上海上南中学南校八年级数学上册第五单元《分式》检测(包含答案解析)

合集下载

上海延安中学八年级数学上册第五单元《分式》检测卷(答案解析)

上海延安中学八年级数学上册第五单元《分式》检测卷(答案解析)

一、选择题1.化简221x x x ++÷(1-11x +)的结果是( ) A .11x + B .11x - C .x+1 D .x-12.关于分式2634m n m n--,下列说法正确的是( ) A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变3.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N 4.若关于x 的分式方程122x a x -=-的解为非负数,且关于x 的不等式组5x x a ≥⎧⎨>⎩的解集是5x ≥,则符合条件的整数a 有( ) A .1个 B .2个C .3个D .4个 5.世界上数小的开花结果植物是激大利亚的出水浮萍,这种植物的果实像一个微小的无花架,质做只有0.000000076克,0.000000076用科学记数法表示正确的是( ) A .-60.7610⨯B .-77.610⨯C .-87.610⨯D .-97.610⨯ 6.下列运算正确的是( ) A .236a a a ⋅= B .22a a -=- C .572a a a ÷= D .0(2)1(0)a a =≠ 7.小红用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小红和小丽买到相同数量的笔记本.设硬面笔记本每本售价为x 元,根据题意可列出的方程为( )A .1524x x 3=+B .1524x x 3=-C .1524x 3x =+D .1524x 3x =- 8.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④9.若分式293x x -+的值为0,则x 的值为( ) A .4 B .4- C .3或-3 D .310.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯=B .6608400147660840010x x ⨯=++ C .660840014147660840010x x ⨯=⨯++ D .7840066010146608400x x ++⨯= 11.3333x a a y x y y x+--+++等于( ) A.33x y x y -+ B .x y - C .22x xy y -+ D .22x y + 12.020*******)(0.125)8+⨯的结果是( ) A B 2 C .2 D .0 二、填空题13.计算22111m m m---,的正确结果为_____________. 14.观察给定的分式,探索规律: (1)1x ,22x,33x ,44x ,…其中第6个分式是__________; (2)2x y ,43x y -,65x y ,87x y-,…其中第6个分式是__________; (3)2b a -,52b a ,83b a -,114b a,…其中第n 个分式是__________(n 为正整数).15.计算:20120192-⎛⎫-= ⎪⎝⎭______. 16.2112111a a a a +-+--=___________. 17.如果分式126x x --的值为零,那么x =________ . 18.约分:22618m n mn=-________________ 19.计算3224423y x x y⎛⎫-⋅ ⎪⎝⎭的结果是________.20.计算:262393x x x x -÷=+--______. 三、解答题 21.①先化简,再求值:12(1)y x y x y ⋅--+÷221y x -,其中x=y+2020. ②解方程:239x --112626x x =-+. 22.解分式方程:(1)13x -+2=43x x --; (2)()3211x x x x +---= 0 23.先化简,再求值:2246221121x x x x x x ++⎛⎫-÷⎪---+⎝⎭,其中x 取-1、+1、-2、-3中你认为合理的数.24.已知:240x x +-=,求代数式321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭的值. 25.“圣诞节”前期,某水果店用1000元购进一批苹果进行销售,由于销售良好,该店又以2500元购进同一种苹果,第二次进货价格比第一次每千克贵了1元,第二次所购进苹果的数量恰好是第一次购进苹果数量的2倍.求该水果店第一次购进苹果的单价. 26.解分式方程:63122x x x -=--.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式=22211(1)1 (1)1(1)1x x x xx x x x x+-+÷=⋅=++++,故选A.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键.2.D解析:D【分析】根据分式的基本性质即可求出答案.【详解】解:A、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m、n均扩大2倍,分式的值不变,故该说法不符合题意;B、22623=23432m n m nm n m n⨯--⨯--,故分子、分母的中m扩大2倍,n不变,分式的值没有扩大2倍,故该说法不符合题意;C、226212=32438m n m nm n m n-⨯--⨯-,故分子、分母的中n扩大2倍,m不变,分式的值发生变化,故该说法不符合题意;D、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m、n均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.3.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】解:2224411424 x xx x x x -++÷-+2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,故选:C .【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键. 4.C解析:C【分析】解分式方程的得出x=2a-2,根据解为非负数得出2a-2≥0,且2a-2≠2,据此求出解得a≥1且a≠2;解不等式组两个不等式,根据解集得出a <5;综合以上两点得出整数a 的值,从而得出答案.【详解】 解:分式方程122x a x -=-, 去分母,得:2(x-a )=x-2,解得:x=2a-2,∵分式方程的解为非负数,∴2a-2≥0,且2a-2≠2,解得a≥1且a≠2,∵不等式组5x x a ≥⎧⎨>⎩的解集是x≥5, ∴1≤a <5,且a≠2,则整数a 的值为1、3、4共3个,故选:C .