【小初高学习]2018年高考数学一轮复习 专题38 空间几何体的表面积和体积教学案 文
【课标通用】2018届高考数学(理)一轮课件:28-空间几何体的表面积和体积

表面积 S 表=2πr(r+l) S 表=πr(r+l) S 表=π(r2+r'2+rl+r'l) S 表=S 侧+S 底 S 表=S 侧+S 上底+S 下底 S 表=4πR2
S 侧=Ch S 侧= (C+C')h'
考点62
考点63
考点64
试做真题
高手必备 萃取高招 对点精练
典例导引1(1)某几何体的三视图如图所示,则该几何体的表面积为 ( )
考点62
考点63
考点64
试做真题
高手必备 萃取高招 对点精练
考点62几何体的表面积 1.(2016课标Ⅰ,理6)如图,某几何体的三视图是三个半径相等的圆及 28π 每个圆中两条互相垂直的半径.若该几何体的体积是 3 ,则它的表 面积是( )
A.17π
B.18π C.20π D.28π
1 【答案】 A 由三视图可知该几何体是球截去 后所得几何体, 8 7 4π 3 28π 则 × × R = ,解得 R=2, 8 3 3 7 3 所以它的表面积为 × 4πR2+ × πR2=14π+3π=17π. 8 4
考点62
考点63
考点64
试做真题
高手必备 萃取高招 对点精练
2.(2016课标Ⅲ,理9)如图,网格纸上小正方形的边长为1,粗实线画出 的是某多面体的三视图,则该多面体的表面积为 ( )
A.18+36 5 B.54+18 5 C.90 D.81
【答案】 B 由三视图知该几何体是平行六面体,且底面是边长为 3 的正方形,侧棱长为 3 5, 所以该几何体的表面积为 S=2× 3× 6+2× 3× 3+2× 3× 3 5=54+18 5,故选 B.
2018年高考数学文一轮复习资料 专题38 空间几何体的表面积和体积教学案 含解析

1.了解球、棱柱、棱锥、台的表面积和体积的计算公式.1.柱、锥、台和球的表面积和体积高频考点一求空间几何体的表面积例1、(1)(2015·安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+ 3 B.1+2 2C.2+ 3 D.2 2(2)(2015·课标全国Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r等于()A .1B .2C .4D .8(3)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 【答案】 (1)C (2)B (3)12∴S 侧=6×12×2×2=12.【感悟提升】空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (3)旋转体的表面积问题注意其侧面展开图的应用.【变式探究】一个多面体的三视图如图所示,则该多面体的表面积为( )A .21+ 3B .18+ 3C .21D .18【答案】 A高频考点二 求空间几何体的体积例2、(2015·课标全国Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15【答案】 D高频考点三 求简单几何体的体积例3、(2015·山东)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D .2π【答案】 C【解析】 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.【变式探究】(1)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的体积等于( )A.4π3B.32π3C .36πD.256π3(2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23B.33C.43D.32【答案】 (1)B (2)A【感悟提升】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.高频考点四 与球有关的切、接问题例4、已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ) A.3172B .210 C.132 D .310【答案】 C【解析】 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M . 又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =522+62=132. 【感悟提升】空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解. 【变式探究】如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( )A.22B .1 C. 2 D. 3【答案】 C1.【2016高考新课标1文数】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( )(A)17π(B)18π(C)20π(D)28π【答案】A如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)18+(B)54+(C)90 (D)81【答案】B【解析】由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积S=⨯⨯+⨯⨯+⨯⨯=+,故选B.23623323543.【2016高考山东文数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A )12+π33(B )1π3(C )1+π36(D )1+π6【答案】C4.【2016高考四川文科】已知某三菱锥的三视图如图所示,则该三棱锥的体积 .侧视图俯视图5.【2016高考北京文数】某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3.2【解析】四棱柱高为1,底面为等腰梯形,面积为13(12)122⨯+⨯=,因此体积为3.21.【2015高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A .83cm B .123cm C .3233cm D .4033cm【答案】C2.【2015高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )123π+ (B) 136π (C) 73π (D) 52π 【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B.3.【2015高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+【答案】D4、【2015高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2 (C )4 (D )8 【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.5.【2015高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于( )1112A.8+ B .11+ C .14+ D .15 【答案】 B6.【2015高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为() (A )错误!未找到引用源。
2018届高考数学复习——立体几何:(一)空间几何体的结构特征及三视图、表面积和体积(解析版)

【知识归纳梳理】一、空间几何体的结构特征 1.多面体的结构特征(1)棱柱⎩⎪⎨⎪⎧底面:互相平行侧面:都是四边形,且每相邻两个面的交线都平行且相等(2)棱锥⎩⎪⎨⎪⎧底面:是多边形侧面:都是有一个公共顶点的三角形(3)棱台 棱锥被平行于棱锥底面的平面所截,截面与底面之间的部分.2.旋转体的结构特征(1)圆柱可以由矩形绕其任一边旋转得到.(2)圆锥可以由直角三角形绕其一条直角边旋转得到.(3)圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到. (4)球可以由半圆面或圆面绕直径旋转得到.[注意] (1)认识棱柱、棱锥、棱台、圆柱、圆锥、圆台的结构特征时,易忽视定义,可借助于几何模型强化对空间几何体的结构特征的认识.(2)台体可以看成是由锥体截得的,但一定强调截面与底面平行. 二、空间几何体的三视图与直观图 1.空间几何体的三视图(1)空间几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线. (2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽; ③看不到的线画虚线.[注意] 若相邻两物体的表面相交,则表面的交线是它们的分界线,在三视图中,要注意实、虚线的区别. 2.空间几何体的直观图画空间几何体的直观图常用 斜二测_画法,基本步骤是: (1)在已知图形中取互相垂直的x 轴、y 轴,两轴相交于点O ,画直观图时,把它们画成对应的x ′轴、y ′轴,两轴相交于点O ′,且使∠x ′O ′y ′= 45°(或135°) .(2)已知图形中平行于x 轴、y 轴的线段,在直观图中分别平行于 x ′轴、y ′轴 .(3)已知图形中平行于x 轴的线段,在直观图中长度 保持不变 ,平行于y 轴的线段,长度变为 原来的一半 .