2018年高考数学总复习概率及其计算(可编辑修改word版)

合集下载

【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析

【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析

考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。

3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。

(完整word版)2018年高考数学总复习概率及其计算

(完整word版)2018年高考数学总复习概率及其计算

第十三章概率与统计本章知识结构图第一节 概率及其计算考纲解读1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。

2.了解两个互斥事件的概率的加法公式。

3.掌握古典概型及其概率计算公式。

4.了解随机数的意义,能运用模拟方法估计概率。

5.了解几何概型的意义。

命题趋势探究1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。

2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。

知识点精讲一、必然事件、不可能事件、随机事件在一定条件下:①必然要发生的事件叫必然事件; ②一定不发生的事件叫不可能事件;③可能发生也可能不发生的事件叫随机事件。

二、概率在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。

对于必然事件A ,;对于不可能事件A ,=0.三、基本事件和基本事件空间在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。

四、两个基本概型的概率公式1、古典概型条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同()(A)=()A card P A card =Ω包含基本事件数基本事件总数2、几何概型条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为Aμ.()P A =AμμΩ。

五、互斥事件的概率1、互斥事件在一次实验中不能同时发生的事件称为互斥事件。

事件A 与事件B 互斥,则()()()P A B P A P B =+ 。

2、对立事件事件A,B 互斥,且其中必有一个发生,称事件A,B 对立,记作B A =或A B =。

()()1P A p A =- 。

3、互斥事件与对立事件的联系对立事件必是互斥事件,即“事件A ,B 对立”是”事件A ,B 互斥“的充分不必要条件。

高考数学总复习考点知识与题型专题讲解75 事件的相互独立性与条件概率 全概率公式

高考数学总复习考点知识与题型专题讲解75 事件的相互独立性与条件概率  全概率公式

高考数学总复习考点知识与题型专题讲解§10.5事件的相互独立性与条件概率、全概率公式考试要求1.了解两个事件相互独立的含义.2.理解随机事件的独立性和条件概率的关系,会利用全概率公式计算概率.知识梳理1.相互独立事件(1)概念:对任意两个事件A与B,如果P(AB)=P(A)·P(B)成立,则称事件A与事件B相互独立,简称为独立.(2)性质:若事件A与B相互独立,那么A与B,A与B,A与B也都相互独立.2.条件概率(1)概念:一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率,简称条件概率.(2)两个公式①利用古典概型:P(B|A)=n(AB) n(A);②概率的乘法公式:P(AB)=P(A)P(B|A).3.全概率公式一般地,设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )=∑i =1nP (A i )P (B |A i ). 常用结论1.如果事件A 1,A 2,…,A n 相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的积,即P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).2.贝叶斯公式:设A 1,A 2,…,A n 是一组两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,P (B )>0,有P (A i |B )=P (A i )P (B |A i )P (B )=P (A i )P (B |A i )∑k =1n P (A k )P (B |A k ),i =1,2,…,n . 思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( × )(2)若事件A ,B 相互独立,则P (B |A )=P (B ).( √ )(3)抛掷2枚质地均匀的硬币,设“第一枚正面朝上”为事件A ,“第2枚正面朝上”为事件B ,则A ,B 相互独立.( √ )(4)若事件A 1与A 2是对立事件,则对任意的事件B ⊆Ω,都有P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2).( √ ) 教材改编题1.甲、乙两人独立地破解同一个谜题,破解出谜题的概率分别为12,23,则谜题没被破解出的概率为( )A.16 B.13 C.56D.1答案 A解析设“甲独立地破解出谜题”为事件A,“乙独立地破解出谜题”为事件B,则P(A)=12,P(B)=23,故P(A)=12,P(B)=13,所以P(A B)=12×13=16,即谜题没被破解出的概率为1 6.2.在8件同一型号的产品中,有3件次品,5件合格品,现不放回地从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是()A.128 B.110 C.19 D.27答案 D解析当第一次抽到次品后,还剩余2件次品,5件合格品,所以第二次抽到次品的概率为2 7.3.智能化的社区食堂悄然出现,某社区有智能食堂A,人工食堂B,居民甲第一天随机地选择一食堂用餐,如果第一天去A食堂,那么第二天去A食堂的概率为0.6;如果第一天去B食堂,那么第二天去A食堂的概率为0.5,则居民甲第二天去A食堂用餐的概率为________.答案0.55解析由题意得,居民甲第二天去A食堂用餐的概率P=0.5×0.6+0.5×0.5=0.55.题型一相互独立事件的概率例1(1)(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立答案 B解析事件甲发生的概率P(甲)=16,事件乙发生的概率P(乙)=16,事件丙发生的概率P(丙)=56×6=536,事件丁发生的概率P(丁)=66×6=16.