【点睛】本题主要考查分式方程的解和解一元一次不等式组,解题的关键是根据分式方程的解的情况及不等式组解集的情况得出a 的取值范围.5.C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】0.000000076=87.610-⨯,故选:C【点睛】此题考查了科学记数法,注意n 的值的确定方法,当原数小于1时,n 是负整数,n 等于原数左数第一个非零数字前0的个数,按此方法即可正确求解6.D解析:D【分析】运用同底数幂乘法、负整数次幂、同底数幂除法以及零次幂的知识逐项排查即可.【详解】解:A. 235a a a ⋅=,故A 选项不符合题意; B. 221a a -=,故B 选项不符合题意; C. 572a a a -÷=,故C 选项不符合题意;D. 0(2)1(0)a a =≠,故D 选项符合题意.故填:D .【点睛】本题主要考查了同底数幂乘法、负整数次幂、同底数幂除法、零次幂等的知识点,灵活运用相关运算法则是解答本题的关键.7.D解析:D【分析】由设硬面笔记本每本售价为x 元,可得软面笔记本每本售价为()x 3-元,根据小红和小丽买到相同数量的笔记本列得方程.【详解】解:设硬面笔记本每本售价为x 元,则软面笔记本每本售价为()x 3-元, 根据题意可列出的方程为:1524x 3x=-. 故选:D .【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程是解题的关键. 8.C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()a a 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数, 则1101a 2<<-. 故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 9.D解析:D【分析】先根据分式的值为0可得290x ,再利用平方根解方程可得3x =±,然后根据分式的分母不能为0即可得.【详解】 由题意得:2903x x -=+, 则290x ,即29x =,由平方根解方程得:3x =±,分式的分母不能为0,30x ∴+≠,解得3x ≠-,则x 的值为3,故选:D .【点睛】本题考查了分式的值、分式有意义的条件、利用平方根解方程,掌握理解分式的值是解题10.B解析:B【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可.【详解】5月份厨余垃圾分出率=660660x +,12月份厨余垃圾分出率=84007840010x + , ∴由题意得6608400147660840010x x ⨯=++, 故选:B .【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.11.A解析:A【分析】按同分母分式相减的法则计算即可.【详解】333333x a a y x y x y y x x y+---+=+++ 故选:A【点睛】本题考查同分母分式相加减法则:分母不变,分子相加减.12.C解析:C【分析】根据零次幂定义,积的乘方的逆运算进行计算.【详解】020122012201211)(0.125)81(8)1128+⨯=+⨯=+=. 故选:C【点睛】此题考查实数的混合运算,掌握零次幂定义,积的乘方的逆运算是解题的关键.二、填空题13.【分析】根据分式的加减法运算法则平方差公式因式分解计算即可解答【详解】解:===故答案为:【点睛】本题考查分式的加减运算平方差公式因式分解熟记公式掌握分式的加减运算法则是解答的关键 解析:11m - 【分析】根据分式的加减法运算法则、平方差公式因式分解计算即可解答.【详解】 解:22111m m m --- =22111m m m +-- =1(1)(1)m m m ++- =11m -, 故答案为:11m -. 【点睛】本题考查分式的加减运算、平方差公式因式分解,熟记公式,掌握分式的加减运算法则是解答的关键.14.【分析】(1)分子是连续正整数分母是以x 为底指数是连续正整数第六个分式的分子是6分母是x6(2)分子是以x 为底指数是连续偶数分母是以y 为底指数是连续奇数第奇数个分式符号是正第偶数个分式符号为负第六个 解析:66x 1211x y - 31(1)n n n b a-- 【分析】(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,第六个分式的分子是6,分母是 x 6(2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,第六个分式是负号,分子是x 12,分母是 y 11,(3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个分式的符号是(-1)n , 分子是b 3n-1,分母是 a n ,【详解】解:(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,所以,第六个分式是66x , (2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,所以,第六个分式是1211x y-, (3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个符号为(-1)n ,所以,第六个分式是31(1)n nn b a-- 【点睛】 本题考查了数字之间的规律,连续正整数、奇数、偶数和依次递增3的数字规律,包括符号依次变化规律,熟练掌握特殊数字之间的规律是解题关键15.-3【分析】根据零指数幂和负指数幂法则计算即可【详解】解:原式=1-4=-3故答案为:-3【点睛】本题考查了零指数幂和负指数幂法则熟练掌握运算法则是解决本题的关键解析:-3【分析】根据零指数幂和负指数幂法则计算即可.【详解】解:原式=1-4=-3,故答案为:-3.【点睛】本题考查了零指数幂和负指数幂法则,熟练掌握运算法则是解决本题的关键. 16.0【分析】先通分再分母不变分子相减即可求解【详解】故答案为:0【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键解析:0【分析】先通分,再分母不变,分子相减即可求解.【详解】2211211201111a a a a a a a a -++-+-==+---. 故答案为:0.【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.17.1【分析】根据分式的值为零可得解方程即可得【详解】由题意得:解得分式的分母不能为零解得符合题意故答案为:1【点睛】本题考查了分式的值为零正确求出分式的值和掌握分式有意义的条件是解题关键解析:1【分析】根据分式的值为零可得10x -=,解方程即可得.【详解】由题意得:10x -=,解得1x =,分式的分母不能为零,260x ∴-≠,解得3x ≠,1x ∴=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键. 18.【分析】根据分式的基本性质:分子和分母同时除以6mn 化简【详解】故答案为:【点睛】此题考查分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不等于零的整式分式的值不变 解析:3m n-【分析】根据分式的基本性质:分子和分母同时除以6mn 化简.