7.4Mandatory field missing (174)5.7.5Not comprehended field (176)5.8MBMS (176)5.8.1Introduction (176)5.8.1.1General (176)5.8.1.2Scheduling (176)5.8.1.3MCCH information validity and notification of changes (176)5.8.2MCCH information acquisition (178)5.8.2.1General (178)5.8.2.2Initiation (178)5.8.2.3MCCH information acquisition by the UE (178)5.8.2.4Actions upon reception of the MBSFNAreaConfiguration message (178)5.8.2.5Actions upon reception of the MBMSCountingRequest message (179)5.8.3MBMS PTM radio bearer configuration (179)5.8.3.1General (179)5.8.3.2Initiation (179)5.8.3.3MRB establishment (179)5.8.3.4MRB release (179)5.8.4MBMS Counting Procedure (179)5.8.4.1General (179)5.8.4.2Initiation (180)5.8.4.3Reception of the MBMSCountingRequest message by the UE (180)5.8.5MBMS interest indication (181)5.8.5.1General (181)5.8.5.2Initiation (181)5.8.5.3Determine MBMS frequencies of interest (182)5.8.5.4Actions related to transmission of MBMSInterestIndication message (183)5.8a SC-PTM (183)5.8a.1Introduction (183)5.8a.1.1General (183)5.8a.1.2SC-MCCH scheduling (183)5.8a.1.3SC-MCCH information validity and notification of changes (183)5.8a.1.4Procedures (184)5.8a.2SC-MCCH information acquisition (184)5.8a.2.1General (184)5.8a.2.2Initiation (184)5.8a.2.3SC-MCCH information acquisition by the UE (184)5.8a.2.4Actions upon reception of the SCPTMConfiguration message (185)5.8a.3SC-PTM radio bearer configuration (185)5.8a.3.1General (185)5.8a.3.2Initiation (185)5.8a.3.3SC-MRB establishment (185)5.8a.3.4SC-MRB release (185)5.9RN procedures (186)5.9.1RN reconfiguration (186)5.9.1.1General (186)5.9.1.2Initiation (186)5.9.1.3Reception of the RNReconfiguration by the RN (186)5.10Sidelink (186)5.10.1Introduction (186)5.10.1a Conditions for sidelink communication operation (187)5.10.2Sidelink UE information (188)5.10.2.1General (188)5.10.2.2Initiation (189)5.10.2.3Actions related to transmission of SidelinkUEInformation message (193)5.10.3Sidelink communication monitoring (195)5.10.6Sidelink discovery announcement (198)5.10.6a Sidelink discovery announcement pool selection (201)5.10.6b Sidelink discovery announcement reference carrier selection (201)5.10.7Sidelink synchronisation information transmission (202)5.10.7.1General (202)5.10.7.2Initiation (203)5.10.7.3Transmission of SLSS (204)5.10.7.4Transmission of MasterInformationBlock-SL message (205)5.10.7.5Void (206)5.10.8Sidelink synchronisation reference (206)5.10.8.1General (206)5.10.8.2Selection and reselection of synchronisation reference UE (SyncRef UE) (206)5.10.9Sidelink common control information (207)5.10.9.1General (207)5.10.9.2Actions related to reception of MasterInformationBlock-SL message (207)5.10.10Sidelink relay UE operation (207)5.10.10.1General (207)5.10.10.2AS-conditions for relay related sidelink communication transmission by sidelink relay UE (207)5.10.10.3AS-conditions for relay PS related sidelink discovery transmission by sidelink relay UE (208)5.10.10.4Sidelink relay UE threshold conditions (208)5.10.11Sidelink remote UE operation (208)5.10.11.1General (208)5.10.11.2AS-conditions for relay related sidelink communication transmission by sidelink remote UE (208)5.10.11.3AS-conditions for relay PS related sidelink discovery transmission by sidelink remote UE (209)5.10.11.4Selection and reselection of sidelink relay UE (209)5.10.11.5Sidelink remote UE threshold conditions (210)6Protocol data units, formats and parameters (tabular & ASN.1) (210)6.1General (210)6.2RRC