(4)在已知图形中过O 点作z 轴垂直于xOy 平面,在直观图中对应的z ′轴也垂直于x ′O ′y ′平面,已知图形中平行于z 轴的线段,在直观图中仍平行于z ′轴且长度 不变 .[注意] 按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S 直观图=24S 原图形,S 原图形=22S 直观图.三、空间几何体的表面积和体积 1.空间几何体的表面积当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:S 圆柱侧=2πrl ――→r ′=r S 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl [注意] 组合体的表面积应注意重合部分的处理. 2.空间几何体的体积(1)柱体:V 柱体=Sh ;V 圆柱=πr 2h .(2)锥体:V 锥体=13Sh ;V 圆锥=13πr 2h .(3)台体:V 台体=13(S +SS ′+S ′)h ;V 圆台=13πh (r 2+rr ′+r ′2).3.球体(1)球的表面积公式:S =4πR 2;球的体积公式V =43πR 3(2)正方体与球:①正方体的内切球:截面图为正方形EFHG的内切圆,如图所示.设正方体的棱长为a,则|OJ|=r=a2(r为内切球半径).②与正方体各棱相切的球:截面图为正方形EFHG的外接圆,则|GO|=R=2 2a.③正方体的外接球:截面图为正方形ACC1A1的外接圆,则|A1O|=R′=3 2a.(3)正四面体与球:如图,设正四面体的棱长为a,内切球的半径为r,外接球的半径为R,取AB的中点为D,连接CD,SE 为正四面体的高,在截面三角形SDC内作一个与边SD和DC相切,圆心在高SE上的圆.因为正四面体本身的对称性,内切球和外接球的球心同为O.此时,CO=OS=R,OE=r,SE=23a,CE=33a,则有R+r=23a,R2-r2=|CE|2=a23,解得R=64a,r=612a.【第1讲:空间几何体的结构特征及三视图】题型1:空间几何体的结构特征【典型例题】[例1](1)设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③四棱锥的四个侧面都可以是直角三角形;④棱台的相对侧棱延长后必交于一点;⑤直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥.其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;③正确,如图1,PD⊥平面ABCD,其中底面ABCD为矩形,可证明∠P AB,∠PCB为直角,这样四个侧面都是直角三角形;命题④由棱台的定义知是正确的;⑤错误,当以斜边为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥.如图2所示,它是由两个同底圆锥形成的.答案:①③④(2)以下命题:①直角三角形绕一边所在直线旋转得到的旋转体是圆锥;②夹在圆柱的两个平行截面间的几何体还是圆柱;③圆锥截去一个小圆锥后剩余部分是圆台;④棱锥截去一个小棱锥后剩余部分是棱台.其中正确的命题序号是________.【答案】③[例2](1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体解析:选C截面是任意的且都是圆面,则该几何体为球体.(2)下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选DA错误,如图1是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图2,若△ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.图1图2【变式训练】1.判断正误(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥()(3)用一个平面去截一个球,截面是一个圆面()答案:(1)×(2)×(3)√2.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若过两个相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.其中,真命题的编号是________.【答案】②④3.给出四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.其中正确的命题个数是()A.0B.1C.2D.3【答案】A题型2:空间几何体的三视图与直观图【典型例题】[例1](1)一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为()【答案】 C(2)如图由若干个相同的小立方体组成的几何体的俯视图,其中小立方体中的数字表示相应位置的小立方体的个数,则该几何体的侧视图为()解析:选C由俯视图知侧视图从左到右能看到的小立方体个数分别为2,3,1.(3)已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为 ()【答案】B(4)一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为()【答案】C(5)如图所示,E、F分别为正方体ABCD—A1B1C1D1的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面DCC1D1上的投影是______.(填序号)【答案】②[例2](1)(2014·福建)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱【答案】A[考向1]因为圆锥、四面体、三棱柱的正视图均可以是三角形,而圆柱无论从哪个方向看均不可能是三角形,故选A.(2)(2014·课标Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱[解析] B[由题知,该几何体的三视图为一个三角形,两个四边形,分析可知该几何体为三棱柱,故选B.](3)(教材例题改编)已知空间几何体的三视图如图,则该几何体是由__________________组合而成.答案:圆柱和正四棱柱(4)(教材习题改编)如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是________,截去的几何体是________.答案:五棱柱三棱柱(5)(2015·北京朝阳期末)一个四棱锥的三视图如图所示,则该四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4[解析] D[满足条件的四棱锥的底面为矩形,且一条侧棱与底面垂直,如图所示,易知该四棱锥四个侧面均为直角三角形.][例3](1)利用斜二测画法得到的以下结论,正确的是__________.(写出所有正确的序号)①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形.【答案】①②④(2)用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为()A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2解析:选C依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底面的长与BC,AD相等,高为梯形ABCD的高的22倍,所以原平面图形的面积为8 cm2.(3)(2014·湖北)在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号①②③④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②解析:选D在空间直角坐标系O-xyz中作出棱长为2的正方体,在该正方体中作出四面体,如图所示,由图可知,该四面体的正视图为④,俯视图为②.选D.【变式训练】1.(2011·课标全国)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D2.(2015·成都一诊)若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是()[解析]C[由题意知,俯视图的长度和宽度相等,故C不可能.]3.(2015·南阳三模)已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()解析:选C当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形,由条件得一个直观图如图所示,中间的线是看不见的线P A形成的投影,应为虚线,故答案为C.4.(2015·桂林一调)已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的()[解析]C[选项A,B,D中的俯视图,正方形内的线应该为另一条对角线,当四棱锥的直观图为右图时,它的三视图是C.]5.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆;④椭圆.其中正确的是________.答案:②③6.(2016天津文)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )A B C D【答案】B7.