【详解】 22618m n mn=-3m n -, 故答案为:3m n-. 【点睛】此题考查分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不等于零的整式,分式的值不变. 19.【分析】先算乘方再算乘除即可得到答案【详解】解:故答案为:【点睛】本题考查分式的化简求值属于基础题 解析:26y x- 【分析】先算乘方,再算乘除即可得到答案.【详解】 解:3224423y x x y⎛⎫-⋅ ⎪⎝⎭6234483y x x y=-⋅ 26y x=-. 故答案为:26y x-. 【点睛】本题考查分式的化简求值,属于基础题.20.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+ 1=.故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.三、解答题21.①x -y ;2020;②原方程无解.【分析】(1)根据分式的运算法则,先化简分式,再代入求值.(2)先变形,再把分式方程转化为整式方程,求出方程的解,再进行检验即可.【详解】解:①12(1)y x y x y ⋅--+÷221y x - =1()()1y x y x y x x y x y -+-⋅⋅-+=x-y由x=y+2020得x-y=2020;②原方程可化为:3(3)(3)x x +-—112(3)2(3)x x =-+ 方程两边同乘以2(x+3)(x-3)得:6-(x+3)=x-3解得,x=3检验:把x=3代入2(x+3)(x-3)=0所以x=3不是原方程的解,即原方程无解【点睛】本题考查了分式的化简和解分式方程,,掌握运算法则是解决本题的关键.22.(1)x =1;(2)无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程无解;【详解】解:(1)去分母得:1+2(x ﹣3)=x ﹣4,解得:x =1,经检验x =1是分式方程的解;(2)去分母,得3x-(x+2)=0,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.23.22(1)x x -+;3x =-;4 【分析】先算分式的减法运算,再把除法化为乘法,进行约分化简,再代入求值,即可.【详解】 原式2462(1)2(1)(1)(1)(1)(1)x x x x x x x x ⎡⎤+++=-÷⎢⎥+-+--⎣⎦224(1)(1)(1)(2)x x x x x +-=⋅+-+()211x x -=+221x x -=+ 当3x =-时,原式2(3)2431⨯--==-+. 【点睛】 本题主要考查分式的化简求值,掌握分式的混合运算法则,是解题的关键.24.21x x +,14【分析】 根据分式的运算法则对原式进行化简,再把已知条件变形为化简算式可以利用的形式后代入求解即可 .【详解】 解:原式321121x x x x x -=÷--+ 21(1)1(1)(1)x x x x x -=⋅-+- 21x x=+. 由已知可得:24x x +=, 把上式代入经化简后的原式可得原式14=. 【点睛】本题考查分式的化简与求值,熟练掌握分式的运算方法与整体代入的思想方法是解题关键.25.4元【分析】利用第二次进货价格比第一次每千克贵了1元,设该水果店第一次购买苹果的单价为x 元,第二次进货价格(x+1)元,利用等量关系:第二次所购进苹果的数量恰好是第一次购进苹果数量的2倍构造方程.解之即可.【详解】解:设该水果店第一次购买苹果的单价为x 元,则1000250021x x ⨯=+, 解得:4x =,经检验,4x =是分式方程的根,答:该水果店第一次购买苹果的单价是4元.【点睛】本题考查可化为一元一次方程解应用题,掌握列方程解应用题的方法和进价、花费钱数与水果数量之间关系,抓住第二次进货价格比第一次每千克贵了1元设未知数,抓住第二次所购进苹果的数量恰好是第一次购进苹果数量的2倍构造方程是解题关键.26.1x =-【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【详解】解:方程两边乘()2x -,得632x x +=-.1x =-.检验:当1x =-时,20x -≠.所以,原方程的解为1x =-.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.。

上海市南中学八年级数学上册第五单元《分式》测试卷(含答案解析)

上海市南中学八年级数学上册第五单元《分式》测试卷(含答案解析)

一、选择题1.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( ) A .扩大到原来的3倍 B .缩小到原来的13 C .保持不变 D .无法确定 2.化简221x x x ++÷(1-11x +)的结果是( ) A .11x + B .11x - C .x+1 D .x-13.关于x 的一元一次不等式组31,224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my y y y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9 B .10 C .13 D .144.世界上数小的开花结果植物是激大利亚的出水浮萍,这种植物的果实像一个微小的无花架,质做只有0.000000076克,0.000000076用科学记数法表示正确的是( ) A .-60.7610⨯ B .-77.610⨯ C .-87.610⨯ D .-97.610⨯ 5.如果a ,b ,c ,d 是正数,且满足a +b +c +d =2,11a b c b c d ++++++11a c d a b d+++++=4,那么d a a b c b c d ++++++b c a c d a b d+++++的值为( ) A .1 B .12 C .0 D .46.计算:2x y x y x y xy-⋅-=( ) A .x B .y x C .y D .1x7.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( )A .50.2510-⨯B .60.2510-⨯C .72.510-⨯D .62.510-⨯8.若a 与b 互为相反数,则22201920212020a b ab+=( ) A .-2020 B .-2 C .1 D .29.下列式子的变形正确的是( )A .22b b a a= B .22+++a b a b a b = C .2422x y x y x x --= D .22m n n m-=- 10.已知a 、b 为实数且满足a ≠﹣1,b ≠﹣1,设M =11a b a b +++,N =1111a b +++,则下列两个结论( ) ①ab =1时,M =N ;ab >1时,M <N .②若a +b =0,则M •N ≤0.A .①②都对B .①对②错C .①错②对D .①②都错 11.