messages (212)6.2.1General message structure (212)–EUTRA-RRC-Definitions (212)–BCCH-BCH-Message (212)–BCCH-DL-SCH-Message (212)–BCCH-DL-SCH-Message-BR (213)–MCCH-Message (213)–PCCH-Message (213)–DL-CCCH-Message (214)–DL-DCCH-Message (214)–UL-CCCH-Message (214)–UL-DCCH-Message (215)–SC-MCCH-Message (215)6.2.2Message definitions (216)–CounterCheck (216)–CounterCheckResponse (217)–CSFBParametersRequestCDMA2000 (217)–CSFBParametersResponseCDMA2000 (218)–DLInformationTransfer (218)–HandoverFromEUTRAPreparationRequest (CDMA2000) (219)–InDeviceCoexIndication (220)–InterFreqRSTDMeasurementIndication (222)–LoggedMeasurementConfiguration (223)–MasterInformationBlock (225)–MBMSCountingRequest (226)–MBMSCountingResponse (226)–MBMSInterestIndication (227)–MBSFNAreaConfiguration (228)–MeasurementReport (228)–MobilityFromEUTRACommand (229)–Paging (232)–ProximityIndication (233)–RNReconfiguration (234)–RNReconfigurationComplete (234)–RRCConnectionReconfiguration (235)–RRCConnectionReconfigurationComplete (240)–RRCConnectionReestablishment (241)–RRCConnectionReestablishmentComplete (241)–RRCConnectionReestablishmentReject (242)–RRCConnectionReestablishmentRequest (243)–RRCConnectionReject (243)–RRCConnectionRelease (244)–RRCConnectionResume (248)–RRCConnectionResumeComplete (249)–RRCConnectionResumeRequest (250)–RRCConnectionRequest (250)–RRCConnectionSetup (251)–RRCConnectionSetupComplete (252)–SCGFailureInformation (253)–SCPTMConfiguration (254)–SecurityModeCommand (255)–SecurityModeComplete (255)–SecurityModeFailure (256)–SidelinkUEInformation (256)–SystemInformation (258)–SystemInformationBlockType1 (259)–UEAssistanceInformation (264)–UECapabilityEnquiry (265)–UECapabilityInformation (266)–UEInformationRequest (267)–UEInformationResponse (267)–ULHandoverPreparationTransfer (CDMA2000) (273)–ULInformationTransfer (274)–WLANConnectionStatusReport (274)6.3RRC information elements (275)6.3.1System information blocks (275)–SystemInformationBlockType2 (275)–SystemInformationBlockType3 (279)–SystemInformationBlockType4 (282)–SystemInformationBlockType5 (283)–SystemInformationBlockType6 (287)–SystemInformationBlockType7 (289)–SystemInformationBlockType8 (290)–SystemInformationBlockType9 (295)–SystemInformationBlockType10 (295)–SystemInformationBlockType11 (296)–SystemInformationBlockType12 (297)–SystemInformationBlockType13 (297)–SystemInformationBlockType14 (298)–SystemInformationBlockType15 (298)–SystemInformationBlockType16 (299)–SystemInformationBlockType17 (300)–SystemInformationBlockType18 (301)–SystemInformationBlockType19 (301)–SystemInformationBlockType20 (304)6.3.2Radio resource control information elements (304)–AntennaInfo (304)–AntennaInfoUL (306)–CQI-ReportConfig (307)–CQI-ReportPeriodicProcExtId (314)–CrossCarrierSchedulingConfig (314)–CSI-IM-Config (315)–CSI-IM-ConfigId (315)–CSI-RS-Config (317)–CSI-RS-ConfigEMIMO (318)–CSI-RS-ConfigNZP (319)–CSI-RS-ConfigNZPId (320)–CSI-RS-ConfigZP (321)–CSI-RS-ConfigZPId (321)–DMRS-Config (321)–DRB-Identity (322)–EPDCCH-Config (322)–EIMTA-MainConfig (324)–LogicalChannelConfig (325)–LWA-Configuration (326)–LWIP-Configuration (326)–RCLWI-Configuration (327)–MAC-MainConfig (327)–P-C-AndCBSR (332)–PDCCH-ConfigSCell (333)–PDCP-Config (334)–PDSCH-Config (337)–PDSCH-RE-MappingQCL-ConfigId (339)–PHICH-Config (339)–PhysicalConfigDedicated (339)–P-Max (344)–PRACH-Config (344)–PresenceAntennaPort1 (346)–PUCCH-Config (347)–PUSCH-Config (351)–RACH-ConfigCommon (355)–RACH-ConfigDedicated (357)–RadioResourceConfigCommon (358)–RadioResourceConfigDedicated (362)–RLC-Config (367)–RLF-TimersAndConstants (369)–RN-SubframeConfig (370)–SchedulingRequestConfig (371)–SoundingRS-UL-Config (372)–SPS-Config (375)–TDD-Config (376)–TimeAlignmentTimer (377)–TPC-PDCCH-Config (377)–TunnelConfigLWIP (378)–UplinkPowerControl (379)–WLAN-Id-List (382)–WLAN-MobilityConfig (382)6.3.3Security control information elements (382)–NextHopChainingCount (382)–SecurityAlgorithmConfig (383)–ShortMAC-I (383)6.3.4Mobility control information elements (383)–AdditionalSpectrumEmission (383)–ARFCN-ValueCDMA2000 (383)–ARFCN-ValueEUTRA (384)–ARFCN-ValueGERAN (384)–ARFCN-ValueUTRA (384)–BandclassCDMA2000 (384)–BandIndicatorGERAN (385)–CarrierFreqCDMA2000 (385)–CarrierFreqGERAN (385)–CellIndexList (387)–CellReselectionPriority (387)–CellSelectionInfoCE (387)–CellReselectionSubPriority (388)–CSFB-RegistrationParam1XRTT (388)–CellGlobalIdEUTRA (389)–CellGlobalIdUTRA (389)–CellGlobalIdGERAN (390)–CellGlobalIdCDMA2000 (390)–CellSelectionInfoNFreq (391)–CSG-Identity (391)–FreqBandIndicator (391)–MobilityControlInfo (391)–MobilityParametersCDMA2000 (1xRTT) (393)–MobilityStateParameters (394)–MultiBandInfoList (394)–NS-PmaxList (394)–PhysCellId (395)–PhysCellIdRange (395)–PhysCellIdRangeUTRA-FDDList (395)–PhysCellIdCDMA2000 (396)–PhysCellIdGERAN (396)–PhysCellIdUTRA-FDD (396)–PhysCellIdUTRA-TDD (396)–PLMN-Identity (397)–PLMN-IdentityList3 (397)–PreRegistrationInfoHRPD (397)–Q-QualMin (398)–Q-RxLevMin (398)–Q-OffsetRange (398)–Q-OffsetRangeInterRAT (399)–ReselectionThreshold (399)–ReselectionThresholdQ (399)–SCellIndex (399)–ServCellIndex (400)–SpeedStateScaleFactors (400)–SystemInfoListGERAN (400)–SystemTimeInfoCDMA2000 (401)–TrackingAreaCode (401)–T-Reselection (402)–T-ReselectionEUTRA-CE (402)6.3.5Measurement information elements (402)–AllowedMeasBandwidth (402)–CSI-RSRP-Range (402)–Hysteresis (402)–LocationInfo (403)–MBSFN-RSRQ-Range (403)–MeasConfig (404)–MeasDS-Config (405)–MeasGapConfig (406)–MeasId (407)–MeasIdToAddModList (407)–MeasObjectCDMA2000 (408)–MeasObjectEUTRA (408)–MeasObjectGERAN (412)–MeasObjectId (412)–MeasObjectToAddModList (412)–MeasObjectUTRA (413)–ReportConfigEUTRA (422)–ReportConfigId (425)–ReportConfigInterRAT (425)–ReportConfigToAddModList (428)–ReportInterval (429)–RSRP-Range (429)–RSRQ-Range (430)–RSRQ-Type (430)–RS-SINR-Range (430)–RSSI-Range-r13 (431)–TimeToTrigger (431)–UL-DelayConfig (431)–WLAN-CarrierInfo (431)–WLAN-RSSI-Range (432)–WLAN-Status (432)6.3.6Other information elements (433)–AbsoluteTimeInfo (433)–AreaConfiguration (433)–C-RNTI (433)–DedicatedInfoCDMA2000 (434)–DedicatedInfoNAS (434)–FilterCoefficient (434)–LoggingDuration (434)–LoggingInterval (435)–MeasSubframePattern (435)–MMEC (435)–NeighCellConfig (435)–OtherConfig (436)–RAND-CDMA2000 (1xRTT) (437)–RAT-Type (437)–ResumeIdentity (437)–RRC-TransactionIdentifier (438)–S-TMSI (438)–TraceReference (438)–UE-CapabilityRAT-ContainerList (438)–UE-EUTRA-Capability (439)–UE-RadioPagingInfo (469)–UE-TimersAndConstants (469)–VisitedCellInfoList (470)–WLAN-OffloadConfig (470)6.3.7MBMS information elements (472)–MBMS-NotificationConfig (472)–MBMS-ServiceList (473)–MBSFN-AreaId (473)–MBSFN-AreaInfoList (473)–MBSFN-SubframeConfig (474)–PMCH-InfoList (475)6.3.7a SC-PTM information elements (476)–SC-MTCH-InfoList (476)–SCPTM-NeighbourCellList (478)6.3.8Sidelink information elements (478)–SL-CommConfig (478)–SL-CommResourcePool (479)–SL-CP-Len (480)–SL-DiscConfig (481)–SL-DiscResourcePool (483)–SL-DiscTxPowerInfo (485)–SL-GapConfig (485)。