事件甲与事件丙同时发生的概率为0,P(甲丙)≠P(甲)P(丙),故A错误;事件甲与事件丁同时发生的概率为16×6=136,P(甲丁)=P(甲)P(丁),故B正确;事件乙与事件丙同时发生的概率为16×6=136,P(乙丙)≠P(乙)P(丙),故C错误;事件丙与事件丁是互斥事件,不是相互独立事件,故D错误.(2)(2023·临沂模拟)“11分制”乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,若甲先发球,两人又打了2个球后该局比赛结束的概率为________;若乙先发球,两人又打了4个球后该局比赛结束,则甲获胜的概率为________.答案0.50.1解析记两人又打了X个球后结束比赛,设双方10∶10平后的第k个球甲获胜为事件A k(k=1,2,3…),则P(X=2)=P(A1A2)+P(AA2)=P(A1)P(A2)+P(A1)P(A2)1=0.5×0.4+0.5×0.6=0.5.由乙先发球,得P(X=4且甲获胜)=P(A1A2A3A4)+P(A1A2A3A4)=P(A1)P(A2)P(A3)P(A4)+P(A1)P(A2)P(A3)·P(A4)=0.4×0.5×0.4×0.5+0.6×0.5×0.4×0.5=0.1.思维升华求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.跟踪训练1小王某天乘火车从重庆到上海,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列火车正点到达的概率;(2)这三列火车恰好有一列火车正点到达的概率;(3)这三列火车至少有一列火车正点到达的概率.解用A,B,C分别表示这三列火车正点到达的事件,则P(A)=0.8,P(B)=0.7,P(C)=0.9,所以P(A)=0.2,P(B)=0.3,P(C)=0.1.(1)由题意得A,B,C之间相互独立,所以恰好有两列火车正点到达的概率为P1=P(A BC)+P(A B C)+P(AB C)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)恰好有一列火车正点到达的概率为P2=P(A B C)+P(A B C)+P(A B C)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9=0.092.(3)三列火车至少有一列火车正点到达的概率为P3=1-P(A B C)=1-P(A)P(B)P(C)=1-0.2×0.3×0.1=0.994.题型二条件概率例2(1)(2022·哈尔滨模拟)七巧板是中国民间流传的智力玩具.据清代陆以湉《冷庐杂识》记载,七巧板是由宋代黄伯思设计的宴几图演变而来的,原为文人的一种室内游戏,后在民间逐步演变为拼图版玩具.到明代,七巧板已基本定型为由如图所示的七块板组成:五块等腰直角三角形(其中两块小型三角形、一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,可以拼成人物、动物、植物、房亭、楼阁等1 600种以上图案.现从七巧板中取出两块,已知取出的是三角形,则两块板恰好是全等三角形的概率为()A.35B.25C.27D.15答案 D解析 设事件A 为“从七巧板中取出两块,取出的是三角形”,事件B 为“两块板恰好是全等三角形”,则P (AB )=2C 27=221,P (A )=C 25C 27=1021, 所以P (B |A )=P (AB )P (A )=2211021=15. (2)逢年过节走亲访友,成年人喝酒是经常的事,但是饮酒过度会影响健康,某调查机构进行了针对性的调查研究.据统计,一次性饮酒4.8两,诱发某种疾病的频率为0.04,一次性饮酒7.2两,诱发这种疾病的频率为0.16.将频率视为概率,已知某人一次性饮酒4.8两未诱发这种疾病,则他还能继续饮酒2.4两,不诱发这种疾病的概率为( ) A.78 B.56 C.34 D.2021答案 A解析 记事件A :这人一次性饮酒4.8两未诱发这种疾病,事件B :这人一次性饮酒7.2两未诱发这种疾病,则事件B |A :这人一次性饮酒4.8两未诱发这种疾病,继续饮酒2.4两不诱发这种疾病, 则B ⊆A ,AB =A ∩B =B ,P (A )=1-0.04=0.96,P (B )=1-0.16=0.84,故P (B |A )=P (AB )P (A )=P (B )P (A )=0.840.96=78. 思维升华 求条件概率的常用方法(1)定义法:P(B|A)=P(AB) P(A).(2)样本点法:P(B|A)=n(AB) n(A).(3)缩样法:去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解.跟踪训练2(1)(2023·六盘山模拟)已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回.在第1次抽到代数题的条件下,第2次抽到几何题的概率为()A.14 B.25 C.12 D.35答案 C解析设事件A=“第1次抽到代数题”,事件B=“第2次抽到几何题”,所以P(A)=35,P(AB)=310,则P(B|A)=P(AB)P(A)=31035=12.(2)某射击运动员每次击中目标的概率为45,现连续射击两次.①已知第一次击中,则第二次击中的概率是________;②在仅击中一次的条件下,第二次击中的概率是________.答案①45②12解析①设第一次击中为事件A,第二次击中为事件B,则P(A)=4 5,由题意知,第一次击中与否对第二次没有影响,因此已知第一次击中,则第二次击中的概率是4 5.②设仅击中一次为事件C,则仅击中一次的概率为P(C)=C12×45×15=825,在仅击中一次的条件下,第二次击中的概率是P(B|C)=15×45825=12.题型三全概率公式的应用例3(1)一份新高考数学试卷中有8道单选题,小胡对其中5道题有思路,3道题完全没有思路.有思路的题做对的概率是0.9,没有思路的题只能猜一个答案,猜对答案的概率为0.25,则小胡从这8道题目中随机抽取1道做对的概率为()A.79160 B.35 C.2132 D.58答案 C解析设事件A表示“小胡答对”,事件B表示“小胡选到有思路的题”.则小胡从这8道题目中随机抽取1道做对的概率P(A)=P(B)P(A|B)+P(B)P(A|B)=58×0.9+38×0.25=21 32.(2)在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知当发送信号0时,被接收为0和1的概率分别为0.93和0.07;当发送信号1时,被接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的,则接收的信号为1的概率为()A.0.48 B.0.49 C.0.52 D.0.51答案 D解析设事件A=“发送的信号为0”,事件B=“接收的信号为1”,则P(A)=P(A)=0.5,P(B|A)=0.07,P(B|A)=0.95,因此P(B)=P(A)P(B|A)+P(A)P(B|A)=0.5×(0.07+0.95)=0.51.