下列各式计算正确的是( )A .33x x y y= B .632m m m = C .22a b a b a b +=++ D .32()()a b a b b a -=-- 12.化简214a 2a 4---的结果为( ) A .1a 2+ B .a 2+ C .1a 2- D .a 2-二、填空题13.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________.(2)方程{}3min 2,322x x x --=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________. 14.若关于x 的分式方程233x m x x=---的解为正数,则常数m 的取值范围是______. 15.已知13x x-=,则21x x ⎛⎫+= ⎪⎝⎭________. 16.已知实数a 、b 满足32a b =,则a b a b +-_________. 17.下列计算:①3100.0001-=;②()00.00011=;③()()352x x x --÷-=-;④22133aa-=;⑤()()321m m m m a a a -÷=-.其中运算正确的有______.(填序号即可) 18.已知215a a+=,那么2421a a a =++________. 19.计算:()222333a b a b --⋅=_______________.20.计算:()30120202-⎛⎫---= ⎪⎝⎭______. 三、解答题21.先化简:2214(1)221x x x x •-+--+,再选一个合适的数作为x 的值代入求值. 22.先化简,再求值:(x ﹣1﹣21x x +)÷221x x x ++,其中x =3. 23.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 24.先化简,再求值:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中a 与2,3构成ABC 的三边长,且a 为整数.25.解方程:312(2)x x x x -=-- 26.先化简,再求值:2222631121x x x x x x x ++-÷+--+,其中2x =-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】将x 变为3x ,y 变为3y 计算后与原式比较即可得到答案.【详解】222(3)93333()x x x x y x y x y==⨯+++, 故分式的值扩大到原来的3倍,故选:A .【点睛】此题考查分式的基本性质,正确掌握积的乘方运算,分解因式是解题的关键. 2.A解析:A【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ , 故选A.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键. 3.A解析:A【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可.【详解】 解:31224x m x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得x≤2m+2,解②得x≤4,∵不等式组31224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4,∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得my-1+y-2=3y , ∴32y m =-, ∵m≥1,分式方程13122my y y y--+=--有整数解, ∴m=1,3,5,∵y-2≠0,∴y≠2, ∴322m ≠-,∴m≠72, ∴m=1,3,5,符合题意,1+3+5=9.故选A .【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键. 4.C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】0.000000076=87.610-⨯,故选:C【点睛】此题考查了科学记数法,注意n 的值的确定方法,当原数小于1时,n 是负整数,n 等于原数左数第一个非零数字前0的个数,按此方法即可正确求解5.D解析:D【分析】根据a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++,将所求式子变形便可求出.【详解】∵a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++, ∴d a b c a b c b c d a c d a b d+++++++++++ =2()2()2()2()a b c b c d a c d a b d a b c b c d a c d a b d-++-++-++-+++++++++++++ =2a b c ++﹣1+2b c d ++﹣1+2a c d ++﹣1+2a b d++﹣1 =2×(1111a b c b c d a c d a b d+++++++++++)﹣4 =2×4﹣4=8﹣4=4,故选:D .本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.6.A解析:A【分析】根据分式乘法计算法则解答.【详解】 解:2x y x y x y xy-⋅-=x , 故选:A .【点睛】此题考查分式的乘法计算法则,熟记计算法则是解题的关键.7.D解析:D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】0.0000025=62.510-⨯,故选:D .【点睛】此题考查了科学记数法,注意n 的值的确定方法:当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.8.B解析:B【分析】a 与b 互为相反数,由相反数的定义与性质得22=,a b a b -=,将代数式中字母统一成b,合并约分即可.【详解】∵a 与b 互为相反数,∴22=,a b a b -=,222222019202120192021220202020a b b b ab b++==--, 故选择:B .【点睛】本题考查分式求值问题,掌握相反数的定义与性质,会利用相反数将代数式的字母统一为b 是解题关键.9.C【分析】根据分式的性质逐一判断即可.【详解】解:A. 22b b a a=不一定正确; B. 22+++a b a b a b=不正确; C.2422x y x y x x --=分子分母同时除以2,变形正确; D. 22m n n m-=-不正确; 故选:C .【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.10.C解析:C【分析】对于①,计算M-N 的值可以判断M>N 还是M<N ;对于②,计算M N 的值,然后根据a 、b 满足的条件判断其大于0还是小于0.