chatgpt 外贸 常用指令

chatgpt 外贸常用指令
(原创实用版)
目录
1.ChatGPT 简介
2.ChatGPT 在外贸中的应用
3.常用指令介绍
4.结语
正文
ChatGPT 是由 OpenAI 于 2022 年 11 月推出的一个人工智能聊天机器人程序,旨在为用户提供有帮助性的信息和建议。
在外贸领域,ChatGPT 也得到了广泛应用,能够帮助企业进行智能化的外贸业务管理。
而在 ChatGPT 中,常用的指令包括以下几个方面:
1.文本生成:ChatGPT 可以根据用户提供的关键词或主题,生成相应的文章、报告或邮件等文本。
例如,用户可以输入“生成一封外贸业务洽谈邮件”,ChatGPT 则会根据用户的需求自动生成一封符合要求的邮件。
2.对话管理:ChatGPT 还可以用于自动化对话管理,例如自动回复客户的询盘、报价和订单等。
用户可以利用 ChatGPT 的自然语言处理能力,设置相应的对话规则和模板,提高回复的准确性和效率。
3.数据分析:ChatGPT 还可以用于外贸数据的分析和处理,例如根据历史数据生成销售预测、分析客户行为等。
用户可以利用 ChatGPT 的机器学习模型和算法,进行更加精准的数据分析和预测。
总的来说,ChatGPT 在外贸领域具有广泛的应用前景,能够帮助企业提高业务效率和管理水平。
第1页共1页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
See discussions, stats, and author profiles for this publication at: https:///publication/265210876 Fast-Settling Feedforward Automatic Gain Control Based on a New Gain Control ApproachArticle in Circuits and Systems II: Express Briefs, IEEE Transactions on · September 2014Impact Factor: 1.23 · DOI: 10.1109/TCSII.2014.2331097CITATION 1READS 1264 authors, including:Guang-jun XieHefei University of Technology 50 PUBLICATIONS 135 CITATIONSSEE PROFILE Zhang ZhangTeesside University129 PUBLICATIONS 440 CITATIONS SEE PROFILEAll in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.Available from: Guang-jun Xie Retrieved on: 04 June 2016Fast-Settling Feedforward Automatic Gain Control Based on a New Gain Control ApproachXin Cheng,Guangjun Xie,Zhang Zhang,and Yizhong YangAbstract—This brief presents a feedforward automatic gain control(AGC)circuit with a short settling time.The proposed AGC combines a digital coarse gain setting and an analogfine gain setting,in which thefine gain setting is carried out by a one-step algorithm,which shortens the settling time drastically.The chip is fabricated in0.13-μm CMOS technology and the measurement results show that the48-dB AGC converges to the desired level within1.2μs.Index Terms—Automatic gain control(AGC),fast-settling,feed-forward,variable gain amplifier(VGA).I.I NTRODUCTIONA UTOMATIC gain control(AGC)is an essential block inmany applications such as wireless receivers,disk drive read channels,and hearing aid instruments to maintain afixed output for different input signal levels[1]–[5].Conventional AGCs adopt a closed-loop feedback scheme to settle the desired output signal level,as shown in Fig.1[6]–[8].However,the closed-loop feedback technique makes the time to determine gain much longer than the time constant of the loopfilter for loop stability.Therefore,the closed-loop scheme is precluded in some applications,which introduce stringent settling-time constraints,such as wireless receivers[9],[10].Meanwhile, feedforward techniques have proved to be adequate to accel-erate gain-setting speed[11]–[14].In this brief,a feedforward AGC is proposed.To obtain fast gain settling and relax the input dynamic range requirement, the system includes a coarse gain-setting block and afine gain-setting block.Thefine gain setting is carried out by a new gain control approach to further accelerate locking speed.This brief is organized as follows.Section II describes the proposed AGC architecture.In Section III,the circuit design of main blocks is discussed.Section IV presents the experimental results and Section V draws the conclusion.II.P ROPOSED AGC A RCHITECTUREIn this brief,the proposed AGC includes a switched coarse gain-setting step and an analogfine gain-setting step to set theManuscript