思维升华利用全概率公式解题的思路(1)按照确定的标准,将一个复杂事件分解为若干个互斥事件A i(i=1,2,…,n).(2)求P(A i)和所求事件B在各个互斥事件A i发生条件下的概率P(A i)P(B|A i).(3)代入全概率公式计算.跟踪训练3(1)设甲乘汽车、动车前往某目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为()A.0.78 B.0.8 C.0.82 D.0.84答案 C解析设事件A表示“甲正点到达目的地”,事件B表示“甲乘动车到达目的地”,事件C表示“甲乘汽车到达目的地”,由题意知P(B)=0.6,P(C)=0.4,P(A|B)=0.9,P(A|C)=0.7.由全概率公式得P(A)=P(B)P(A|B)+P(C)P(A|C)=0.6×0.9+0.4×0.7=0.54+0.28=0.82.(2)(2022·郑州模拟)第24届冬奥会于2022年2月4日至20日在北京和张家口举行,中国邮政陆续发行了多款纪念邮票,其图案包括“冬梦”“冰墩墩”和“雪容融”等.小王有3张“冬梦”、2张“冰墩墩”和2张“雪容融”邮票;小李有“冬梦”“冰墩墩”和“雪容融”邮票各1张.小王现随机取出一张邮票送给小李,分别以A1,A2,A3表示小王取出的是“冬梦”“冰墩墩”和“雪容融”的事件;小李再随机取出一张邮票,以B表示他取出的邮票是“冰墩墩”的事件,则P(B|A2)=________,P(B)=________.答案1 2 9 28解析 P (B |A 2)=24=12,由题知P (A 1)=37,P (A 2)=27,P (A 3)=27,则P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)P (B |A 3)=37×14+27×24+27×14=928.课时精练1.若P (AB )=19,P (A )=23,P (B )=13,则事件A 与B 的关系是( ) A .事件A 与B 互斥 B .事件A 与B 对立 C .事件A 与B 相互独立D .事件A 与B 既互斥又相互独立 答案 C解析 ∵P (A )=1-P (A )=1-23=13, ∴P (A )P (B )=19, ∴P (AB )=P (A )P (B )≠0,∴事件A 与B 相互独立,事件A 与B 不互斥也不对立.2.(2023·开封模拟)某盏吊灯上并联着4个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是0.8,那么在这段时间内该吊灯上的灯泡至少有两个能正常照明的概率是()A.0.819 2 B.0.972 8C.0.974 4 D.0.998 4答案 B解析4个都不能正常照明的概率为(1-0.8)4=0.001 6,只有1个能正常照明的概率为4×0.8×(1-0.8)3=0.025 6,所以至少有两个能正常照明的概率是1-0.001 6-0.025 6=0.972 8.3.根据历年的气象数据可知,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为()A.0.8 B.0.625 C.0.5 D.0.1答案 A解析设“发生中度雾霾”为事件A,“刮四级以上大风”为事件B,所以P(A)=0.25,P(B)=0.4,P(AB)=0.2,则在发生中度雾霾的情况下,刮四级以上大风的概率为P(B|A)=P(AB)P(A)=0.20.25=0.8.4.(2022·青岛模拟)甲、乙两名选手进行象棋比赛,已知每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,若采用三局二胜制,则甲最终获胜的概率为()A.0.36 B.0.352C.0.288 D.0.648答案 D解析由题意可得甲最终获胜有两种情况:一是前两局甲获胜,概率为0.6×0.6=0.36,二是前两局甲一胜一负,第三局甲胜,概率为C12×0.6×0.4×0.6=0.288,这两种情况互斥,∴甲最终获胜的概率P=0.36+0.288=0.648.5.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时,答对的概率为100%,而不知道正确答案时猜对的概率为25%,那么他答对题目的概率为()A.0.625 B.0.75 C.0.5 D.0.25答案 A解析记事件A为“该考生答对题目”,事件B1为“该考生知道正确答案”,事件B2为“该考生不知道正确答案”,则P(A)=P(A|B1)·P(B1)+P(A|B2)·P(B2)=1×0.5+0.25×0.5=0.625.6.将甲、乙、丙、丁4名医生随机派往①,②,③三个村庄进行义诊活动,每个村庄至少派1名医生,A表示事件“医生甲派往①村庄”;B表示事件“医生乙派往①村庄”;C表示事件“医生乙派往②村庄”,则()A.事件A与B相互独立B.事件A与C相互独立C.P(B|A)=5 12D.P(C|A)=5 12答案 D解析将甲、乙、丙、丁4名医生派往①,②,③三个村庄进行义诊包含C24A33=36(个)样本点,它们等可能,事件A含有的样本点个数为A33+C23A22=12,则P (A )=1236=13, 同理P (B )=P (C )=13,事件AB 含有的样本点个数为A 22=2,则P (AB )=236=118, 事件AC 含有的样本点个数为C 22+C 12C 12=5,则P (AC )=536, 对于A ,P (A )P (B )=19≠P (AB ),即事件A 与B 不相互独立,故A 不正确;对于B ,P (A )P (C )=19≠P (AC ),即事件A 与C 不相互独立,故B 不正确; 对于C ,P (B |A )=P (AB )P (A )=16,故C 不正确; 对于D ,P (C |A )=P (AC )P (A )=512,故D 正确. 7.(2022·石家庄模拟)某电视台举办知识竞答闯关比赛,每位选手闯关时需要回答三个问题.第一个问题回答正确得10分,回答错误得0分;第二个问题回答正确得20分,回答错误得0分;第三个问题回答正确得30分,回答错误得-20分.规定,每位选手回答这三个问题的总得分不低于30分就算闯关成功.若某位选手回答前两个问题正确的概率都是23,回答第三个问题正确的概率是12,且各题回答正确与否相互之间没有影响,则该选手仅回答正确两个问题的概率是 ________;该选手闯关成功的概率是 ________. 答案 4912解析 该选手仅回答正确两个问题的概率是P 1=23×23×⎝ ⎛⎭⎪⎫1-12+23×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-23×23×12=49,该选手要闯关成功,则只有第3个问题回答正确或者第1,3两个问题回答正确或者第2,3两个问题回答正确或者三个问题都回答正确,所以闯关成功的概率为⎝ ⎛⎭⎪⎫1-232×12+23×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-23×23×12+23×23×12=12. 