(2015·东北三校联考)利用斜二测画法可以得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是________.答案:①②8.(2015·福州模拟)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()解析:选A由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.9.(2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是()【答案】D[考向1]由三视图可知该几何体为一个上部为圆台、下部为圆柱的组合体,圆台的下底面和圆柱的底面恰好重合.10.(2014·江西)一个几何体的直观图如图,下列给出的四个俯视图中正确的是()【答案】B俯视图为在水平投射面上的正投影,结合几何体可知选B.【第2讲:空间几何体的三视图与表面积和体积】题型3:空间几何体的三视图与表面积【典型例题】[例1](1)(2015·北京石景山一模)正三棱柱的侧(左)视图如图所示,则该正三棱柱的侧面积为________.解析:由侧(左)视图知:正三棱柱的高(侧棱长)为2,底边上的高为3,所以底边边长为2,侧面积为3×2×2=12.答案:12(2)(2014·日照一模)如图是一个几何体的正视图和侧视图,其俯视图是面积为82的矩形.则该几何体的表面积是().A.8B.20+8 2C.16D.24+8 2解析由已知俯视图是矩形,则该几何体为一个三棱柱,根据三视图的性质,俯视图的矩形宽为22,由面积82,得长为4,则该几何体的表面积为S=2×12×2×2+22×4+2×2×4=20+8 2.答案 B(3)(2014·许昌模拟)如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为().A.4πB.32π C .3π D .2π解析 由三视图可知,该几何体是一个圆柱,S 表=2×π×⎝⎛⎭⎫122+π×1×1=3π2. 答案 B (4)(2016·湖南长沙联考)已知某几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的表面积是________.【解析】 由题意知,该几何体是一个侧放的圆锥,圆锥底面位于右侧,底面圆的半径为1,圆锥的高为2,易知其母线长为5,所以其表面积为S =π·1×(1+5)=5π+π. 【答案】 5π+π (5)(2016·课标III)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+36 5B.54+185C.90D.81解析 B [考向2]由图可知,该几何体为四棱柱,S 表=2S 底+2S 前+2S 侧 =2×32+2×3×6+2×3×32+62 =18+36+185=54+18 5.[例2](1)已知棱长为a ,各面均为等边三角形的四面体S -ABC ,则它的表面积为________.解析:过S 作SD ⊥BC ,∵BC =a ,∴SD =32a∴S △SBC =34a 2,∴表面积S =4×34a 2=3a 2.答案:3a 2 (2)(2015·北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是( ) A.2+ 5 B.4+ 5 C.2+2 5 D.5【解析】作出三棱锥的示意图如图①,在△ABC 中,作AB 边上的高CD ,连接SD . 在三棱锥S -ABC 中,SC ⊥底面ABC ,SC =1,底面三角形ABC 是等腰三角形,AC =BC ,AB 边上的高CD =2,AD =BD =1,斜高SD =5,AC =BC = 5.∴S 表=S △ABC +S △SAC +S △SBC +S △SAB =12×2×2+12×1×5+12×1×5+12×2×5=2+2 5.(3)(2015·遵义模拟)一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( ) A.3+ 6 B.3+ 5 C.2+ 6 D.2+ 5= 2.解析:选C 由三视图还原为空间几何体,如图所示,则有OA =OB =1,AB 又PB ⊥平面ABCD , ∴PB ⊥BD ,PB ⊥AB ,∴PD =22+1=5,P A =2+12=3, 从而有P A 2+DA 2=PD 2,∴P A ⊥DA ,∴该几何体的侧面积S =2×12×2×1+2×12×2×3=2+ 6.(4)(2016·北京房山一模)某四棱锥的三视图如图所示,则最长的一条侧棱的长度为( ) A. 2 B. 3 C. 5 D. 63.C[考向1]由三视图可知,该几何体是一个底面为直角梯形,且有一条侧棱垂直于底面的四棱锥,直观图如图所示,其中P A⊥面ABCD,P A=1,AD=1,CD=1,AB=2,PD=2,PC=3,而在Rt△P AB中,PB=P A2+AB2=12+22=5>3,故最长的侧棱为PB,其长度为5,故选C.(5)(2014·课标Ⅰ)如图所示,网络纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6 2B.4 2C.6D.4【解析】由三视图可知该几何体为图中棱长为4的正方体中的三棱锥P-ABC.由图②可知,最长棱为PC=42+42+22=6.[例3](1)已知某几何体的三视图的正视图和侧视图是全等的等腰梯形,俯视图是两个同心圆,如图所示,则该几何体的表面积为________.解析由三视图知该几何体为上底直径为2,下底直径为6,高为23的圆台,则几何体的表面积S=π×1+π×9+π×(1+3)×232+22=26π.答案:26π(2)一个几何体的三视图如图所示,则该几何体的表面积为________.解析 如图所示:该几何体为长为4,宽为3,高为1的长方体内部挖去一个底面半径为1,高为1的圆柱后剩下的部分.∴S 表=(4×1+3×4+3×1)×2+2π×1×1-2π×12=38. 答案 38 (3)(2015·课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( ) A.1 B.2 C.4 D.8解析 B 由题意知,该几何体是由半个圆柱与半个球组合得到的.则表面积S =2πr 2+2×12πr 2+4r 2+2πr 2=5πr 2+4r 2=20π+16,∴r =2.(4)[2014重庆理]某几何体的三视图如下图所示,则该几何体的表面积为( ) A.54 B.60 C.66 D.72俯视图左视图正视图3245【答案】B【解析】在长方体中构造几何体'''ABC A B C -,如右图所示, 4,'5,'2,3AB A A B B AC ====,经检验该几何体的三视图满足 题设条件.其表面积'''''''''ABC ACC A ABB A BCC B A B C S S S S S S ∆∆=++++,3515615146022=++++=,故选择BC'B'A'C BA(5)(2014·安徽)一个多面体的三视图如图所示,则该多面体的表面积为( ) A.21+ 3 B.18+ 3 C.21 D.18解析 A 由三视图知,该多面体是由正方体割去两个角后剩下的部分,如图所示,则S =S 正方体-2S 三棱锥侧+2S 三棱锥底=24-2×3×12×1×1+2×34×(2)2=21+ 3.【变式训练】 1.(2015·北京西城期末)已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________.解析:由正三棱柱三视图还原直观图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,所以高为3,所以正视图的面积为2 3. 答案:2 3 2.(2015·云南一检)如果一个空间几何体的正视图、侧视图、俯视图都是半径等于5的圆,那么这个空间几何体的表面积等于( )A.100πB.100π3C.25πD.25π3解析:选A 易知该几何体为球,其半径为5,则表面积为S =4πR 2=100π. 3.(2013·湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( ).A.1B. 2C.2-12D.2+12解析 由俯视图的面积为1可知,该正方体的放置如图所示,当正视图的方向与正方体的侧面垂直时,正视图的面积最小,其值为1,当正视图的方向与正方体的对角面BDD 1B 1或ACC 1A 1垂直时,正视图的面积最大,其值为2,由于正视图的方向不同,因此正视图的面积S ∈[1,2].故选C. 答案 C 4.(2014·陕西)将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的侧面积是( ) A.4π B.3π C.2π D .π解析:选C 由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π. 5.(2013·临沂一模)具有如图所示的正视图和俯视图的几何体中,体积最大的几何体的表面积为( ).A.3B.7+3 2C.72π D .14解析 由正视图和俯视图可知,该几何体可能是四棱柱或者是水平放置的三棱柱,或水平放置的圆柱.由图可知四棱柱的体积最大.四棱柱的高为1,底面边长分别为1,3,所以表面积为2(1×3+1×1+3×1)=14. 答案 D 6.(2015·山东淄博模拟)把边长为1的正方形ABCD 沿对角线BD 折起,形成的三棱锥A -BCD 的正(主)视图与俯视图如图所示,则其侧(左)视图的面积为( )A.22B.12C.24D.14解析 D 由正(主)视图与俯视图可得三棱锥A -BCD 的一个侧面与底面垂直,其侧(左)视图是直角三角形,且直角边长均为22,所以侧(左)视图的面积为S =12×22×22=14.7.