【详解】∵M =11a b a b +++,N = 1111a b +++, ∴M ﹣ N =11a b a b +++﹣( 1111a b +++) =22(1)(1)ab a b -++, ①当ab =1时,M ﹣N =0,∴M =N ,当ab >1时,2ab >2,∴2ab ﹣2>0,当a <0时,b <0,(a +1)(b +1)>0或(a +1)(b +1)<0,∴M ﹣N >0或M ﹣N <0,∴M >N 或M <N ;故①错误;②M •N =(11a b a b +++)•( 1111a b +++) =()()()()221111aa b b a b a b +++++++.∵a +b =0,∴原式=()()2211ab a b +++ =224(1)(1)ab a b ++. ∵a ≠﹣1,b ≠﹣1,∴(a +1)2(b +1)2>0.∵a +b =0,∴ab ≤0,M •N ≤0,故②对.故选:C .【点睛】本题考查分式运算的应用,熟练掌握分式的运算法则是解题关键.11.D解析:D【分析】根据分式的基本性质进行判断即可得到结论.【详解】解:A 、33x y 是最简分式,所以33x x y y≠,故选项A 不符合题意; B 、624m m m=,故选项B 不符合题意; C 、22a b a b++是最简分式,所以22a b a b a b +≠++,故选项C 不符合题意; D 、3322()()()()a b a b a b b a a b --==---,正确, 故选:D .【点睛】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.12.A解析:A【分析】根据分式的减法可以解答本题.【详解】解:()()214a 241a 2a 4a 2a 2a 2+--==--+-+, 故选:A .【点睛】本题考查异分母分式的减法运算,解答本题的关键是明确公分母.二、填空题13.-3【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程求解即可;(3)根据题中的新定义化简求出分式方程的解检验即可【详解】解:(1)根据题意;(2)原方程为:去分母得解得:经检验是该解析:-3 34x =0x = 【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程,求解即可;(3)根据题中的新定义化简,求出分式方程的解,检验即可.【详解】解:(1)根据题意,{}min 2,33--=-; (2)原方程为:3322x x x-=---, 去分母得33(2)x x +=--, 解得:34x =,经检验34x =是该方程的根, 故{}3min 2,322x x x --=---的解为:34x =; (3)当1322x x <--时,x >2,方程变形得:11222x x x -=---, 去分母得:1=x-1-2x+4,解得:x=2,不符合题意; 当1322x x >--时,即x <2,方程变形得:31222x x x -=---, 解得:x=0,经检验x=0是分式方程的解,综上,所求方程的解为x=0. 故答案为:-3,34x =,0x =. 【点睛】本题考查新定义的实数运算,解分式方程.能将题目新定义的运算化为一般运算是解题关键.14.且【分析】分式方程去分母转化为整式方程由分式方程的解为正数确定出a 的范围即可【详解】解:∵∴∴∵方程的解为正数则∴∵∴;∴常数的取值范围是且;故答案为:且【点睛】此题考查了分式方程的解分式有意义的条 解析:6m <且3m ≠-【分析】分式方程去分母转化为整式方程,由分式方程的解为正数确定出a 的范围即可.【详解】解:∵233x m x x=---, ∴62x x m =--, ∴63m x -=, ∵方程的解为正数,则603m x -=>, ∴6m <, ∵633m x -=≠, ∴3m ≠-;∴常数m 的取值范围是6m <且3m ≠-;故答案为:6m <且3m ≠-.【点睛】此题考查了分式方程的解,分式有意义的条件,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.15.13【分析】把已知等式两边分别平方适当变形后再将所求代数式展开整体代入求解【详解】解:∵∴即∴故答案为:13【点睛】此题主要考查了分式的求值以及完全平方公式正确运用公式是解题关键解析:13【分析】把已知等式两边分别平方适当变形后,再将所求代数式展开整体代入求解.【详解】解:∵13x x-=, ∴2211()29x x x x -=+-=,即22111x x +=, ∴22211211213x x x x ⎛⎫+=++=+= ⎪⎝⎭,故答案为:13.【点睛】此题主要考查了分式的求值以及完全平方公式,正确运用公式是解题关键.16.5【分析】根据已知用b 表示a 然后把a 的值代入所求的代数式分子分母约掉b 后可以得到解答【详解】∴∴故答案为:5【点睛】本题考查分式的化简与求值熟练掌握分式化简与求值的各种方法是解题关键解析:5【分析】根据已知用b 表示a ,然后把a 的值代入所求的代数式,分子分母约掉b 后可以得到解答.【详解】 32a b =, ∴32a b = ∴32532b ba b a b b b ++==--, 故答案为:5.【点睛】本题考查分式的化简与求值,熟练掌握分式化简与求值的各种方法是解题关键. 17.②⑤【分析】根据负整数指数幂零指数幂同底数幂的除法法则进行计算逐个判断即可【详解】解:;故①计算错误;;②计算正确;;故③计算错误;;故④计算错误故⑤计算正确故答案为:②⑤【点睛】本题考查同底数幂的解析:②⑤.【分析】根据负整数指数幂、零指数幂、同底数幂的除法法则进行计算,逐个判断即可.【详解】解:3110=0.0011000-=;故①计算错误; ()00.00011=;②计算正确; ()()22352()1x x x x x --=-÷=-=-;故③计算错误; 2233a a-=;故④计算错误 ()()333221(1)=(1)mm m m m m m m a a a a a a -÷=-⨯÷=--,故⑤计算正确故答案为:②⑤.【点睛】本题考查同底数幂的除法,积的乘方以及零指数幂,负整数指数幂的计算,掌握运算法则正确计算是解题关键.18.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a , ∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】 此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 19.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b ----+-===故答案为:3a b . 【点睛】本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.20.9【分析】根据零指数幂与负整数指数幂的运算法则进行求解【详解】故答案为:9【点睛】本题考查了零指数幂与负整数指数幂熟练掌握其运算法则是解题的关键解析:9【分析】根据零指数幂与负整数指数幂的运算法则进行求解.【详解】()30120201(8)1892-⎛⎫---=--=+= ⎪⎝⎭. 