图论第6章 平面图.

合集下载

图论第5、6章

图论第5、6章

第5章 对集
算法用生长“以u为根的M交错树”的 方法 ,来系统地搜索M可扩路. 树中除 u外都是M饱和的,直到碰到第一个 M 不饱和的顶点时,即得一M可扩路.当树 不能再生长下去时,即有N(S)=T.
本算法是个‘好’算法: 从一个M到 下一个,至多进行X次搜索运算;M 至多扩大X次.
例:
5.5 最优分派问题
第5章 对集
构作一个具有二分类(X, Y)的偶图G,其中 X={X1, X2, …, Xn},Y={Y1, Y2, …, Yn}, 并且Xi与Yj相连当且仅当工人Xi胜任工作Yj. 于是问题转化为确定G是否有完美对集的问 题.
下面给出的算法称为匈牙利算法,对任意 一个具有二分类(X, Y)的偶图G,它寻找G 的一个饱和X中所有顶点对集,或找到X的 一个子集S,使|N(S)| < |S| .
第5章 对集
若G有正常的k边着色,则称G是k边可着色的. 每个无环图都是ε边可着色的; 若G是k边可着色的,则一定是k+1边可着色的. 使G为k边可着色的最小整数k称为G的边色数, 记为χ’(G) . 若G的边色数为k,也称G是k边色的. 下图的边色数是多少?
第5章 对集
显然,在任何正常边着色中,和任一顶 点关联的边必须分配以不同的颜色,因 此
第5章 对集
定理5.2(Hall 1935) 设G是具有二分类(X,Y) 的偶图,则G包含饱和X的每个顶点的对集当 且仅当
|NG(S)|≥|S| 对所有S ⊆ X成立.
❖Hall定理是图论中最有用的定理之一,它 在数学及其他许多学科中都有应用.
Hall定理的证明
第5章 对集
必要性 假设G包含对集M,它饱和X的每个顶 点,并设S是X的子集. 由于S的顶点在M下和 N(S)中相异顶点配对,显然有|N(S)| ≥ |S| .

图论讲义第6章-图的着色问题

图论讲义第6章-图的着色问题
… H1 vk-1
ikik i0
( Δ + 1) 边染色。由引理 6.1.2, G[ Ei′0 ∪ Ei′k ] 中含有 u 的那个分支 H 1 是个奇圈。
ik i0 ik
vk …
im
… v3 v2
i4 i3 i2
u
i1
vm
v1
v
3
而对 k ≤ j ≤ m − 1 ,用颜色 ij+1 给 uvj 重新染色,而用颜色 ik 给 uvm 重新染色,得到一
1
, E k ) 中每个 Ei 都是非空的
设 v0 e1v1e2
eε v0 是 G 的一条 Euler 闭迹。 令 E1 = {ei i 为奇数},E 2 = {ei i 为偶数}。
于是 c = (E1, E2) 即为所求的边 2-染色。 需要说明的是,Euler 闭迹从度≥4 的顶点出发是必需的。例如在下图中,若从 2 度顶 点 u 处出发沿 Euler 闭迹交替地对边进行 2 染色,则 u 点可能仅能获得一种色(如图,1、2 表示两种颜色) 。
′′, E 2 ′′, 个( Δ+1 )边染色 c ′′ = ( E1
′′+1 ) 。同理有 c ′′( v ) ≥ c( v ) 对所有 v ∈ V 成立。故由引理 , EΔ
′ ∪ Ei′k′ ] 中含有 u 的分支 H 2 是个奇圈。 6.1.2, G[ Ei′0
vk-1
iki0 ik+1 ik
第六章 染色理论
许多实际问题可以归结为求图的匹配或者独立集。 此外, 在许多应用中, 人们希望知道: 一个给定的图, 它的边集至少能划分成多少个边不交的匹配?或它的顶点集至少能划分成多 少个点不交的独立集?这便是图的边染色和顶点染色问题。