(2016·西安一模)如图,网格纸中的小正方形的边长均为1,图中粗线画出的是一个几何体的三视图,则这个几何体的表面积为( ) A.12(22+32+4) B.12(22+32+8) C.12(22+2+8) D.12(22+22+8)解析 B 根据三视图可知该几何体是底面为直角三角形的三棱锥,其表面积S =12×2×2+12×2×3+12×2×3+12×2×11=12(22+32+8),故选B.8.(2016·课标Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π解析C S表=πr2+2πr×4+12×2πr×R=4π+16π+2π22+(23)2=28π.9 .(2013重庆文)某几何体的三视图如图所示,则该几何体的表面积为()A.180B.200C.220D.240【答案】D10.(2014浙江理)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A.90cm2B.129cm2C.132cm2D.138cm2【答案】D【解析】由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4, ∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).11.(2017北京理)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( ).A.3 2B.2 3C.2 2D.2解析几何体四棱锥如图所示,最长棱为正方体的体对角线,即22222223l++=故选B.12.(2017全国1理)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ). A.10 B.12 C.14 D.16解析 由三视图可画出立体图,如图所示,该多面体只有两个相同的梯形的面, ()24226S =+⨯÷=梯,6212S =⨯=全梯.故选B.题型4:空间几何体的三视图与体积 【典型例题】 [例1](1)(2013·陕西)某几何体的三视图如图所示,则其体积为________.解析 该几何体为一个半圆锥,故其体积为V =13×12×π×12×22=π3.答案 π3(2)(2015·惠州二调)一个几何体的三视图如图所示,其中俯视图与左(侧)视图均为半径是2的圆,则这个几何体的体积是( )A.16πB.14πC.12πD.8π解析:选D 由三视图可知,该几何体为一个球切去四分之一个球后剩余的部分,由于球的 (3)(2013·广东)某四棱台的三视图如图所示,则四棱台的体积是( ).A.4B.143C.163D.6解析 由四棱台的三视图可知该四棱台的上底面是边长为1的正方形;下底面是边长为2的正方形,高为2.由棱台的体积公式可知该四棱台的体积V =13(12+12×22+22)×2=143,故选B.答案 B (4)(2016·四川)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.解析 [考向3]【解析】 由题可知锥体的高为1,底面积为12×23×1=3,∴V 锥=13×3×1=33.【答案】 33[例2](1)(2015·浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A.8 cm 3B.12 cm 3C.323 cm 3D.403cm 3解析 C 由题意得,该几何体由一个正方体与一个正四棱锥组合而成,所以体积V =23+13×22×2=323.(2)(2017山东理)由一个长方体和两个14圆柱体构成的几何体的三视图如图所示,则该几何体的体积为 .解析 该几何体的体积为21112211242V π=π⨯⨯⨯+⨯⨯=+.(3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( ).A.π2+1B.π2+3C.3π2+1D.3π2+3解析 由三视图可知,直观图是由半个圆锥与一个三棱锥构成,半圆锥体积为()2111=13232S π⨯π⨯⨯=,三棱锥体积为211=213=132S ⎛⎫⨯⨯⨯ ⎪⎝⎭,所以几何体体积1212S S S π=+=+.故选A.(4)(2013·课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( ). A.16+8π B .8+8π C.16+16π D .8+16π解析 由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4,2,2,圆柱的底面半径为2、高为4.所以V =2×2×4+12×22×π×4=16+8π.故选A.(5)(2015·广东中山模拟)已知一个几何体的三视图如图所示,则该几何体的体积(单位:cm 3)为________.解析 π+33[由三视图,该组合体上部是一个三棱锥,下部是一圆柱由图中数据知V 圆柱=π×12×1=π三棱锥垂直于底面的侧面是边长为2的等边三角形,且边长是2,故其高即为三棱锥的高,高为3,故棱锥高为3由于棱锥底面为一等腰直角三角形,且斜边长为2,故两直角边长都是2,底面三角形的面积是12×2×2=1, 故V 棱锥=13×1×3=33,故该几何体的体积是π+33.] [例3](1)(2015·山东实验模拟)设下图是某几何体的三视图,则该几何体的体积为( ) A.2π3 B.8-π3 C.8-2π D . 8-2π3解析D[由三视图可知,几何体为正方体内挖去一个圆锥,所以该几何体的体积为V 正方体-V 锥=23-13(π×12×2)=8-23π.](2)(2013·辽宁)某几何体的三视图如图所示,则该几何体的体积是________.解析 由三视图可知该几何体是一个圆柱内部挖去一个正四棱柱,圆柱底面圆半径为2,高为4,故体积为16π;正四棱柱底面边长为2,高为4,故体积为16,所以几何体的体积为16π-16. (3)(2015·河南天一联考)某几何体的三视图如图所示,则该几何体的体积为( ) A.12+π B .8+π C .12-π D .6-π解析 C [由三视图可知,原几何体是底面边长为2的正方形,高为3的棱柱,里面挖去一个半径为1的球,所以所求几何体的体积为12-π,故选C.](4)(2017全国2理)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( ). A.90π B .63π C.42π D .36π解析 该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半,如图所示.2211π310π3663π22=-=⋅⋅-⋅⋅⋅=V V V 总上.故选B.466(5)(2015·唐山统考)某几何体的三视图如图所示,则该几何体的体积为( )A.8π+16B.8π-16C.8π+8D.16π-8解析:选B 由三视图可知:几何体为一个半圆柱去掉一个直三棱柱.半圆柱的高为4,底面半圆的半径为2,直三棱柱的底面为斜边是4的等腰直角三角形,高为4,故几何体的体积V =12π×22×4-12×4×2×4=8π-16.[例4](1)(2014·福州模拟)如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为 ( ).A.312B.34C.612D.64解析 三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. (2)(2012·山东)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.[一般解法] 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以=13×12×1=16. [优美解法] E 点移到A 点,F 点移到C 点,则==13×12×1×1×1=16.。
2018届高三高考数学复习课件:8-2空间几何体的表面积与体积

【解析】 由三视图可知,该几何体是一个直三棱柱,其底面 为侧视图,该侧视图是底边为 2,高为 3的三角形,正视图的长
1 为三棱柱的高, 故 h=3, 所以该几何体的体积 V=S· h=2×2× 3
×3=3 3. 【答案】 3 3
题型一 求空间几何体的表面积
【例1】 (1)(2018· 淮北月考)一个多面体的 三视图如图所示,则该多面体的表面积为( )
【解析】 设圆柱底面半径为r尺,高为h
尺,依题意,圆柱体积为V=πr2h=2 000×1.62≈3×r2×13.33,所以r2≈81,即 r≈9,所以圆柱底面圆周长为2πr≈54,54 尺=5丈4尺,即圆柱底面圆周长约为5丈4尺 ,故选B. 【答案】 B
4.某几何体的三视图如图所示,则该几
何体的体积为________.
的和或差.
(2)底面面积及高都相等的两个同类几何体
的体积相等.
①若球为正方体的外接球,则 2R= 3a; ②若球为正方体的内切球,则 2R=a; ③若球与正方体的各棱相切,则 2R= 2a. (2)若长方体的同一顶点的三条棱长分别为 a,b,c,外接球 的半径为 R,则 2R= a2+b2+c2. (3)正四面体的外接球与内切球的半径之比为 3∶1.
A.21+ 3 C.21
B.18+ 3 D.18
(2)一个六棱锥的体积为 2 3, 其底面是边长为 2 的正六边形, 侧棱长都相等,则该六棱锥的侧面积为________.