故答案为:9.【点睛】 本题考查了零指数幂与负整数指数幂,熟练掌握其运算法则是解题的关键.三、解答题21.21x x +-,-2 【分析】 先把括号内通分,再把分子与分母因式分解和除法运算化为乘法运算,约分后得到原式=21x x +-,由于x 不能取1,2,所以把可把x =0代入计算. 【详解】解:原式=221(2)(2)2(1)x x x x x -++-⋅-- =21(2)(2)2(1)x x x x x -+-⋅-- =21x x +-, 当x=0时,原式=-2.【点睛】本题考查了分式的化简求值:先把分式的分子或分母因式分解(有括号,先算括号),然后约分得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值. 22.14,3x x +-- 【分析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】解:原式=(x ﹣1﹣21x x +)÷221x x x ++ =22(1)(1)()111x x x x x x x ⎡⎤-++-⋅⎢⎥⎣⎦++ =2221(1)1x x x x x--+⋅+ =1x x+- 当x =3时,原式=31433+-=-. 【点睛】本题主要考查分式的化简求值,熟练掌握分式的减法和除法法则,是解题的关键. 23.(1)y x -;(2)5x =.【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.224a a -,6【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出a 的值,代入计算即可求出值.【详解】 解:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭ ()22244422a a a a a a ---=÷-- ()()224224a a a a a --=⋅-- 224a a =-.∵a 与2,3构成ABC 的三边长,∴ 3232a -<<+,即15a <<.∵ a 为整数,∴ a 为2或3或4.当2a =时,分母20a -=(舍去);当4a =时,分母40a -=(舍去).故a 的值只能为3.∴当3a =时,222423436a a -=⨯-⨯=.【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键. 25.32x =【分析】 按照解分式方程的步骤先去分母,再解整式方程,最后检验即可.【详解】解:方程两边乘()2x x -,得()223x x x --=. 解得32x =, 检验:当32x =时,()20x x -≠. ∴原分式方程的解为32x =. 【点睛】本题考查了分式方程的解法,熟练掌握分式方程解题步骤是解题关键,注意:解分式方程一定要检验.26.21x +,-2 【分析】 先将分式的分子分母因式分解,同时将除法转化为乘法,再计算分式的乘法,最后计算分式的减法即可.【详解】 解:2222631121x x x x x x x ++-÷+--+ 222(3)(1)1(1)(1)3x x x x x x x +-=-⋅++-+ 22(1)11x x x x -=-++ 21x =+, 当2x =-时,原式222211===--+-. 【点睛】 本题主要考查分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键.。

上海上南中学东校八年级数学上册第五单元《分式》测试题(含答案解析)

上海上南中学东校八年级数学上册第五单元《分式》测试题(含答案解析)

一、选择题1.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度2.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ay y y ++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4 B .5 C .6 D .33.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510y y a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2B .3C .6D .11 4.关于代数式221a a +的值,以下结论不正确的是( ) A .当a 取互为相反数的值时,221a a+的值相等 B .当a 取互为倒数的值时,221a a +的值相等 C .当1a >时,a 越大,221a a+的值就越大 D .当01a <<时,a 越大,221a a +的值就越大 5.计算:2x y x y x y xy-⋅-=( ) A .x B .y x C .y D .1x6.若a 与b 互为相反数,则22201920212020a b ab+=( ) A .-2020 B .-2 C .1 D .27.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .2 8.若分式293x x -+的值为0,则x 的值为( ) A .4 B .4- C .3或-3 D .39.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5B .6C .7D .8 10.下列计算正确的是( ) A .22a a a ⋅=B .623a a a ÷=C .2222a b ba a b -=-D .3339()28a a -=- 11.计算221(1)(1)x x x +++的结果是( ) A .1 B .1+1x C .x +1 D .21(+1)x 12.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8- B .7- C .15 D .15-二、填空题13.若x =2是关于x 的分式方程31k x x x -+-=1的解,则实数k 的值等于_____. 14.若分式方程13322a x x x--=--有增根,则a 的值是________. 15.已知2510m m -+=,则22125m m m-+=____. 16.计算:1 2+123⨯+134⨯+145⨯+…+()1n 1n -+()1n n 1+=______.17.计算:222213699211-+-+⋅⋅=--++x x x x x x x x ___________. 18.下列计算:①3100.0001-=;②()00.00011=;③()()352x x x --÷-=-;④22133aa -=;⑤()()321m m m m a a a -÷=-.其中运算正确的有______.(填序号即可)19.若关于x 的方程2144416m x x x +=-+-无解,则m 的值为__________. 20.方程111x x x x -+=-的解是______. 三、解答题21.某社区为了落实“惠民工程”,计划将社区的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?22.