8.某医生一周(7天)晚上值2次班,在已知他周二晚上一定值班的条件下,他在周三晚上值班的概率为________. 答案 16解析 设事件A 为“周二晚上值班”,事件B 为“周三晚上值班”,则P (A )=C 16C 27=27,P (AB )=1C 27=121,故P (B |A )=P (AB )P (A )=16. 9.(2022·襄阳模拟)某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率. 解 (1)该款芯片生产在进入第四道工序前的次品率P =1-⎝ ⎛⎭⎪⎫1-110×⎝ ⎛⎭⎪⎫1-19×⎝ ⎛⎭⎪⎫1-18=310.(2)设“该款智能自动检测合格”为事件A ,“人工抽检合格”为事件B , 则P (A )=910,P (AB )=1-310=710,则工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率P (B |A )=P (AB )P (A )=710910=79.10.(2023·佛山模拟)男子冰球比赛上演的是速度与激情的碰撞.2022北京冬奥会男子冰球主要比赛场馆是位于北京奥林匹克公园的“冰之帆”国家体育馆.本届冬奥会男子冰球有12支队伍进入正赛,中国首次组队参赛.比赛规则:12支男子冰球参赛队先按照往届冬奥会赛制分成三个小组(每组4个队).正赛分小组赛阶段与决赛阶段: 小组赛阶段各组采用单循环赛制(小组内任意两队需且仅需比赛一次);决赛阶段均采用淘汰制(每场比赛胜者才晋级),先将12支球队按照小组比赛成绩进行排名,排名前四的球队晋级四分之一决赛(且不在四分之一决赛中相遇),其余8支球队按规则进行附加赛(每队比赛一次,胜者晋级),争夺另外4个四分之一决赛席位,随后依次是四分之一决赛、半决赛、铜牌赛、金牌赛.(1)本届冬奥会男子冰球项目从正赛开始到产生金牌,组委会共要安排多少场比赛? (2)某机构根据赛前技术统计,率先晋级四分之一决赛的四支球队(甲、乙、丙、丁队)实力相当,假设他们在接下来的四分之一决赛、半决赛、铜牌赛、金牌赛中取胜的概率都依次为34,12,12,12,且每支球队晋级后每场比赛相互独立.试求甲、乙、丙、丁队都没获得冠军的概率.解(1)根据赛制,小组赛共安排3×C24=18(场)比赛,附加赛共安排8÷2=4(场)比赛,四分之一决赛共安排8÷2=4(场)比赛,半决赛共安排4÷2=2(场)比赛,铜牌赛、金牌赛各比赛一场,共2场,故本届冬奥会男子冰球项目从正赛开始到产生金牌,组委会共要安排18+4+4+2+2=30(场)比赛.(2)设甲、乙、丙、丁队获得冠军分别为事件A,B,C,D,都没有获得冠军为事件E,∵晋级后每场比赛相互独立,∴P(A)=34×12×12=316,∵四队实力相当,∴P(B)=P(C)=P(D)=P(A)=3 16,∵事件A,B,C,D互斥,∴甲、乙、丙、丁队都没获得冠军的概率为P(E)=1-P(A∪B∪C∪D)=1-[P(A)+P(B)+P(C)+P(D)]=1-4×316=14.故甲、乙、丙、丁队都没获得冠军的概率为1 4.11.甲、乙、丙、丁4名棋手进行象棋比赛,赛程如图所示,其中编号为i的方框表示第i场比赛,方框中是进行该场比赛的两名棋手,第i场比赛的胜者称为“胜者i”,负者称为“负者i ”,第6场为决赛,获胜的人是冠军.已知甲每场比赛获胜的概率均为23,而乙、丙、丁之间相互比赛,每人胜负的可能性相同.则甲获得冠军的概率为( )A.827B.1627C.3281D.4081 答案 D解析 甲获得冠军,则甲参加的比赛结果有三种情况:1胜3胜6胜;1负4胜5胜6胜;1胜3负5胜6胜,故甲获得冠军的概率为⎝ ⎛⎭⎪⎫233+2×⎝ ⎛⎭⎪⎫233×13=4081.12.(多选)甲罐中有5个红球、2个白球和3个黑球,乙罐中有4个红球、3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球、白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是( ) A .P (B )=25 B .P (B |A 1)=511C .事件B 与事件A 1相互独立D .A 1,A 2,A 3是两两互斥的事件 答案 BD解析 由题意知,A 1,A 2,A 3是两两互斥的事件,故D 正确;P (A 1)=510=12,P (A 2)=210=15,P(A3)=310,P(B|A1)=12×51112=511,由此知,B正确;P(B|A2)=411,P(B|A3)=411;而P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=12×511+15×411+310×411=922,由此知A,C不正确.13.(2022·全国乙卷)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大答案 D解析设该棋手在第二盘与甲比赛连胜两盘的概率为P甲,在第二盘与乙比赛连胜两盘的概率为P乙,在第二盘与丙比赛连胜两盘的概率为P丙,方法一由题意可知,P甲=2p1[p2(1-p3)+p3(1-p2)]=2p1p2+2p1p3-4p1p2p3,P乙=2p2[p1(1-p3)+p3(1-p1)]=2p1p2+2p2p3-4p1p2p3,P丙=2p3[p1(1-p2)+p2(1-p1)]=2p1p3+2p2p3-4p1p2p3.所以P丙-P甲=2p2(p3-p1)>0,P丙-P乙=2p1(p3-p2)>0,所以P丙最大.方法二(特殊值法)不妨设p1=0.4,p2=0.5,p3=0.6,则该棋手在第二盘与甲比赛连胜两盘的概率P甲=2p1[p2(1-p3)+p3(1-p2)]=0.4;在第二盘与乙比赛连胜两盘的概率P乙=2p2[p1(1-p3)+p3(1-p1)]=0.52;在第二盘与丙比赛连胜两盘的概率P丙=2p3[p1(1-p2)+p2(1-p1)]=0.6.所以P丙最大.14.(2023·舟山模拟)根据以往的临床记录,某种诊断癌症的试验有如下的效果:若以A 表示事件“试验反应为阳性”,以C表示事件“被诊断者患有癌症”,则有P(A|C)=0.95,P(A|C)=0.95,现在对自然人群进行普查,设被试验的人患有癌症的概率为0.005,即P(C)=0.005,则P(C|A)=________.(精确到0.001)答案0.087解析∵P(A|C)=0.95,∴P(A|C)=1-P(A|C)=0.05,∵P(C)=0.005,∴P(C)=0.995,由全概率公式可得,P(A)=P(A|C)P(C)+P(A|C)P(C),∵P(AC)=P(C|A)P(A)=P(A|C)P(C),∴P(C|A)=P(A|C)P(C)P(A|C)P(C)+P(A|C)P(C)=0.95×0.0050.95×0.005+0.05×0.995=19218≈0.087.21 / 21。