【解析】 (1)由几何体的三视图可知,该几何体的直观图如 图所示,因此该几何体的表面积为
1 6×4-2+2×
1. (教材改编)已知圆锥的表面积等于 12π cm2, 其侧面展开 图是一个半圆,则底面圆的半径为( A.1 cm C.3 cm B.2 cm 3 D.2 cm )
高考数学第一轮复习:《空间几何体的表面积与体积》

高考数学第一轮复习:《空间几何体的表面积与体积》最新考纲了解球、棱柱、棱锥、棱台的表面积和体积的计算公式.【教材导读】1.圆柱、圆锥、圆台的侧面积公式是如何导出的?提示:将其侧面展开利用平面图形面积公式求解.2.将圆柱、圆锥、圆台的侧面沿任意一条母线剪开铺平分别得到什么图形?提示:矩形、扇形、扇环.空间几何体的表面积和体积公式如下表面积体积棱柱S表=S侧+2S底表面积即空间几何体暴露在外的所有面的面积之和棱柱的底面积为S,高为h,V=S·h棱锥S表=S侧+S底棱锥的底面积为S,高为h,V=13S·h棱台S表=S侧+S上棱台的上、下底面面积为S′,S,高为h,V=13(S′+S′S+S)h圆柱圆柱的底面半径和母线长分别为r,l圆柱的高为h,V=πr2hS表=2πr2+2πrl圆锥的高为h,V=13πr2h圆锥圆锥的底面半径和母线长分别为r,lS表=πr2+πrl圆台的高为h,V=13π(r′2+r′r+r2)hV球=4 3πR3圆台圆台的上、下底面半径和母线长分别为r,r′,l,S表=π(r′2+r2+r′l+rl)球球半径为R,S球=4πR2【重要结论】(1)正方体的外接球、内切球及与各条棱相切的球①外接球:球心是正方体中心;半径r=32a(a为正方体的棱长);②内切球:球心是正方体中心;半径r=a2(a为正方体的棱长);③与各条棱都相切的球:球心是正方体中心;半径r=22a(a为正方体的棱长) (2)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分)外接球:球心是正四面体的中心;半径r=64a(a为正四面体的棱长)内切球:球心是正四面体的中心;半径r=612a(a为正四面体的棱长)1.圆柱的底面积为S,侧面展开图是一个正方形,那么圆柱的侧面积是() (A)4πS(B)2πS(C)πS(D)233πSA解析:由πr2=S得圆柱的底面半径是Sπ,故侧面展开图的边长为2π·Sπ=2πS,所以圆柱的侧面积是4πS.故选A.2.一个几何体的三视图如图所示,则该几何体的体积为()(A)12 (B)24(C)40 (D)72C解析:根据条件得到原图是这是一个组合体,上面是四棱锥棱锥,下面是长方体,故得到体积为:22×3×4+13×12×4=40.3.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为()(A)2 (B)4+2 2(C)4+4 2 (D)6+4 2C解析:由题可知,该几何体的底面为等腰直角三角形,等腰直角三角形的斜边长为2,腰长为2,棱柱的高为2.所以其侧面积S=2×2+22×2=4+42,故选C.4.已知正四棱锥OABCD的体积为322,底面边长为3,则以O为球心,OA为半径的球的表面积是________.解析:设O到底面的距离为h,则13×3×h=322,解得h=322.OA=h2+622=6,故球的表面积为4π×(6)2=24π.答案:24π5.由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为________.解析:由给定的三视图可知V=1×2×1+2×14×π×12×1=2+π2.答案:2+π2考点一几何体的表面积一个空间几何体的三视图如图所示,则该几何体的表面积为()(A)48 (B)32+817(C)48+817 (D)80C解析:由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.所以S表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.【反思归纳】几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形来解决.(3)简单组合体:应搞清各构成部分,并注意重合部分的处理.(4)若以三视图的形式给出,解题的关键是对给出的三视图进行分析,从中发现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条件求解.【即时训练】(1)一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为()(A)215(B)15(C)2 (D)4(2)某几何体的三视图如图所示,则该几何体的表面积是()(A)20+2π (B)24+(2-1)π(C)24+(2-2)π (D)20+(2+1)π(1)解析:几何体如图,SA=AB=22,SB=23,所以最大面SAB的面积为12×23×(22)2-(3)2=15,故选B.(2)解析:根据题意得到原图是正方体中挖去一个高为1的圆锥后剩下的图,表面积为正方体的各个面和圆锥的侧面积为:4×6+2π-π.故选B.考点二几何体的体积(1)如图所示,已知三棱锥D-ABC中,AD⊥BC,AD,BC之间的距离为h,且AD=a,BC=b,求三棱锥D-ABC的体积.(1)(2)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()(A)2π3 (B)π3 (C)2π9 (D)16π9解:(1)以AB ,BC 为邻边补成平行四边形ABCE ,以AD 为侧棱补成平行六面体ABCEDGMF ,如图所示,则三棱锥D -ABC 的体积V 1与平行六面体ABCEDGMF 的体积V 2之间有V 1=16V 2,易知平行六面体左、右侧面之间的距离就是异面直线AD ,BC 之间的距离h .因为AD ⊥BC ,所以四边形BCMG 为矩形.所以V 1=16V 2=16S 矩形BCMG ·h =abh 6.(2)由三视图可知,该几何体为底面半径为2、高为4的圆锥的13,所以该几何体的体积为V =13×13×2×2×π×4=16π9,故选D.【反思归纳】 求解几何体体积的策略及注意问题(1)与三视图有关的体积问题关键是准确还原几何体及弄清几何体中的数量关系. (2)计算柱、锥、台的体积关键是根据条件找出相应的底面积和高.(3)注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.(4)注意组合体的组成形式及各部分几何体的特征.【即时训练】(1)某四棱锥的三视图如图所示,该四棱锥的体积为________.(2)如图,正方体ABCDA1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1EDF的体积为________.解析:(1)由三视图可知直观图是一个底面为边长等于3的正方形,高为1的四棱锥,由棱锥的体积公式得V四棱锥=12×1=3.3×3(2)因为B1C∥A1D,B1C平面ADD1A1,所以B1C∥平面ADD1A1,所以F到平面ADD1A1的距离等于B1到平面ADD1A1的距离即A1B1=1.所以VD1EDF=VFDD1E=13S △D 1DE ·A 1B 1 =13×12×1×1×1 =16.答案:(1)3 (2)16考点三 与球有关的切、接问题(1)正四棱锥P -ABCD 的侧棱和底面边长都等于22,则它的外接球的表面积是( )(A)16π (B)12π (C)8π(D)4π(2)有一个倒圆锥形容器,它的轴截面是顶角的余弦值为12的等腰三角形.在容器内放一个半径为r 的铁球,并注水,使水面与球正好相切,然后将球取出,则这时容器中水的深度为________.解析:(1)设正四棱锥的外接球半径为R ,顶点P 在底面上的射影为O ,因为OA =12AC =12AB 2+BC 2=12(22)2+(22)2=2,所以PO =P A 2-OA 2=(22)2-22=2.又OA =OB=OC =OD =2,由此可知R =2,于是S 球=4πR 2=16π.(2)如图所示,作出轴截面,因为轴截面是顶角的余弦值为12的等腰三角形,所以顶角为π3,所以该轴截面为正三角形.根据切线性质知当球在容器内时,水的深度为3r ,水面所在圆的半径为3r ,则容器内水的体积V =13π(3r )2·3r -43πr 3=53πr 3.将球取出后,设容器中水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积V ′=13π⎝ ⎛⎭⎪⎫33h 2h =19πh 3,由V =V ′,得h =315r ,所以这时容器中水的深度为315r .