列分式方程解应用题:刘峰和李明相约周末去野生动物园游玩,根据他们的谈话内容,求李明乘公交车、刘峰骑自行车每小时各行多少千米?刘峰:我查好地图,你看看李明:好的,我家门口的公交车站,正好又一趟到野生动物园那站的车,我坐明天8:30的车刘峰:从地图上看,我家到野生动物园的距离比你家近10千米,我就骑自行车去了 李明:行,根据我的经验,公交车的速度一般是你骑自行车速度的3倍,那你明天早上8:00从家出发,如果顺利,咱俩同时到达23.先化简:22122441a a a a a a ⎛⎫-÷ ⎪-⎭-⎝+-+,然后从0,2,3中选择一个合适的数代入求值.24.计算:021|22|( 3.14)()2π---+- 25.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中5x =. 26.(1)不改变分式的值,把下列分子和分母的最高次的系数都化为正数2342n n -=-+________. (2)不改变分式的值,把下列分子和分母的中各项系数都化为整数0.20.50.3x y x y-=-_______. (3)若分式231x x +-的值是整数,求整数x 的值. (4)已知12x x +=,求2421x x x ++的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据计划所用时间-实际所用时间=6,可知方程中未知数x 所表示的量.【详解】解:设原计划每天铺设管道x 米,则实际每天铺设管道()110%x +, 根据题意,可列方程:6606(110%)660x x -=+, 所以小明所列方程中未知数x 所表示的量是计划每天铺设管道的长度,故选:D .【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系. 2.A解析:A【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可.【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩, ∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解, ∴2015a +<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a =, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3∴所有满足条件的整数a 的值之和是4,故选A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.3.B解析:B【分析】根据分式方程的解为正整数解,即可得出a =0,1,2,5,11,根据不等式组的解集为a−1<4,即可得出a <5,找出a 的所有的整数,将其相加即可得出结论.【详解】解:∵分式方程有解,∴解分式方程得x =121a +, ∵x≠3, ∴121a +≠3,即a≠3, 又∵分式方程有正整数解,∴a =0,1,2,5,11,又∵不等式组至少有2个整数解,∴解不等式组得51y y a ≤⎧⎨-⎩>, ∴a−1<4,解得,a <5,∴a =0,1,2,∴0+1+2=3,故选:B .【点睛】本题考查了一元一次不等式组的整数解、分式方程的解,有一定难度,注意分式方程中的解要满足分母不为0的情况.4.D解析:D【分析】根据相反数的性质,倒数的性质以及不等式的性质来解决代数式的值即可;【详解】当a 取互为相反数的值时,即取m 和-m ,则-m+m=0,当a 取m 时,①222211=m a a m ++ ,当a 取-m 时,②()()222222111a m m a m m +=-+=+- , ①=②,故A 正确; B 、当a 取互为倒数的值时,即取m 和1m ,则11m m ⨯= , 当a 取m 时,①222211=m a a m ++,当a 取1m 时,②2222221111m 1m a m a m ⎛⎫+=+=+ ⎪⎝⎭⎛⎫ ⎪⎝⎭①=②,故B 正确;C 、可举例判断,由a >1得,取a=2,3(2<3) 则22112=424++< 22113=939++ , 故C 正确; D 、可举例判断,由01a <<得,取a=12,13(12>13) 2222111111=4+=924391123⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭< , 故D 错误;故选:D .【点睛】本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键.5.A解析:A【分析】根据分式乘法计算法则解答.【详解】 解:2x y x y x y xy-⋅-=x , 故选:A .【点睛】此题考查分式的乘法计算法则,熟记计算法则是解题的关键.6.B解析:B【分析】a 与b 互为相反数,由相反数的定义与性质得22=,a b a b -=,将代数式中字母统一成b,合并约分即可.【详解】∵a 与b 互为相反数,∴22=,a b a b -=,222222019202120192021220202020a b b b ab b++==--, 故选择:B .【点睛】本题考查分式求值问题,掌握相反数的定义与性质,会利用相反数将代数式的字母统一为b 是解题关键.7.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①② 解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2,解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1, ∴211a≠-,∴a≠-1, ∴a≤2且a≠-1,则a=0、2,∴符合条件的所有整数a 的和=0+2=2,故选:D .【点睛】 本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.8.D解析:D【分析】先根据分式的值为0可得290x ,再利用平方根解方程可得3x =±,然后根据分式的分母不能为0即可得.【详解】 由题意得:2903x x -=+, 则290x ,即29x =,由平方根解方程得:3x =±,分式的分母不能为0,30x ∴+≠,解得3x ≠-,则x 的值为3,故选:D .【点睛】本题考查了分式的值、分式有意义的条件、利用平方根解方程,掌握理解分式的值是解题关键.9.C解析:C【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值.【详解】 解分式方程2311a x x +=--,得53a x -=, ∵分式方程2311a x x +=--的解为非负数, ∴503a -≥, 解得a ≤5,∵关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩, ∵不等式组的解集为2y <-,∴2a ≥-,∵x-1≠0,∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个,故选:C .