received January19,2014;revised April8,2014;accepted June12,2014.Date of publication June17,2014;date of current version September1,2014.This work was supported by the National Natural Science Foundation of China under Grant61401137.This brief was recommended by Associate Editor H.Sjoland.The authors are with the School of Electronic Science and Applied Physics, Hefei University of Technology,Hefei230009,China(e-mail:gjxie8005@ ).Color versions of one or more of thefigures in this brief are available online at .Digital Object Identifier10.1109/TCSII.2014.2331097Fig.1.Architecture of a conventional feedbackAGC.Fig.2.Architecture of the proposed AGC.gain.The coarse gain-setting step ensures that the input signal offine gain-setting block is not far from its optimal value and thus relaxes the input dynamic range requirement of thefine gain-setting block[9].As shown in Fig.2,the AGC consists of a digital gain control,a programmable gain amplifier(PGA), a root-mean-square(RMS)detector,a variable gain amplifier (VGA),and afixed gain amplifier(FGA).The digital gain control and the PGA serve as coarse gain-setting block to pro-vide a0/10/20/30/40/50-dB programmable gain,whereas the VGA and the RMS detector formfine gain-setting block with a feedforward topology.Finally,an FGA with good linearity is cascaded in the chain to improve linearity of the AGC,since linearity is dominated by the last stage of cascade amplifiers.III.M AIN C IRCUIT D ESCRIPTIONA.Coarse-Gain ControlThe PGA of coarse-gain control,as shown in Fig.3,provides a0/10/20/30/40/50-dB programmable gain throughfive10-dB FGAs A1–A5andfive pairs of control switches S1–S5.Gain control is realized by switches that selectively turn on or off according to the control bits generated by corresponding control.The operation process of the coarse gain setting is shown in Fig.4.Atfirst,input signal V in(V0)is compared with the reference voltage V ref.As soon as V in is larger than V ref,which means the peak voltage of V in is larger than V ref,the switch1549-7747©2014IEEE.Personal use is permitted,but republication/redistribution requires IEEE permission.See /publications_standards/publications/rights/index.html for more information.Fig.3.Topology of the coarse gaincontrol.Fig.4.Flowchart of the coarse gainsetting.Fig.5.Circuits implementation of fine-gain control.(a)Schematic of the detector.(b)Schematic of the VGA.S 1is on and so are S 2–S ly,the gain of PGA is set as 0dB and the output of PGA V out is equal to V in .Contrarily,if V in keeps smaller than V ref during the period,which means the peak voltage of V in is smaller than V ref ,the switch S 1is off and V in is amplified to V 1by A 1.Then,V 1is compared with V ref again.The process for adjusting gain will not stop until the peak voltage of the amplified signal V i (i =1,...,5)islargerFig.6.Schematic of theFGA.Fig.7.Chip photograph of the proposed AGC.than V ref or V in is amplified by all of the five amplifiers,namely the gain of PGA is set as 50dB and the output of PGA V out is equal to V 5.As shown in Fig.3,the proposed digital gain control consists of a comparator and a digital logic circuit.The comparator compares the input signal (V i ,i =0,...,4)with V ref and converts the analog input signal into a digital signal.When the input signal is larger than V ref ,the output of comparator is “1,”whereas when the input signal is smaller than V ref ,the output of comparator is “0.”Based on the output of