答案:(1)A (2)315r【即时训练】(1)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )(A)π (B)3π4 (C)π2(D)π4(2)一个正方体削去一个角所得的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.解析:(1)设圆柱的底面半径为r ,则r 2=12-⎝ ⎛⎭⎪⎫122=34,所以,圆柱的体积V =34π×1=3π4,故选B.(2)依题意可知,新的几何体的外接球也就是原正方体的外接球,要求的直径就是正方体的体对角线;所以2R =23(R 为球的半径),所以R =3,所以球的体积V =43πR 3=43π.答案:(1)B (2)43π【反思归纳】 “切”“接”问题的处理规律 (1)“切”的处理解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.(2)“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.考点四折叠与展开问题如图,在直三棱柱ABCA1B1C1中,底面ABC为直角三角形,∠ACB=90°,AC=6,BC=CC1= 2.P是BC1上一动点,则CP+P A1的最小值为________.解析:法一由题意知,A1P在几何体内部,但在面A1C1B内,把面A1C1B沿BC1展开与△CBC1在一个平面上如图,连接A1C,则A1C的长度,即CP +P A1的最小值.因为∠ACB=90°,三棱柱ABCA1B1C1为直三棱柱,AC=6,BC=C1C=2,所以∠A1C1B=90°,A1C1=6,所以∠CC1A1=45°+90°=135°.在△CC1A1中,A1C2=A1C21+CC21-2A1C1·CC1cos 135°=50,所以A1C=52,即CP+P A1的最小值为5 2.法二设C1P=x,由已知可得△A1C1P为直角三角形,则P A1=36+x2,在△CC1P中∠CC1P=45°,CC1=2,由余弦定理得CP=C1P2+CC21-2C1P·CC1cos 45°=x2-2x+2.因为CP+P A1=x2-2x+2+x2+36=(x-1)2+(0-1)2+(x-0)2+(0-6)2故可以看作x轴上的动点M(x,0)到两个定点E(1,1),F(0,6)的距离之和,E点关于x轴的对称点E′(1,-1).所以CP+P A1≥|E′F|=(1-0)2+(-1-6)2=50=5 2.答案:5 2【反思归纳】(1)求几何体表面上两点间的最短距离的常用方法是选择恰当的母线或棱将几何体展开,转化为求平面上两点间的最短距离.(2)解决折叠问题的技巧解决折叠问题时,要分清折叠前后两图形中(折叠前的平面图形和折叠后的空间图形)元素间的位置关系和数量关系哪些发生了变化,哪些没有发生变化.【即时训练】如图,三棱锥SABC中,SA=AB=AC=2,∠ASB=∠BSC=∠CSA=30°,M,N分别为SB,SC上的点,则△AMN周长的最小值为________.解析:展开三棱锥的侧面,如图所示.因为原三棱锥中∠ASB=∠BSC=∠CSA=30°,SA=AB=AC=2,所以△ASA′是等腰直角三角形,连接AA′可得△AMN周长的最小值为2 2.答案:22体积与表面积的最值问题设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D-ABC体积的最大值为()(A)12 3 (B)18 3(C)24 3 (D)54 3审题指导关键点所获信息A、B、C、D都在半径为4的球面上球心到四点距离都是4△ABC为等边三角形球心在过△ABC中心且垂直于△ABC所在平面的直线上解题突破:利用△ABC的面积求出△ABC外接圆半径解析:由等边△ABC的面积为93可得34AB2=93,所以AB=6,所以等边△ABC的外接圆的半径为r=33AB=2 3.设球的半径为R,球心到等边△ABC的外接圆圆心的距离为d,则d=R2-r2=16-12=2.所以三棱锥D-ABC高的最大值为2+4=6,所以三棱锥D-ABC体积的最大值为13×93×6=18 3.故选B.答案:B命题意图:本题主要考查三棱锥的体积公式.球心到截面的距离等基础知识,意在考查学生的空间想象能力和运算求解能力.课时作业基础对点练(时间:30分钟)1.一个几何体的三视图如图所示,则该几何体的体积是()(A)6 (B)8(C)10 (D)12D 解析:该几何体是一个长方体在左边挖去一个三棱柱再拼接到右边而得到的,它的体积为V =2×2×3=12.2.某空间组合体的三视图如图所示,则该组合体的体积为( )(A)48 (B)56 (C)64(D)72C 解析:该组合体由两个棱柱组成,上面的棱柱体积为2×4×5=40,下面的棱柱体积为4×6×1=24,故组合体的体积为64. 故选C.3.已知等腰直角三角形的直角边长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体体积为( )(A)22π3 (B)423π (C)22π(D)42πB 解析:由条件知该直角三角形的斜边长为22,斜边上的高为2,故围成的几何体的体积为2×13×π×(2)2×2=42π3,故选B.4.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为()(A)36π (B)64π(C)144π (D)256πC解析:因为V三棱锥O-ABC=V三棱锥C-OAB,所以三棱锥O-ABC体积的最大值即三棱锥C-OAB体积的最大值,所以当C到平面OAB的距离最大,即CO⊥平面OAB时,体积最大.设球的半径为r,则V三棱锥O-ABC=V三棱锥C-OAB=13=36,所以r=6,则球O的表面6r积S=4πr2=144π.5.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()(A)1 (B)2(C)4 (D)8B解析:由三视图可知,此组合体的前半部分是一个底面半径为r,高为2r的半圆柱(水平放置),后半部分是一个半径为r的半球,其中半圆柱的一个底面与半球的半个圆面重合,所以此几何体的表面积为2r×2r+12+12πr2+πr×2r+2πr2=4r2+5πr2=16+20π,解得r=2πr2,故选B.6.某几何体的三视图如图所示,则该几何体的体积为()(A)13+2π (B)13π6 (C)7π3(D)5π2B 解析:由三视图知,该几何体为一个圆柱与一个半圆锥的组合体,其中圆柱的底面半径为1,高为2,半圆锥的底面半径为1,高为1,所以该几何体的体积为V =13×12×π×12×1+π×12×2=13π6,故选B.7.若三棱锥P -ABC 的最长的棱P A =2,且各面均为直角三角形,则此三棱锥的外接球的体积是________.解析:如图,根据题意,可把该三棱锥补成长方体,则该三棱锥的外接球即该长方体的外接球,易得外接球的半径R =12P A =1,所以该三棱锥的外接球的体积V =43×π×13=43π.答案:43π8.四棱锥P -ABCD 的底面是边长为42的正方形,侧棱长都等于45,则经过该棱锥五个顶点的球面面积为________.解析:如图,连接BD ,作PH ⊥BD ,交BD 于点H ,由题意,得该四棱锥的外接球的球心在四棱锥的高线上,设为点O ,连接BO ,设外接球半径为R .在Rt △PBH 中,PB =45,BH =4,则PH =(45)2-42=8;在Rt △OBH 中,R 2-(8-R )2=16,解得R =5,则其外接球的球面面积为S =4πR 2=100π.答案:100π9.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为________.解析:设等边三角形的边长为2a , 则V 圆锥=13·πa 2·3a =33πa 3; 又R 2=a 2+(3a -R )2, 所以R =233a ,故V 球=4π3·233a 3=323π27a 3,则其体积比为932.答案:932.10.如图,已知几何体的三视图(单位:cm). (1)画出这个几何体的直观图(不要求写画法); (2)求这个几何体的表面积及体积.解:(1)这个几何体的直观图如图所示.(2)这个几何体可看成是由正方体AC1及直三棱柱B1C1Q—A1D1P的组合体.由P A1=PD1=2,A1D1=AD=2,可得P A1⊥PD1.故所求几何体的表面积S=5×22+2×2×2+2×12×(2)2=22+42(cm2).所求几何体的体积V=23+12×(2)2×2=10(cm3).能力提升练(时间:15分钟)11.