图论及其应用

图论及其应用
χ(G)表示。若χ(G)=k,就称G是k-点可 色图。
顶点染色
定理:对于任何一个图χ(G)≤ω(G)。 ω(G)为图G的团数,用来描述χ(G)的下 界,其中ω(G)=max{k|Kk属于G}。
顶点染色
给定图G=(V,E)的一个k-点染色。用Vi表示G中染以 第i色的顶点集合(i=1,2,…,k),则每个Vi都是G 的独立集。因而G的每一个K-点染色对应V(G)的一个划 分[V1,V2,…,Vk],其中每一个Vi是一个独立集。反之 ,给出V(G)的这样一个划分(V1,V2,…,Vk),其中每 一个Vi均是独立集(1≤i≤k),则相应得到G的一个k点染色,称V(G)的这样一个划分为G的一个色划分,每 一个Vi称为色类。因此,G的色数χ(G)就是使这种划 分成为可能最小自然数k。
推论:若G是p(G) 3且g(G) 3的平图,则 q(G) g(G) ( p(G) 2)。 g(G) 2
平面图的性质
推论:任何一个简单平面图G,有 q(G)≤3p(G)-6
推论:设G是简单平面图,则δ(G)≥6.
定理:仅存在5种正多面体,即正四面体、正 方体、正八面体、正十二面体和正二十面体。
定理:每一个平面的色数不超过5
边染色
定义:无环图G的一个正常染色k-边染色(简 称k-边染色)是指一个映射φ:E(G)→{1,2, …,k},使对G中任意两条相邻的边e1和e2,有 φ(e1)≠φ(e2)。若G有一个正常k-边染色,则 称G是k-边染色的。G的边色数是指G为k-边染 色的最小整数k的值,记为
χ'(G)。若χ'(G)=k,则称G是k-边可色的。
边染色
设G有一个正常k-边染色,置Ei为G中所有染 以第i种颜色的边的全体,则E1,E2,…,Ek 是G的k个边不相交的对集,并且

第六章图论Graph

第六章图论Graph
Mixed graph
2.3 图中的基本术语 1. 设 G = (V, E) 是无向图。
1) 任取 eE,若 e = {vi , vj},则称 vi , vj 是 e 的端点。并称
e 与 vi , vj 关联。
2) 任取vi , vj V,若 {vi , vj}E,则称 vi , vj 相邻。
3) 任取 ei,ej E,若 ei,ej 有公共的端点,则称 ei,ej 邻接。 4) 以同一结点为两个端点的边称为自环。 5) 若 ei,ej 有相同的两端点,则称 ei,ej 是平行边。 6) 若 G 中有平行边,则称 G 为多重无向图。 7) 若 G 中无平行边,无自环,则称 G 为简单无向图。
i1
i1
其中 ∣V∣= n,∣E∣= m。
证:由于每条有向边都对应一个入度和一个出度,如一个结点 具有一个出度(或入度),则它必关联一条有向边,并通过此有 向边与另一结点相邻,且为此结点提供一入度(或出度)。所以 在有向图中,入度之和等于出度之和,并等于边数。即有
n
n
de(v g)de(v g)m
i1
定义8 设 G = (V, E)是简单有向图。若E=(VV)\{(v,v)|vV}, 则称 G 为有向完全图。
在 n 个结点的有向完全图中,每个结点的度数为 2(n1),且边 数为 n(n1) 。
定义9 设G = (V, E) 和设G' = (V', E')是两个图。(无向,有向) 1) 若 V' V 且 E' E,则称 G' 为 G 的子图。 2) 若 V' V 或 E' E,则称 G' 为 G 的真子图。 3) 若 V' = V 且 E' E,则称 G' 为 G 的生成子图。 当(V' = V 且 E' = E) 或( V' = V 且 E' =)时,称这两个 子图为平凡子图。