comparator,the digital logic circuit generates a control bit to decide whether the corresponding switch in PGA is on or off and thus set the gain of PGA.It should be noted that the coarse gain control employs a novel comparator-based configuration,instead of a conventional peak detector to reduce gain-settling time.B.Fine-Gain ControlAs shown in Fig.2,the fine-gain control consists of a VGA and an RMS detector.The proposed feedforward algorithm operates in two stages.First,the RMS detector detects signal strength at the input of the VGA and generates a control voltage proportional to the signal strength.Second,the gain of the VGA is set based on the control voltage.The RMS detector is shown in Fig.5(a):Differential inputs V in+and V in −from VGA are fed to gates of NMOS M 1and M 2,which are operated in strong inversion to provide a squaring function.Cross-coupled differential pairs M 3–M 6full-wave rectify the currents I 1and I 2.The differential pairs must work as switches;thus,their gate voltages are driven by large signals V p and V n ,boosted by amplifier A.During the positive half of period when V in+>V in −,V p outputs high level to turn on M 4and M 5,whereas V n outputs low level to turn offCHENG et al.:FAST-SETTLING FEEDFORWARD AGC BASED ON A NEW GAIN CONTROL APPROACH653Fig.8.Measured output signals of the AGC with different amplitudes of input signal;(a)input amplitude of0.5mV(CH1:50mV/div,CH2:100mV/div, CH3:500mV/div);(b)input amplitude of10mV(CH1:50mV/div, CH2:100mV/div,CH3:500mV/div);(c)input amplitude of120mV(CH1: 100mV/div,CH2:100mV/div,CH3:500mV/div).M3and M6.Therefore,I9,which is equal to I1is larger than I8,which is equal to I2.During the negative half-period,I9, which is equal to I2is still larger than I8,which is equal to I1.The full-wave rectified currents I8and I9are averaged to complete the amplitude detection.A cascade of twofirst-order low-passfilters with a corner frequency of10kHz performs the averaging.By current mirror and current subtraction,the current I c is equal to I9−I8,which is proportional to the detected amplitude.I c is then mirrored to VGA via V c to achieve gain control.Assuming thatI C=k1A in(1)where A in is the amplitude of input signal,and k1is a constant depending on the detector and input signal.For a sinusoidal input signal,k1=(4/π)·μn C ox(W/L)1,2.As shown in Fig.5(b),the proposed VGA is implemented by a cascade of two identical amplifiers[15],where the tailcurrent Fig.9.Plot of gain versus input amplitude.I c is mirrored from the detector,as mentioned before.In A1 (A2),the output resistances of M1b–M6b are designed to be several hundred times of1/g m3b,4b;therefore,the gain of A1 (A2)can be approximately expressed asAv1=G m·R L≈g m1b,2bg m3b,4b=WL1b,2bI bWL3b,4bI C=k2I C(2)where k2=((W/L)1b,2b I b)/(W/L)3b,4b.So the gain of the VGA is given byAv=A2v1=k2I C(3) and substituting(1)in(3)yieldsAv=k2k1A in(4)which means the gain of the VGA is inversely proportional to input signal amplitude.Thus,for a VGA input signal with amplitude A in,the amplitude of the VGA output can be expressed asA out=Av·A in=k2k1A in·A in=k2k1(5)which means that the output of the VGA remains constant for any signal within input dynamic range.Furthermore,the gain convergence is done with“one step”;as soon as the input signal is detected,the gain of the VGA is settled.C.Fixed-Gain AmplifierIn general,a large variable gain range for VGA results in poor linearity.To settle down the tradeoff,an FGA with