如图,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥爬行一周后回到点P 处,若该小虫爬行的最短路程为43,则这个圆锥的体积为( )(A)15π3 (B)3235π27 (C)1282π81(D)83π3C 解析:作出该圆锥的侧面展开图,如图中阴影部分所示,该小虫爬行的最短路程为PP ′,∵OP =OP ′=4,PP ′=43,由余弦定理可得cos ∠P ′OP =OP 2+OP ′2-PP ′22OP ·OP ′=-12,∴∠P ′OP =2π3.设底面圆的半径为r ,圆锥的高为h ,则有2πr =2π3×4,∴r =43,h =l 2-r 2=823,∴圆锥的体积V =13πr 2h =1282π81.故选C.12.已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕,将△ABC 折起,使∠BDC =90°,则过A ,B ,C ,D 四点的球的表面积为( )(A)3π (B)4π (C)5π(D)6πC 解析:折后的图形可放出一个长方体中,其体对角线长为1+1+3=5,故其外接球的半径为52,其表面积为5π.故选:C.13.如图,已知P A⊥平面ABC,AB⊥BC,若P A=AB=BC=1,则三棱锥P-ABC的外接球的体积为________.解析:将此三棱锥补成一个正方体如图,可知三棱锥P-ABC的外接球是正方体的外接球.由P A=AB=BC=1,可知补得的正方体棱长为1,则此正方体的外接球直径为3,所以外接球的体积为V=43πR 3=43π·⎝⎛⎭⎪⎫323=32π.答案:3 2π14.如图为棱长等于2的正方体,P,Q分别为棱B1C1,A1B上的点,且A1Q=m,C1P =n(m,n∈[0,2]),则三棱锥D1-QCP的体积VD1-QCP=________.解析:由正方体的结构特征,可得截面A 1BCD 1是一个矩形,其中CD 1=22,BC =2. 在矩形A 1BCD 1中,S △QCD 1=12×CD 1×BC =12×22×2=2 2.又B 1C 1∥平面A 1BCD 1,故直线B 1C 1上的所有点到平面A 1BCD 1的距离都相等. 而点B 1到平面A 1BCD 1的距离h =12AB 1=2, 所以点P 到平面A 1BCD 1的距离也是 2.所以VP -QCD 1=13×S △QCD 1×h =43,即三棱锥D 1-QCP 的体积VD 1-QCP =43. 答案:4315.三棱锥P -ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为________.解析:在△ABC 中,cos B =15+15-362×15×15=-630=15,B 为钝角,sin B =1-125=265, △ABC 的外接圆半径R =b 2sin B =6465=564,PC2=1,该三棱锥的外接球的半径为OC =⎝ ⎛⎭⎪⎫5642+1=1664, 球的表面积4π×16616=1664π=832π. 答案:832π 16.已知四棱锥P -ABCD 的侧棱长都相等,且底面是边长为32的正方形,它的五个顶点都在直径为10的球面上,则四棱锥P -ABCD 的体积为________.解析:由题意可知,棱锥底面正方形的对角线长为:32×2=6, 棱锥的底面积为:S =(32)2=18,据此分类讨论: 当球心位于棱锥内部时,棱锥的高为:h =5+52-32=9,棱锥的体积:V =13Sh =54; 当球心位于棱锥外部时,棱锥的高为:h =5-52-32=1,棱锥的体积:V =13Sh =6;综上可得:四棱锥P -ABCD 的体积为6或54. 答案:6或54。
空间几何体的表面积和体积讲解及经典例题

空间几何体的表面积和体积一.课标要求:了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
二.命题走向近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。
即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。
由于本讲公式多反映在考题上,预测2009年高考有以下特色:(1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;三.要点精讲1.多面体的面积和体积公式表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。
2.旋转体的面积和体积公式表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。
四.典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy )2()1(由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3)由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。
点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。
我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。
例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=3π。
2018-2019年高三一轮:《空间几何体的表面积和体积》课件

3.某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为5的 等腰三角形,侧视图是一个底边长为6,高为5的等腰三角形,则该几何体的体积 为( )
A.24 B.80 C.64 D.240 解析:结合题意知该几何体是四棱锥,棱锥底面是长和宽分别为8和6的矩 形,棱锥的高是5,可由锥体的体积公式得V=13×8×6×5=80。 答案:B
如图所示,S上=2×10=20, S下=8×10=80, S前=S后=10×5=50, S左=S右=12(2+8)×4=20, 所以S表=S上+S下+S前+S后+S左+S右=240,故选D。 (2)此几何体是一个半球,所以表面积为球的表面积的一半加上底面的面积,球 半径为1,故所求表面积为S=2π+π=3π。 (3)由图知圆台的上、下底面半径分别为r=1、r′=2,母线长为l= 5 ,则圆台 表面积为π(r+r′)l+π(r2+r′2)=5π+3 5π。
2个注意点——求空间几何体的表面积应注意两点 (1)求组合体的表面积时,要注意各几何体重叠部分的处理。 (2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以 防出错。
1.侧面都是直角三角形的正三棱锥,底面边长为a时,该三棱锥的全面积是
()
3+ A. 4
3a2
B.34a2
3+ C. 2
4.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为 ____2______。
解析:设圆锥的母线为l,圆锥底面半径为r,则πrl+πr2=3π,πl=2πr。解得r= 1,即直径为2。
5.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图 是半径为1的半圆,则该几何体的表面积是_2_(_π_+___3_)__。
高中数学 空间几何体的表面积和体积

1、表面积:几何体表面的面积 2、体积:几何体所占空间的大小。
表面积、全面积和侧面积
• 表面积:立体图形的所能触摸到的面积之 和叫做它的表面积。(每个面的面积相加 )
• 全面积 全面积是立体几何里的概念, 相对于截面积(“截面积”即切面的面积) 来说的,就是表面积总和
2r
l
圆锥的侧面展开图是扇形
rO
S r2 r l r(r l)
(3)台体的侧面积
①正棱台:设正n棱台的上底面、下底面周 长分别为c′、c,斜高为h′,则正n棱台的侧面积公
式:S正棱台侧= 1∕2(c+c.′)h′
②圆台:如果圆台的上、下底面半径分别为
r′、r,母线长为l,则S圆台侧= πl(r′+. r)
(2)锥体的侧面积
①正棱锥:设正棱锥底面正多边形的周长为c,斜 高为h′,则
S正棱锥侧= 1∕2ch.(′ 类比三角形的面积)
②圆锥:如果圆锥的底面半径为r,母线长为l,那 么
S圆锥侧= πrl.(类比三角形的面积)
把正三棱锥侧面沿一条侧棱展开,得到什么图形? 侧面积怎么求?
h' h'
S正棱锥= 侧 12ch'
棱锥的侧面展开图是什么?如何计算它的表面积?
正三棱锥的侧面展开图
h/ h/
侧面展开
h' h'
正五棱锥的侧面展开图
S表面积 S侧S底
思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线
展开,分别得到什么图形?展开的图形与原图
有什么关系?