2018年江苏高考数学真题(word版)(2021年整理)

2018年江苏高考数学真题(word版)(2021年整理)

2018年江苏高考数学真题(word版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年江苏高考数学真题(word版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年江苏高考数学真题(word版)(word版可编辑修改)的全部内容。

2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ1. 已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么_____=B A2. 若复数z 满足i z i 21+=⋅,其中i 是虚数单位,则z 的实部为_____3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为_____4. 一个算式的伪代码如图所示,执行此算法,最后输出的S的值为______5. 函数1log )(2-=x x f 的定义域为______6. 某兴趣小组有2名男生和3名女生,现从中选2名学生去参加,则恰好有2名女生的概率为_______7. 已知函数)22)(2sin(πϕπϕ<<-+=x y 的图象关于直线3π=x对称,则ϕ的值是______8. 在平面直角坐标系xOy 中.若双曲线0)b 0(12222>>=-,a by a x 的右焦点F (c ,0)到一条渐近线的距离为c 23,则其离心率的值是_____ 9. 函数f(x)满足f (x +4)=f(x )(x ∈R ),且在区间]2,2(-上,⎪⎪⎩⎪⎪⎨⎧≤<-+≤<=,02,21,20,2cos )(x x x x x f π则))15((f f 的值为______10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为_______个11. 若函数)(12)(23R a ax x x f ∈+-=在),0(+∞内有且只有一零点,则)(x f 在[-1,1]上的最大值与最小值的和为_______8 999I ←1S ←1While I〈612. 在平面直角坐标系xOy 中,A 为直线l :x y 2=上在第一象限内的点,B (5,0),以AB 为直径的圆C 与l 交于另一点D,若0=⋅CD AB ,则点A 的横坐标为_______13. 在ABC ∆中角A ,B ,C 所对的边分别为a ,b ,c ,︒=∠120ABC ,ABC ∠的平分线交AC 与点D ,且BD =1,则4a +c 的最小值为_______14. 已知集合},12|{*N n n x x A ∈-==,},2|{*N n x x B n∈==, 将A B 的所有元素从小到大依次排列构成一个数列}{n a .记n S 为数列}{n a 的前n 项的和,则使得1n 12+>n a S 成立的n 的最小值为______15. 在平行六面体ABCD —A 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1.求证:(1)AB //平面A 1B 1C ;(2)平面ABB 1A 1⊥平面A 1BC .16. 已知βα,为锐角,34tan =α,55)cos(-=+βα,(1)求α2cos 的值;(2)求)tan(βα-的值.17. 某农场有一块农田,如图所示,宽、它的边界由圆O 的一段弧MPN (P 为圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米,先规划在此农田上修建两个温室大棚,大棚Ⅰ内的地形为矩形ABCD ,大棚Ⅱ内的地块形状为CDP ∆,要求A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP ∆的面积,并确定θsin 的取值范围;(2)若大棚Ⅰ内种值甲种蔬菜,大棚Ⅱ内种值乙种蔬菜,甲、乙两种蔬菜的单位两种年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜折总产值最大.18. 如图,在平面直角坐标系xOy 中,椭圆C 过点)21,3(,焦点)0,3(),0,3(21F F -圆O 的直径为F 1F 2.(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点,若OAB ∆的面积为762,求直线l 的方程.19. 记)('),('x g x f 分别为函数)(),(x g x f 的导函数,若存在R x ∈0,满足)()(00x g x f =且)(')('00x g x f =,则称0x 为函数)(x f 与)(x g 的一个“S 点”. (1)证明:函数x x f =)(与22)(2-+=x x x g 不存在“S 点”;(2)若函数1)(2-=ax x f 与x x g ln )(=存在“S 点”,求实数a 的值;(3)已知函数a x x f +-=2)(,xbe x g x =)(,对任意0>a ,判断是否存在b 〉0,使函数)(x f 与)(x g 在区间),0(+∞内存在“S 点",并说明理由.20. 设}{n a 是首项为1a ,公差为d 的等差数列, }{n b 是首项为1b ,公比为q 的等比数列.(1)设1a =0,1b =1,q =2,若1b b a n n ≤-对n =1,2,3,4均成立,求d 的取值范围; (2)若1a =1b 〉0,*N m ∈,]2,1(m q ∈,证明:存在R d ∈,使得1b b a n n ≤-对n =1,2,3,……m +1均成立,并求d 的取值范围(用1b ,m ,q 表示).。

高考数学总复习------排列组合与概率统计

高考数学总复习------排列组合与概率统计

1项) 的二项公式系数最大,其值为
n
;若 n 是奇 Cn2 数,
则中间两项 ( 第 n
1 项和第 n 3 项) 的二项式系数相等,并且最大,其值为Cn
2
2
n1
n1
2 =Cn 2.
③所有二项式系数和等于
2n,即 C0n+C1n+ C2n+?+Cnn=2n.
④奇数项的二项式系数和等于偶数项的二项式系数和,
一是对立事件
( 4)古典概型与几何概型: 古典概型:具有“等可能发生的有限个基本事件
”的概率模 型.
几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例.
两种概型中每个基本事件出现的可能性都是相等
的,
但古典概型问题中所有可能出现的
基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.
xi yi
xi
i
i1 1
第二步:计算回归系数的 a,b,公式为
n
n
n
n xi yi ( xi )( yi )
i1
i1 i 1
b
n
n

n xi 2 ( xi ) 2
i1
i1
; a y bx
第三步:写出回归直线方 程 ( 4)独立性检 验
y bxa.
① 2 2列联表:列出的两个分类变量
X 和 Y,它们的取值分别为
( 6)概率基本性质与公式 ①事件 A 的概率 P(A) 的范围为: 0≤ P(A) ≤ 1.
②互斥事件 A 与 B 的概率加法公式:
P(A
B)P(A) P(B) .
专业资料整理分享
WORD格式可以任意编辑
③对立事件 A 与 B 的概率加法公式:

2018版高考数学(理)一轮复习文档:第十一章统计与概率11.2含解析

2018版高考数学(理)一轮复习文档:第十一章统计与概率11.2含解析

1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距与组数.(3)将数据分组.(4)列频率分布表.(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.3.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数.4.标准差和方差(1)标准差是样本数据到平均数的一种平均距离.(2)标准差:s=错误!。

(3)方差:s2=错误![(x1-错误!)2+(x2-错误!)2+…+(x n-错误!)2](x n是样本数据,n是样本容量,错误!是样本平均数).【知识拓展】1.频率分布直方图的特点(1)频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示错误!,频率=组距×频率组距。

(2)频率分布直方图中各小长方形的面积之和为1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.(3)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.2.平均数、方差的公式推广(1)若数据x1,x2,…,x n的平均数为错误!,那么mx1+a,mx2+a,mx3+a,…,mx n+a的平均数是m错误!+a.(2)数据x1,x2,…,x n的方差为s2。

①数据x1+a,x2+a,…,x n+a的方差也为s2;②数据ax1,ax2,…,ax n的方差为a2s2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √)(2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( ×)(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.(√)(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.(×)(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √)(6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.(×)1。

2018年高考真题——数学(江苏卷)+Word版含解析

2018年高考真题——数学(江苏卷)+Word版含解析

2018年高考真题——数学(江苏卷)+Word版含解析【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数有意义,则,解得,即函数的定义域为.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.6. 某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.7. 已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间;由求减区间.8. 在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为a.9. 函数满足,且在区间上,则的值为________.【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11. 若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l 交于另一点D.若,则点A的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设,则由圆心为中点得易得,与联立解得点D的横坐标所以.所以,由得或,因为,所以点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13. 在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14. 已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.16. 已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),则.令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.18. 如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.详解:解:(1)因为椭圆C的焦点为,可设椭圆C的方程为.又点在椭圆C上,所以,解得因此,椭圆C的方程为.因为圆O的直径为,所以其方程为.(2)①设直线l与圆O相切于,则,所以直线l的方程为,即.由,消去y,得.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.19. 记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【解析】分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合“S点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f(x)与g(x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.20. 设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。