constant gain but good linearity is cascaded as the last stage. The FGA schematic is shown in Fig.6.Differential input V in= V i+−V i−is applied between the gates of source followers M1a and M1b,which are connected in feedback loops with M2a and M2b to form a pair offlipped voltage followers(FVFs). The FVFs force constant current in M1a and M1b,so that the nodes X1and X2follow V i+and V i−with a constant V GS offset.Thus,the current I X through resistor R X is accurately654IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II:EXPRESS BRIEFS,VOL.61,NO.9,SEPTEMBER2014Fig.10.Measurement of AGC convergence;(a)attack time with an upward stepwise input signal;(b)decay time with a downward stepwise input signal. proportional to V in.A highly linear transconductance G m= 2/R X can be achieved.Feeding the output current of the transconductor to a load R L gives a constant gain2R L/R X. This topology provides a gain range of0dB to20dB within the allowed distortion limit,and in this application the gain of the FGA is set as15dB.IV.E XPERIMENTAL R ESULTSThe AGC was been fabricated in a standard0.13-μm CMOS process.The microphotograph of the chip is shown in Fig.7. The area including pads is0.6mm×0.9mm.The measurement is performed with sinusoidal input signal.At an input frequency of5MHz,the measured transient plots of the AGC with different amplitudes of input signal are shown in Fig.8,which are output of PGA,output of VGA,and output of AGC in turn.Note that the distances between adjacent horizontal grid lines for every plot of each figure.For an input amplitude of0.5mV,as Fig.8(a)shows, an amplified signal with amplitude of48mV appears at the output of PGA.The signal settles down with an amplitude of 85mV through VGA,andfinally its amplitude is amplified to 400mV by FGA.For an input amplitude of10mV,as Fig.8(b) shows,it is amplified to about30mV through PGA.Thenthe Fig.11.THD versus input amplitude plot of theAGC.Fig.12.Output spectrums for different input signal amplitudes;(a)40-mVp input signal;(b)0.5-mVp input signal.signal settles down with amplitude of80mV via VGA and,finally,amplified to375mV.For an input amplitude of120mV, as Fig.8(c)shows,it keeps its initial amplitude120mV at an output of PGA and then its amplitude is compressed to82mV by VGA and isfinally is amplified to385mV.This illustrates that the PGA can afford proper gain based on the power of inputCHENG et al.:FAST-SETTLING FEEDFORWARD AGC BASED ON A NEW GAIN CONTROL APPROACH 655TABLE IC OMPARISON OF P RINCIPAL CHARACTERISTICSsignal and that the signal power can be settled down around a steady value through VGA and amplified by fixed gain of FGA finally.In other words,the three blocks of AGC work well.Fig.9gives the plot of gain versus input amplitude,which shows a gain range of 10to 58dB with a gain error less than 0.9dB when the amplitude of the input signal varies from 120to 0.5mV .To check convergence of the AGC,a 5-MHz stepwise input signal is introduced.The minimum input amplitude is 20mV ,which is restricted by the wave generator,and the maximum in-put amplitude is 120mV .An upward and a downward stepwise signal are employed to measure attack time and decay time,respectively.Fig.10shows that the AGC can adjust signal to the desired level within 1.2μs for the worst case.The measured total harmonic distortion (THD)versus input amplitude plot is given in Fig.11.It shows a minimum THD of 0.32%for 40-mVp input signal.See Fig.12(a)and a maximum THD of 