扇形
R扇= l
l扇=
nl
180
l
r
S圆锥 = S 侧 扇 = n 3l6 201 2l扇 lrl
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题38 空间几何体的表面积和体积1.了解球、棱柱、棱锥、台的表面积和体积的计算公式.1.柱、锥、台和球的表面积和体积高频考点一求空间几何体的表面积例1、(1)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3 B.1+2 2C.2+ 3 D.2 2(2)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r等于( )A .1B .2C .4D .8(3)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 (1)C (2)B (3)12=16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.(3)设正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1, ∴斜高h ′=12+32=2,∴S 侧=6×12×2×2=12.【感悟提升】空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (3)旋转体的表面积问题注意其侧面展开图的应用.【变式探究】(2016·全国Ⅲ卷)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+365B.54+18 5C.90D.81答案 B高频考点二 求空间几何体的体积例2、(1)(2016·山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D.1+26π (2)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为( )A.3B.32C.1D.32所以VA -B 1DC 1=13×3×3=1.答案 (1)C (2)C【变式探究】(2015·课标全国Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15答案 D 解析 如图,由题意知,该几何体是正方体ABCD-A 1B 1C 1D 1被过三点A 、B 1、D 1的平面所截剩余部分,截去的部分为三棱锥A-A 1B 1D 1,设正方体的棱长为1,则截去部分体积与剩余部分体积的比值为=13×12×12×113-13×12×12×1=15.选D.高频考点三 求简单几何体的体积例3、在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3C.5π3D .2π答案C该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=1111111111111111A AB D A A B D BCD ABCDA B C D ABCD A A B D V V V V V -----=-5π3,故选C. 【变式探究】(1)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的体积等于( )A.4π3B.32π3 C .36πD.256π3(2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23B.33C.43D.32答案 (1)B (2)A解析 (1)由三视图可知该几何体是一个直三棱柱,底面为直角三角形,高为12,如图所示,容易求得EG =HF =12,AG =GD =BH =HC =32,∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BCH +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23.故选A.【感悟提升】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.高频考点四 与球有关的切、接问题例4、已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B .210 C.132 D .310答案 C解析 如图所示,由球心作平面ABC 的垂线,【感悟提升】空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.【变式探究】如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( )A.22B .1 C. 2 D. 3答案 C∴(x2)2+(x2)2=1,即x =2,则AB =AC =1, ∴S 矩形ABB 1A 1=2×1= 2.1. 【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和 2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 2.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π 【答案】C3.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16 B.13 C.12D. 【答案】A【解析】分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A.4.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)18+(B)54+(C)90 (D)81【答案】B5.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)1233+π(B )133+π(C )136+π(D )16+π【答案】C6.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图33【解析】由三棱锥的正视图知,三棱锥的高为,底面边长为2,2,所以,该三棱锥的体积为1122132V =⨯⨯⨯=. 7.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【答案】72 32【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯=1.【2015高考陕西,理5】一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+【答案】D2.【2015高考新课标1,理11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r =( )(A )1 (B )2 (C )4 (D )8 【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r =2,故选B.3.【2015高考重庆,理5】某几何体的三视图如图所示,则该几何体的体积为A 、13π+B 、23π+ C 、 123π+ D 、223π+【答案】A【解析】这是一个三棱锥与半个圆柱的组合体,2111112(12)12323V ππ=⨯⨯+⨯⨯⨯⨯⨯=+,选A .4.【2015高考北京,理5】某三棱锥的三视图如图所示,则该三棱锥的表面积是( )俯视图侧(左)视图A.2+.4+ C.2+.5 【答案】C5.【2015高考安徽,理7】一个四面体的三视图如图所示,则该四面体的表面积是( ) (A)1(B)2 (C)1+(D)【答案】B6.【2015高考新课标2,理9】已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π 【答案】C【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C .7.【2015高考山东,理7】在梯形ABCD 中,2ABC π∠=,//,222AD BC BC AD AB === .将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )23π (B )43π (C )53π(D )2π 【答案】C8.【2015高考浙江,理2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A.38cm B. 312cm C.3323cmD. 3403cm【答案】C.【解析】由题意得,该几何体为一立方体与四棱锥的组合,如下图所示,∴体积3322231223=⨯⨯+=V ,故选C.1.(2014·湖南卷)一块石材表示的几何体的三视图如图12所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图12A .1B .2C .3D .4 【答案】B2.(2014·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.81π4 B .16π C .9π D.27π4【答案】A【解析】如图所示,因为正四棱锥的底面边长为2,所以AE =12AC = 2.设球心为O ,球的半径为R ,则OE =4-R ,OA =R ,又知△AOE 为直角三角形,根据勾股定理可得,OA 2=OE 2+AE 2,即R 2=(4-R )2+2,解得R =94,所以球的表面积S =4πR 2=4π×⎝ ⎛⎭⎪⎫942=81π4.3.(2014·陕西卷)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( ) A.32π3 B .4π C .2π D.4π3【答案】D4.(2013年高考重庆卷)某几何体的三视图如图所示,则该几何体的体积为( )A.5603 B.5803C .200D .240 解析:由三视图可得该几何体是上、下底面均为矩形,左、右侧面均为等腰梯形的多面体,如图所示,故体积V =12×(2+8)×4×10=200.答案:C5.(2013年高考广东卷)某四棱台的三视图如图所示,则该四棱台的体积是( )A .4 B.143C.163 D .6解析:由四棱台的三视图可知,台体上底面积S 1=1×1=1,下底面积S 2=2×2=4,高h =2,代入台体的体积公式V =13(S 1+S 1S 2+S 2)h =13×(1+1×4+4)×2=143.答案:B6.(2013年高考全国新课标卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π答案:A7.(2013年高考陕西卷)某几何体的三视图如图所示,则其表面积为________.解析:由三视图可知,该几何体为半径r =1的半球体,表面积为底面圆面积加上半球面的面积,所以S =πr 2+2πr 2=3π. 答案:3π1.某几何体的三视图如图所示,且该几何体的体积是3,则主视图中的x 的值是( )A.2B.92C.32D.3 解析 由三视图知,该几何体是四棱锥,底面是直角梯形,且S 底=12(1+2)×2=3.∴V =13x ·3=3,解得x =3.答案 D2.一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3B.2+ 3C.1+2 2D.2 2解析 四面体的直观图如图所示.3.答案 B3.如图,四棱锥P -ABCD 的底面ABCD 为平行四边形,NB =2PN ,则三棱锥N -PAC 与三棱锥D-PAC 的体积比为( )A.1∶2B.1∶8C.1∶6D.1∶3=13S △ABC ·(PP ′-NN ′)=13S △ABC ·13PP ′ =19S △ABC ·PP ′,V 三棱锥D -PAC =V 三棱锥P -ACD =13S △ACD ·PP ′, 又∵四边形ABCD 是平行四边形,∴S △ABC =S △ACD ,∴V 三棱锥N -PAC V 三棱锥D -PAC =13.故选D. 答案 D4.若某一几何体的主视图与左视图均为边长是1的正方形,且其体积为12,则该几何体的俯视图可以是( )解析 若俯视图为A ,则该几何体为正方体,其体积为1,不满足条件.若俯视图为B ,则该几何体为圆柱,其体积为π⎝ ⎛⎭⎪⎫122×1=π4,不满足条件.若俯视图为C ,则该几何体为三棱柱,其体积为12×1×1×1=12,满足条件.若俯视图为D ,则该几何体为圆柱的14,体积为14π×1=π4,不满足条件.答案 C5.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7.答案 77.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为________.答案 43π 6.某几何体的三视图如图所示,则该几何体的体积为________.解析 由三视图可知,该几何体是一个底面半径为1,高为2的圆柱和底面半径为1,高为1的半圆锥拼成的组合体.∴体积V =π×12×2+12×13π×12×1=136π. 答案 136π 7.圆锥被一个平面截去一部分,剩余部分再被另一个平面截去一部分后,与半球(半径为r )组成一个几何体,该几何体三视图中的主视图和俯视图如图所示,若r =1,则该几何体的体积为________.解析 根据三视图中的主视图和俯视图知,该几何体是由一个半径r =1的半球,一个底面半径r =1、高2r =2的14圆锥组成的,则其体积为V =43πr 3×12+13πr 2×2r ×14=5π6. 答案 5π68.四面体ABCD 及其三视图如图所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H .(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形.∴FG ∥EH .同理,EF ∥AD ,HG ∥AD ,∴EF ∥HG ,∴四边形EFGH 是平行四边形.又∵AD⊥平面BDC,BC⊂平面BDC,∴AD⊥BC,∴EF⊥FG,∴四边形EFGH是矩形.9.已知一个几何体的三视图如图所示.(1)求此几何体的表面积;(2)如果点P,Q在主视图中所示位置,P为所在线段中点,Q为顶点,求在几何体表面上,从P点到Q点的最短路径的长.所以S表=2πa2+4πa2+πa2=(2+5)πa2.(2)沿P点与Q点所在母线剪开圆柱侧面,如图.则PQ=AP2+AQ2=a2+(πa)2=a1+π2,所以从P点到Q点在侧面上的最短路径的长为a1+π2.。