运筹学第6章 图与网络

运筹学第6章 图与网络

也就是说| V1 |必为偶数。
定理6.2有学者也称作定理6.1的推论。根据定理6.2,握手定理也可以 表述为,在任何集体聚会中,握过奇次手的人数一定是偶数个。
12 该课件的所有权属于熊义杰
另外,现实中不存在面数为奇数且每个面的边数也是奇数的多面 体,如表面为正三角形的多面体有4个面,表面为正五边形的多面体有 12个面等等,也可以用这一定理予以证明。因为在任意的一个多面体 中, 当且仅当两个面有公共边时,相应的两顶点间才会有一条边,即 任意多面体中的一个边总关联着两个面。所以,以多面体的面数为顶
v j V2
(m为G中的边数)
因式中 2m 是偶数, d (v j ) 是偶数,所以 d (vi ) 也必为偶数
v j V2
vi V1
( 两个同奇同偶数的和差必为偶数 ), 同时,由于 d (vi ) 中的每个加数 d (vi )
均为奇数,因而 d (vi ) 为偶数就表明, d (vi ) 必然是偶数个加数的和 ,
图论、算法图论、极值图论、网络图论、代数图论、随机图论、 模糊图论、超图论等等。由于现代科技尤其是大型计算机的迅 猛发展,使图论的用武之地大大拓展,无论是数学、物理、化 学、天文、地理、生物等基础科学,还是信息、交通、战争、 经济乃至社会科学的众多问题.都可以应用图论方法子以解决。
1976年,世界上发生了不少大事,其中一件是美国数学家 Appel和Haken在Koch的协作之下,用计算机证明了图论难题— —四色猜想(4CC):任何地图,用四种颜色,可以把每国领土染 上一种颜色,并使相邻国家异色。4CC的提法和内容十分简朴, 以至于可以随便向一个人(哪怕他目不识丁)在几分钟之内讲清 楚。1852年英国的一个大学生格思里(Guthrie)向他的老师德·摩 根(De Morgan)请教这个问题,德·摩根是当时十分有名的数学家, 他不能判断这个猜想是否成立,于是这个问题很快有数学界流 传开来。1879年伦敦数学会会员Kemple声称,证明了4CC成立, 且发表了论文。10年后,Heawood指出了Kemple的证明中

图论第6章

图论第6章

面的连通平面图,则有
n – m + ф =2
(1.2)
证明 对ф 用归纳法。
当ф =1时 ,G 无圈又连通,从而是树,有
于是
n =m+1 n -m+ф =(m+1)- m + 1= 2
设 ф = k 时,(1.2)式成立。
9
当 ф = k+1 时,此时 G 至少两个面,从而有 圈 C。删去 C 中一条边,记所得之图为 G ’ 。并 设 G ’ 的点数、边数和面数依次为 n’ , m’ 和 ф ’, 易知 G ’ 仍连通,但只有 k 个面,由归纳假设有
(1.7)
证明 只需在定理4的证明中将所有不等号改为等号即可得 (1.7)式。
例3 在右图所示的图中, m=12,n = 8,l = 4
有 12×(4-2) = 4×(8-2), 满足(1.7)式。
例4 证明 K5 和 K 3,3 是不可平面图。
16
证明 若 K5 是可平面图,则因 K5 是至少三个点的简单图, 由推论1,K5 应满足 m≤3n -6。而 K5 中 m=10, n = 5,代
例1
=
平面图
可平面图
3
不可平面图
=
可平面图
不可平面图
4
= 可平面图
= 可平面图
5
定义: 设G 是一个平面图,G 将所嵌入的平 面划分为若干个区域,每个区域的内部连同边界 称为 G 的面,无界的区域称为外部面或无限面。 每个平面图有且仅有一个外部面。设 f 是 G 的一 个面,构成 f 的边界的边数(割边计算两次)称 为 f 的次数,记为 deg(f )。
y1
y2
y3
但如果在 x3 与y1 之间也要修一条铁路,则 可验证满足要求的方案不存在。

图论习题

图论习题

《图论及其应用》习题课教材杨春编电子科技大学应用数学学院内容提要本书主要对张先迪等编的研究生《图论及其应用》教材的习题进行解答。

该书可作为研究生图论教学的参考教材。

前言现实生活中,许多问题都可归结为一个由点和线组成的图形的问题。

例如,由点代表车站,线代表铁路线的铁路网络图;点代表路口,线代表街道的城市交通图;点代表管道接头,线代表管道的自来水供水系统;点代表电路的结点,线代表结点间的电气元件的电网络图;点代表网络的结点,线代表通讯线的通讯网络、计算机网络等等。