1.37%for 0.5-mVp input signal and see also Fig.12(b).The complete AGC circuit operates from 1.2-V supply and draws 4.3mA.Finally,the principal characteristics of this brief and the comparison with other AGC designs are summarized in Table I.Considering the different frequencies of input signals,the proposed structure achieves a shorter settling time while not sacrificing linearity and noise performance compared with other AGCs.This architecture can be used in wireless receivers and other applications with tight settling-time requirements.V .C ONCLUSIONA fast-settling feedforward AGC,which consists of coarse-gain control and fine-gain control,is presented.The fine-gain setting is carried out by a novel one-step method,which short-ens the settling time drastically.Experiment results show the AGC converges to the desired level with a gain range of 48dB within 1.2μs.R EFERENCES[1]H.H.Nguyen,H.N.Nguyen,J.S.Lee,and S.G.Lee,“A binary-weighted switching and reconfiguration-based programmable gain ampli-fier,”IEEE Trans.Circuits Syst.II,Exp.Briefs ,vol.56,no.9,pp.699–703,Sep.2009.[2]G.A.Coro,A.R.Jesus,J.L.Antonio,and R.A.Jaime,“Micropowerclass-AB VGA with gain-independent bandwidth,”IEEE Trans.Circuits Syst.II,Exp.Briefs ,vol.60,no.7,pp.397–401,Jul.2013.[3]Y .K.So,J.Y .Jang,I.Y .Oh,and C.S.Park,“A 2.16mW low powerdigitally-controlled variable gain amplifier,”IEEE Microw.Wireless Com-pon.Lett.,vol.20,no.3,pp.172–174,Mar.2010.[4]C.Liu,Y .P.Yan,Y .Z.Xiong,L.J.Zhang,and M.Madihian,“A 5-Gb/sautomatic gain control amplifier with temperature compensation,”IEEE J.Solid-State Circuits ,vol.47,no.6,pp.1323–1333,Jun.2012.[5]I.Choi,H.Seo,and B.Kim,“Accurate dB-linear variable gain amplifierwith gain error compensation,”IEEE J.Solid-State Circuits ,vol.48,no.2,pp.456–464,Feb.2013.[6]X.M.Wang,B.Y .Chi,and Z.H.Wang,“A low-power high-data-rateASK IF receiver with a digital-control AGC loop,”IEEE Trans.Circuits Syst.II,Exp.Briefs ,vol.57,no.8,pp.617–621,Aug.2010.[7]B.Y .Chi,J.K.Yao,P.Chiang,and Z.H.Wang,“A fast-settling wideband-IF ASK baseband circuit for a wireless endoscope capsule,”IEEE Trans.Circuits Syst.II,Exp.Briefs ,vol.56,no.4,pp.275–279,Apr.2009.[8]I.H.Wang and S.I.Liu,“A 0.18-μm CMOS 1.25-Gbps automatic-gain-control amplifier,”IEEE Trans.Circuits Syst.II,Exp.Briefs ,vol.55,no.2,pp.136–140,Feb.2008.[9]J.Okjune,M.F.Robert,and A.M.Brent,“Analog AGC circuitry for aCMOS WLAN receiver,”IEEE J.Solid-State Circuits ,vol.41,no.10,pp.2291–2300,Oct.2006.[10]H.S.Zhang,G.Y .Wang,and M.Y .Lu,“Analysis and implementation ofautomatic gain control for DAB baseband decoder,”IEEE Trans.Consum.Electron.,vol.57,no.2,pp.327–334,May 2011.[11]J.P.Alegre,B.Calvo,and S.Celma,“A high-performance CMOS feed-forward AGC circuit for a WLAN receiver,”IEEE Trans.Ind.Electron.,vol.57,no.8,pp.2851–2857,Aug.2010.[12]J.P.Alegre,B.Calvo,and S.Celma,“A high performance CMOS feed-forward AGC circuit for wideband wireless receivers,”in Proc.IEEE Int.Symp.ISIE ,Jun.2008,pp.1657–1661.[13]S.H.Yang and C.C.Wang,“Feed-forward output swing prediction AGCwith parallel-detect singular-store peak detector,”in Proc.IEEE Int.Symp.ISCAS ,May 2012,pp.2965–2968.[14]J.P.Alegre,B.Calvo,S.Celma,and F.Aznar,“CMOS combined feed-forward/feedback AGC circuit for VHF applications,”in Proc.IEEE Int.Symp.MWSCAS ,Aug.2010,pp.709–712.[15]Q.H.Duong,Q.Le,C.W.Kim,and S.G.Lee,“A 95-dB linear low-power variable gain amplifier,”IEEE Trans.Circuits Syst.I,Reg.Papers ,vol.53,no.8,pp.1648–1657,Aug.2006.。