2018版高考数学浙江,文理通用大一轮复习讲义教师版文档:第十一章概率 11.1 含解析 精品

2018版高考数学浙江,文理通用大一轮复习讲义教师版文档:第十一章概率 11.1 含解析 精品

1.概率和频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An 为事件A 出现的频率.(2)对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A ). 2.事件的关系与运算3.概率的几个基本性质(1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率P (E )=1. (3)不可能事件的概率P (F )=0. (4)概率的加法公式如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ). (5)对立事件的概率若事件A 与事件B 互为对立事件,则P (A )=1-P (B ). 【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)事件发生频率与概率是相同的.( × ) (2)随机事件和随机试验是一回事.( × )(3)在大量重复试验中,概率是频率的稳定值.( √ ) (4)两个事件的和事件是指两个事件都得发生.( × )(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.( √ ) (6)两互斥事件的概率和为1.( × )1.从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则b >a 的概率是( ) A.45B.35C.25D.15 答案 D解析基本事件的个数有5×3=15,其中满足b>a的有3种,所以b>a的概率为315=15.2.(教材改编)将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是()A.必然事件B.随机事件C.不可能事件D.无法确定答案 B解析抛掷10次硬币正面向上的次数可能为0~10,都有可能发生,正面向上5次是随机事件.3.某射手在一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1,则此射手在一次射击中不超过8环的概率为()A.0.5B.0.3C.0.6D.0.9答案 A解析依题设知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5.4.(教材改编)袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________.答案②解析①是互斥不对立的事件,②是对立事件,③④不是互斥事件.题型一事件关系的判断例1(1)从1,2,3,…,7这7个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A.①B.②④C.③D.①③(2)设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(3)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡答案 (1)C (2)A (3)A解析 (1)③中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~7中任取两个数根据取到数的奇偶性可认为共有三个事件:“两个都是奇数”、“一奇一偶”、“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件,易知其余都不是对立事件. (2)若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1.设掷一枚硬币3次,事件A :“至少出现一次正面”,事件B :“3次出现正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件.(3)至多有一张移动卡包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.思维升华 (1)准确把握互斥事件与对立事件的概念 ①互斥事件是不可能同时发生的事件,但可以同时不发生.②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.(2)判别互斥、对立事件的方法判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:①至少有1个白球与至少有1个黄球; ②至少有1个黄球与都是黄球; ③恰有1个白球与恰有1个黄球; ④恰有1个白球与都是黄球. 其中互斥而不对立的事件共有( )A .0组B .1组C .2组D .3组 答案 B解析 ①中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰好1个白球和1个黄球,①中的两个事件不是互斥事件.②中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,则两个事件不互斥.③中“恰有1个白球”与“恰有1个黄球”,都是指有1个白球和1个黄球,因此两个事件是同一事件.④中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件,故选B. 题型二 随机事件的频率与概率例2 (2016·全国甲卷)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(1)记A 为事件:“一续保人本年度的保费不高于基本保费”,求P (A )的估计值;(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(3)求续保人本年度的平均保费的估计值.解 (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3.(3)由所给数据得调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.1925a.因此,续保人本年度平均保费的估计值为1.1925a.思维升华(1)概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.(2)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.(2015·北京)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解(1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2.(2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 题型三 互斥事件、对立事件的概率 命题点1 互斥事件的概率例3 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、黄球和绿球的概率各是多少?解 方法一 从袋中选取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A ,B ,C ,D ,则有P (A )=13,P (B ∪C )=P (B )+P (C )=512,P (C ∪D )=P (C )+P (D )=512,P (B ∪C ∪D )=P (B )+P (C )+P (D )=1-P (A )=1-13=23,解得P (B )=14,P (C )=16,P (D )=14,因此得到黑球、黄球、绿球的概率分别是14,16,14. 方法二 设红球有n 个,则n 12=13,所以n =4,即红球有4个. 又得到黑球或黄球的概率是512,所以黑球和黄球共5个. 又总球数是12,所以绿球有12-4-5=3(个).又得到黄球或绿球的概率也是512,所以黄球和绿球共5个,而绿球有3个,所以黄球有5-3=2(个).所以黑球有12-4-3-2=3(个). 因此得到黑球、黄球、绿球的概率分别是312=14,212=16,312=14. 命题点2 对立事件的概率例4 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖,一等奖,二等奖的事件分别为A ,B ,C ,求: (1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. 解 (1)P (A )=11000,P (B )=101000=1100, P (C )=501000=120. 故事件A ,B ,C 的概率分别为11000,1100,120. (2)1张奖券中奖包含中特等奖,一等奖,二等奖. 设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C . ∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501000=611000.故1张奖券的中奖概率为611000. (3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-⎝⎛⎭⎫11000+1100=9891000. 故1张奖券不中特等奖且不中一等奖的概率为9891000.思维升华 求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法: (1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率;(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.解记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A、B、C、D、E、F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A+B+C,所以P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)方法一记“至少3人排队等候”为事件H,则H=D+E+F,所以P(H)=P(D+E+F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.方法二记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.6.用正难则反思想求互斥事件的概率典例(15分)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%. (1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)思想方法指导 若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解. 规范解答解 (1)由已知得25+y +10=55,x +30=45, 所以x =15,y =20.2分]该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).7分](2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110.10分]P (A )=1-P (A 1)-P (A 2)=1-15-110=710.12分]故一位顾客一次购物的结算时间不超过2分钟的概率为710.15分]1.(2016·天津)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( ) A.56 B.25 C.16 D.13答案 A解析 事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56. 2.(教材改编)袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为( ) A .①B .②C .③D .④ 答案 B解析 至少有1个白球和全是黑球不同时发生,且一定有一个发生. ∴②中两事件是对立事件.3.(2016·临安中学模拟)从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为( ) A .0.7B .0.65C .0.35D .0.5 答案 C解析 ∵“抽到的产品不是一等品”与事件A 是对立事件, ∴所求概率P =1-P (A )=0.35.4.(2016·杭州模拟)有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是( ) A .互斥但非对立事件 B .对立事件 C .相互独立事件 D .以上都不对答案 A解析 由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件,故选A.5.(2016·蚌埠模拟)从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在30,40]克的概率为0.5,那么重量不小于30克的概率为( ) A .0.8B .0.5C .0.7D .0.3 答案 C解析 由互斥事件概率公式知重量大于40克的概率为1-0.3-0.5=0.2,又∵0.5+0.2=0.7,∴重量不小于30克的概率为0.7.6.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的卡片的频率是( ) A .0.53B .0.5C .0.47D .0.37 答案 A解析 取到号码为奇数的卡片的次数为13+5+6+18+11=53,则所求的频率为53100=0.53.故选A.7.在200件产品中,有192件一级品,8件二级品,则下列事件: ①在这200件产品中任意选出9件,全部是一级品; ②在这200件产品中任意选出9件,全部是二级品; ③在这200件产品中任意选出9件,不全是二级品.其中________是必然事件;________是不可能事件;________是随机事件. 答案 ③ ② ①8.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是________________. 答案 (54,43]解析 由题意可知⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1⇒⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<13a -3≤1,⇒⎩⎪⎨⎪⎧1<a <2,54<a <32,a ≤43⇒54<a ≤43. 9.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混合,再任意排列成一行,则得到的数能被2或5整除的概率是________. 答案 35解析 个位数字共有5种情况,只有当个位数字取2,4,5时,得到的数才能被2或5整除,所以概率为35.10.(2016·江苏苏州五中期中)一个口袋内装有大小相同的红球,白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为________. 答案 0.2解析 记事件A ,B ,C 分别是摸出红球,白球和黑球,则A ,B ,C 互为互斥事件且P (A +B )=0.58,P (A +C )=0.62,所以P (C )=1-P (A +B )=0.42,P (B )=1-P (A +C )=0.38,P (A )=1-P (C )-P (B )=1-0.38-0.42=0.2.11.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.解 (1)设A 表示事件“赔付金额为3000元”,B 表示事件“赔付金额为4000元”,以频率估计概率得P (A )=1501000=0.15,P (B )=1201000=0.12.由于投保金额为2800元,赔付金额大于投保金额对应的情形是赔付金额为3000元和4000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有0.1×1000=100(辆),而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.12.国家射击队的队员为在射击世锦赛上取得优异成绩,正在加紧备战,经过近期训练,某队员射击一次命中7~10环的概率如下表所示:求该射击队员射击一次: (1)射中9环或10环的概率; (2)命中不足8环的概率.解 记事件“射击一次,命中k 环”为A k (k ∈N ,k ≤10),则事件A k 之间彼此互斥. (1)记“射击一次,射中9环或10环”为事件A ,那么当A 9,A 10之一发生时,事件A 发生,由互斥事件的加法公式得P (A )=P (A 9)+P (A 10)=0.28+0.32=0.6.(2)设“射击一次,至少命中8环”的事件为B ,则B 表示事件“射击一次,命中不足8环”. 又B =A 8∪A 9∪A 10,由互斥事件概率的加法公式得 P (B )=P (A 8)+P (A 9)+P (A 10) =0.18+0.28+0.32=0.78.故P (B )=1-P (B )=1-0.78=0.22.因此,射击一次,命中不足8环的概率为0.22.*13.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率. 解 方法一 (利用互斥事件求概率) 记事件A 1={任取1球为红球},A 2={任取1球为黑球},A 3={任取1球为白球},A 4={任取1球为绿球}, 则P (A 1)=512,P (A 2)=412=13,P (A 3)=212=16,P (A 4)=112.根据题意知,事件A 1,A 2,A 3,A 4彼此互斥,由互斥事件的概率公式,得 (1)取出1球为红球或黑球的概率为P(A1∪A2)=P(A1)+P(A2)=512+412=34.(2)取出1球为红球或黑球或白球的概率为P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=512+412+212=1112.方法二(利用对立事件求概率)(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1∪A2的对立事件为A3∪A4,所以取出1球为红球或黑球的概率为P(A1∪A2)=1-P(A3∪A4)=1-P(A3)-P(A4)=1-212-112=34.(2)因为A1∪A2∪A3的对立事件为A4,所以P(A1∪A2∪A3)=1-P(A4)=1-112=1112.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章概率与统计本章知识结构图第一节概率及其计算考纲解读1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。