图论正是研究这些由点和线组成的“图形”问题的一门学科。

图论起源于18世纪,其第一篇论文是由欧拉(Euler,1707—1782)于1736年所完成。

这篇论文解决了一个当时还没有解决的著名问题—哥尼斯堡(Königsberg)七桥问题(见第四章)。

这篇论文也使欧拉成为了图论和拓扑学的创始人。

图论诞生后,特别是近三十年来发展十分迅速,应用也十分广泛。

其应用已涉及物理学、化学、运筹学、计算机科学、信息论、控制论、网络理论、社会科学、以及管理科学等诸多领域。

由于图论与计算机科学紧密相联系,近若干年来,在计算机科学、计算机网络的迅猛发展下,更拓展了图论的应用发展空间。

在计算机的许多领域内,它都占有一席之地。

图论在矩阵论、群论等其它一些数学分支中,也有其重要的应用。

张先迪等编的《图论及其应用》一书精选了内容广泛、难度各易的习题,其中的大多数习题都是对图论的进一步学习是应当掌握的。

本书依序将该书的重要内容摘要列出,并将全部习题给出了详细解答。

本书所涉及到的术语、符号与该书一致。

有些习题存在多种解法,在一般情况下,只给出一种解法供参考。

由于编者水平有限及编写时间的匆忙,书中难免出现一些缺点和错误,恳请同行专家及读者提出宝贵意见和建议,以使本书得以不断改进和完善。

编者2004.7目录第一章图的基本概念1.1 图和简单图1.2 子图与图的运算1.3 路与图的连通性1.4 最短路及其算法1.5 图的代数表示及其特征1.6 极图1.7 交图与团图习题1第二章树2.1 树的概念与性质2.2 树的中心与形心2.3 生成树2.4 最小生成树习题2第三章图的连通度3.1 割边、割点和块3.2 连通度3.3 应用3.4 图的宽距离和宽直径习题3第四章欧拉图与哈密尔顿图4.1 欧拉图4.2 高效率计算机鼓轮的设计4.3 中国邮路问题4.4 哈密尔顿图4.5 度极大非哈密尔顿图4.6 旅行售货员问题4.7 超哈密尔顿图4.8 E图和H图的联系4.9 无限图中的欧拉,哈密尔顿问题习题4第五章匹配与因子分解5.1 匹配5.2 偶图的匹配与覆盖5.3 Tutte定理与完美匹配5.4 因子分解5.5 最优匹配与匈牙利算法5.6 匹配在矩阵理论中的应用习题5第六章平面图6.1 平面图6.2 一些特殊平面图及平面图的对偶图6.3 平面图的判定及涉及平面性的不变量6.4 平面性算法习题6第七章图的着色7.1 图的边着色7.2 顶点着色7.3 与色数有关的几类图7.4 完美图7.5 着色的计数,色多项式习题27.6 List着色7.7 全着色7.8 着色的应用习题7第八章Ramsey定理8.1 独立集和覆盖8.2 Ramsey定理8.3 广义Ramsey数8.4 应用习题8第一章 图的基本概念§1.1 图和简单图定义1 一个图G 定义为一个有序对(V , E ),记为G = (V , E ),其中 (1)V 是一个非空集合,称为顶点集或边集,其元素称为顶点或点;(2)E 是由V 中的点组成的无序点对构成的集合,称为边集,其元素称为边,且同一 点对在E 中可出现多次。

《图论》第6章-图的着色

《图论》第6章-图的着色
第七页,编辑于星期六:八点 一分。
6.1 色数
[定理6-1-1] k-临界图 G=(V, E), =min{deg(vi)|viV}, 则
k-1。
[证明]反证法:设 G 是一个 k-临界图且 <k-1。又设v0V, deg(v0)= 。由 k-临界图的定义,Gv0 是 (k1)可着色的, 在一种 k1着色方案下,Gv0 的顶点可按照颜色划分 成 V1,V2, …, Vk-1 共 k1块,块 Vi 中的顶点被涂以颜色 ci。由于deg(v0)< k1,v0 至少与其中一块 Vj 不邻接即与 Vj 中的任何顶点不邻接。此时可将 v0 涂以颜色 cj,
12
第十二页,编辑于星期六:八点 一分。
6.1 色数
[五色定理] (1890, Heaword) 任何简单平面图都是 5-可着色的。 [证明]设简单平面图 G=(V, E),对 n=|V| 作归纳。
n 5时容易讨论结论成立。
设 n = k1时,结论成立。 当 n = k 时,由[定理5-1-8]简单平面图 G 至少有一个顶点的度 小于6。故可设 v0V,deg(v0) 5。设 G=Gv0,由归纳假设
何顶点的度不小于 k-1。又 G 为 k 色图,其中至少有 k 个顶点。
9
第九页,编辑于ቤተ መጻሕፍቲ ባይዱ期六:八点 一分。
6.1 色数
[推论2] 对 G=(V, E), =max{deg(vi)|viV},有 (G) +1。
[证明] 设 (G)=k,由推论1,有 vV,使得 deg(v) k-1
又: deg(v) 故: k-1 或 (G)-1 即: (G) +1
图所示。
13
第十三页,编辑于星期六:八点 一分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档