2.了解两个互斥事件的概率的加法公式。

3.掌握古典概型及其概率计算公式。

4.了解随机数的意义,能运用模拟方法估计概率。

5.了解几何概型的意义。

命题趋势探究1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。

2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。

知识点精讲一、必然事件、不可能事件、随机事件在一定条件下:①必然要发生的事件叫必然事件;②一定不发生的事件叫不可能事件;③可能发生也可能不发生的事件叫随机事件。

二、概率在相同条件下,做次重复实验,事件 A 发生次,测得 A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做 A 的概率,记作。

对于必然事件 A,;对于不可能事件 A,=0.三、基本事件和基本事件空间在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。

四、两个基本概型的概率公式1、古典概型条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同P (A)=A包含基本事件数= card (A)基本事件总数card (Ω)2、几何概型条件:每个事件都可以看作某几何区域Ω的子集 A,A 的几何度量(长度、面积、体积或时间)记为A.P(A)= A 。

Ω五、互斥事件的概率1、互斥事件在一次实验中不能同时发生的事件称为互斥事件。

事件 A 与事件 B 互斥,则P (A B)=P (A)+P (B)。

2、对立事件事件 A,B 互斥,且其中必有一个发生,称事件 A,B 对立,记作B =A 或A =B 。

P (A)= 1-p (A)。

3、互斥事件与对立事件的联系对立事件必是互斥事件,即“事件 A,B 对立”是”事件 A,B 互斥“的充分不必要条件。

题型归纳及思路提示题型176 古典概型思路提示首先确定事件类型为古典概型,古典概型特征有二:有限个不同的基本事件及各基本事件发生的可能性是均等的;其次计算出基本事件的总数及事件 A 所包含的基本事件数;最后计算P (A)=A包含基本事件数基本事件总数。

例13.1 设平面向量a m=(m,1),b n=(2, n),其中m, n ∈{1.2, 3, 4}(m, n)的所有可能结果;(1)请列出有序数组(2)若“使得a m⊥(a m-b n)成立的(m, n)为事件 A,求事件 A 发生的概率。

分析:两向量垂直的充要条件是两向量的数量积为0,从而可得m 与n 的关系,再从以上(m, n)的16 个有序数组中筛选出符合条件的,即得事件A 包含的基本事件个数。

解析:(1)由m, n ∈{1.2, 3, 4},有序数组(m, n)的所有可能结果为(1,1),(1, 2), (1, 3), (1, 4),(2,1), (2, 2), (2, 3), (2, 4),(3,1), (3, 2), (3, 3), (3, 4),(4,1), (4, 2), (4, 3), (4, 4) 共16 个。

(2)因为a m=(m,1),b n=(2, n),所以a m-b n=(m - 2,1-n).又a m⊥(a m-b n),得(m,1)⋅(m -2,1-n)=0,即m2- 2m +1-n = 0,所以n=(m-1)2。

故事件A 包含的6 3 3 2 3 3 2 3 3 4基本事件有(2,1) 和(3, 4) ,共 2 个,由古典概型概率计算公式得 P ( A ) = 2 = 1 。

16 8评注:①解题时,将所有基本事件全部列出是避免重复和遗漏的有效方法,注意在列举时, 必须按照某一顺序来列举;②本题以向量为载体,利用向量的运算和关系等向量的基本知识解决概率问题,是将两类知识结合得较好的一道题目。

变式 1 电子钟一天显示的时间从 00:00 ~ 23:59,每一时间都由 4 个数字组成,则一天中任取一时刻显示的 4 个数字之和为 23 的概率为( ) 1111A.B.C.D.180288360 480 变式 2 连抛两次骰子的点数分别为 m , n ,记向量 a = (m , n ) ,向量 = (1, -1) , a 与 的b b夹角为,则∈⎛ 0,⎤的概率是( )2⎥⎝ ⎦5 1 75 A.B. C.D.122126例 13.2 (2012 重庆理 15)某艺校在一天的 6 节课中随机安排语文,数学,外语三门文化课和其它三门艺术课各 1 节,则在课表上的相邻两节文化课之间最多间隔 1 节艺术课的概率为 (用数字作答)。

解析: 6 节课随机安排,共有 A 6 = 720 种不同的方法。

课表上相邻两节文化课之间最多间隔 1 节艺术课,有以下三种情况:①三门文化课间有 2 节艺术课:有 A 3 A 2 A 1 = 72 种方法;②三门文化课间有 1 节艺术课:有 A 3C 1 A 1 A 3 = 216 种方法;③三门文化课间有 0 节艺术课:有 A 3 A 4 = 144 种方法。

共有 72+216+144=432 种符合题意的安排方法, 故所求概率为 432 3 P = = 。

720 5变式 1 (2012 上海理 11)三位同学参加跳高,跳远,铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示)。

变式 2 甲乙两人一起去游“2011 西安世园会”,他们约定:各自独立地从 1 到 6 号景点中 任选 4 个进行游览,每个景点参观 1 小时,则最后一小时他们同在一个景点的概率是 ( ) 1 1 5 1 A.B.C.D.369366变式 3 在某地的奥运火炬传递活动中,有编号 1,2,3,…,18 的 18 名火炬手,若从中 任选 3 人,则选出的 3 名火炬手的编号能组成以 3 为公差的等差数列的概率为( ) 1 1 1 1 A.B.C.D.51683064082 题型 177 几何概型的计算思路提示首先确定事件类型为几何概型并明确其几何区域(长度、面积、体积或时间),其次计算出基本事件区域的数值和事件 A 包含区域数值 ,最后计算P (A)= A 事件区域数值(长度、面积、体积或时间)基本事件区域数值(长度、面积、体积或时间),解几何概型问题的关键是画图、求面积。

例 13.3 (2012 辽宁理 10)在长为 12cm 的线段 AB 上任取一点 C ,现作一矩形,邻边长分 别为线段 AC,CB 的长,则该矩形面积小于 32 cm 2 的概率为( )1 12 4 A.B.C.D.6335解析: 设 AC = x ,则CB = 12 - x ,且0 < x < 12 ,所以 x (12 - x ) 表示矩形的面积,令x (12 - x ) ≤ 32 ,解得: x < 4 或 x > 8 ,如图 13-1 所示,4 + 4 2故所示的概率为 P = = 12 3.故选C .变式 1A = [2, l og t], B = {x x 2 -14x + 24 ≤ 0} , x , t ∈ R , A ⊆ B . (1) 定义区间[a , b ] 的长度为b - a , A 的长度为 3,则t =.(2) 某函数 f ( x ) 的值域为 B ,且 f ( x )∈A的概率不小于0.6 ,则t 的取值范围为.例 13.4 (2012 福建理 6)如图 13-2 所示,在边长为1 点 P 恰好取自阴影部分的概率为( )的正方形OABC 中任取一点 P ,则A. 141 1 1 B.C.D.5671解析:由题意可知,阴影部分的面积是由函数 y = x , y = x 围成的几何图形的面积,利用 S= xdx -xdx =2x 3 1- 1 x 2 1 = 1S =1定积分可知:阴影 ⎰20 32,又 正方形OABC6所以由几何概型知,所求的概率为 P = 16.故选C .评注:利用线性规划和积分知识求面积,是解决相关的几何概型问题的常见方法.变式 1 小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到 11圆心的距离大于,则周末去看电影;若此点到圆心的距离小于 ,则去打篮球;否则,24在家看书,则小波周末不在家看书的概率为.变式 2 (2012 北京石景山一模理 13)如图 13-3 所示,圆 O : x 2 + y 2 =2内正弦曲线y= sin x 与 x 轴围成的区域记为 M (图中阴影部分),随机往圆O 内投一个点 A ,则该点 A 落在区域 M 内的概率是.变式 3 (2012 湖北理 8)如图 13-4 所示,在圆心角为直角的扇形OAB 中,分别以OA , OB为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A. 1- 2B. 1 - 12C. 21D.例 13.5 已知 f (x ) = -x 2 + ax - b , a , b ∈[0, 4] , a , b ∈ R ,则 f (1) > 0 的概率为 .1⎰0≤b ≤4 ⎩ ⎨ 解析 几何概型Ω:{0≤a ≤4, A ⊆ Ω且- 1+a - b > 0, 作出Ω , A 的区域图(如图 13-5 所示).9= 4 ⨯ 4 = 16 , = 1 ⨯ 3⨯ 3 = 9,则 P ( A ) =A= 2 = 9. ΩA 2 216 32Ω变式 1 A = {x -1 ≤ x ≤ 0} , B = {x | ax + b ⋅ 2x -1 < 0, 0 ≤ a ≤ 2,1 ≤ b ≤ 3 }(1) a , b ∈ N ,求 A ⋂ B ≠ ∅ 的概率;(2) a , b ∈ R ,求 A ⋂ B =∅ 的概率.例 13.6 甲乙两人约定在 20:00 到 21:00 之间相见,并且先到者必须等迟到者 40 分钟方可离去,如果两人出发是各自独立的,在 20:00 到 21:00 各时刻相见的可能性是相等的, 求两人在约定时间内能相见的概率。

分析 由题意知,当甲乙两人到达目的地的时间相差小于或等于 40 分钟时两人便能在约定时间内相见。

解析 设甲乙两人分别于 x 时和 y 时到达约定地点,要使两人能在约定时间范围内相见,当2 2且仅当- ≤ x - y ≤ 3 3.记 20:00 为 0 时,21:00 为 1 时,两人到达约见地点的所有可能时刻( x , y ) ⎧0 ≤ x ≤ 1满足⎨0 < y ≤ 1,结果可用如图 13-6 所示的单位正方形(包括边界)内的点来⎧x - y ≤ 2 表示,两人能在约定时间内相见的时刻 ( x , y ) 的所有可能满足 ⎪ 3⎪ y - x ≤ 2⎩ 3, 可用 如图 13-6 所示的阴影部分(包括边界)来表示。

相关文档
最新文档