【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.10.C解析:C【分析】A 、B 两项利用同底数幂的乘除法即可求解,C 项利用合并同类项法则计算即可,D 项利用分式的乘方即可得到结果,即可作出判断.【详解】解:A 、原式=a 3,不符合题意;B 、原式=a 4,不符合题意;C 、原式=-a 2b ,符合题意;D 、原式=3278a -,不符合题意, 故选:C .【点睛】此题考查了分式的乘方,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.11.B解析:B【分析】根据同分母分式加法法则计算.【详解】221(1)(1)x x x +++=211(1)1x x x +=++, 故选:B .【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.12.B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤, 分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m的取值范围以及求出分式方程的解是解题的关键.二、填空题13.4【分析】将x=2代入求解即可【详解】将x=2代入=1得解得k=4故答案为:4【点睛】此题考查分式方程的解解一元一次方程正确理解方程的解是解题的关键解析:4【分析】将x=2代入求解即可.【详解】将x=2代入31k xx x-+-=1,得112k-=,解得k=4,故答案为:4.【点睛】此题考查分式方程的解,解一元一次方程,正确理解方程的解是解题的关键.14.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x的值代入整式方程计算即可求出a的值【详解】去分母得:1-3x+6=-3a+x由分式方程有增根得到x−2=0即x=2把x=2代入得:1-6+6解析:1 3【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.【详解】去分母得:1-3x+6=-3a+x,由分式方程有增根,得到x−2=0,即x=2,把x=2代入得:1-6+6=-3a+2,解得:a=13,故答案为:13.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.15.22【分析】根据m2﹣5m+1=0可得m+=55m=m2+1然后将原分式适当变形后整体代入计算即可【详解】解:∵m2﹣5m+1=0∴m﹣5+=05m=m2+1∴m+=5∴2m2﹣5m+=2m2﹣m2解析:22【分析】根据m 2﹣5m+1=0可得m +1m =5,5m=m 2+1,然后将原分式适当变形后整体代入计算即可.【详解】解:∵m 2﹣5m+1=0,∴m ﹣5+1m =0,5m=m 2+1, ∴m +1m=5, ∴2m 2﹣5m+21m =2m 2﹣m 2﹣1+21m =m 2+21m ﹣1 =(m +1m)2﹣3 =52﹣3=25﹣3=22.故答案为:22.【点睛】 本题考查分式的求值.掌握整体代入思想是解题关键.在本题中还需理解22211()2m m m m+=++. 16.【分析】通过观察可发现规律:则原式=即可计算出结果【详解】故答案为:【点睛】本题考查分式的运算解题的关键是发现已知式子的规律 解析:1n n + 【分析】通过观察可发现规律:()11111n n n n =-++,则原式= 11111111112233411n n n n -+-+-+⋯+-+--+,即可计算出结果. 【详解】()()111111111111111111223344511223341111n n n n n n n n n n n ++++⋯++=-+-+-+⋯+-+-=-=⨯⨯⨯-+-+++ 故答案为:1n n +. 【点睛】本题考查分式的运算,解题的关键是发现已知式子的规律. 17.【分析】先将分子和分母分解因式再计算乘法并将结果化为最简分式【详解】【点睛】此题考查分式的乘法计算法则:分子相乘作积的分子分母相乘作积的分母 解析:31x x -- 【分析】先将分子和分母分解因式,再计算乘法,并将结果化为最简分式.【详解】2222221369(1)(1)3(3)39211(3)(3)(1)11-+-++-+--⋅=⋅⋅=--+++--+-x x x x x x x x x x x x x x x x x x . 【点睛】此题考查分式的乘法计算法则:分子相乘作积的分子,分母相乘作积的分母.18.②⑤【分析】根据负整数指数幂零指数幂同底数幂的除法法则进行计算逐个判断即可【详解】解:;故①计算错误;;②计算正确;;故③计算错误;;故④计算错误故⑤计算正确故答案为:②⑤【点睛】本题考查同底数幂的解析:②⑤.【分析】根据负整数指数幂、零指数幂、同底数幂的除法法则进行计算,逐个判断即可.【详解】 解:3110=0.0011000-=;故①计算错误; ()00.00011=;②计算正确; ()()22352()1x x x x x --=-÷=-=-;故③计算错误; 2233a a -=;故④计算错误 ()()333221(1)=(1)mm m m m m m m a a a a a a -÷=-⨯÷=--,故⑤计算正确 故答案为:②⑤.【点睛】本题考查同底数幂的除法,积的乘方以及零指数幂,负整数指数幂的计算,掌握运算法则正确计算是解题关键.19.-1或-【分析】直接解分式方程再利用一元一次方程无解和分式方程无解分别分析得出答案【详解】解:去分母得:(x+4)+m(x-4)=4可得:(m+1)x=4m 当m+1=0时分式方程无解此时m=-1当m解析:-1或-12【分析】直接解分式方程,再利用一元一次方程无解和分式方程无解分别分析得出答案.【详解】 解:2144416m x x x +=-+-, 去分母得:(x+4)+m(x-4)=4,可得:(m+1)x=4m ,当m+1=0时,分式方程无解,此时m=-1, 当m+1≠0时,则x=41m m +=±4, 当41m m +=4时,此时方程无解; 当41m m +=-4时,解得:m=-12, 经检验,m=-12是方程41m m +=-4的解, 综上所述:m=-1或-12. 故答案为:-1或-12. 【点睛】 此题主要考查了分式方程的解,正确分类讨论是解题关键.20.【分析】先通过去分母将分式方程化为整式方程求出的值然后再检验即可即可【详解】解:方程两边都乘以得:解得:检验:时所以分式方程的解为故答案为【点睛】本题主要考查解分式方程解分式方程的步骤如下:①去分母 解析:13x = 【分析】先通过去分母将分式方程化为整式方程求出x 的值,然后再检验即可即可.【详解】解:方程两边都乘以(1)x x -,得:2(1)(1)x x x -=+,解得:13x =, 检验:13x =时,2(1)09x x -=-≠, 所以分式方程的解为13x =. 故答案为13x =. 【点睛】 本题主要考查解分式方程,解分式方程的步骤如下:①去分母;②求出整式方程的解;③检验;④得出结论.三、解答题21.(1)这项工程的规定时间是30天;(2)该工程的费用为225000元【分析】(1)设这项工程的规定时间是x 天,根据甲、乙队先合做15天,余下的工程由甲队单独需要10天完成,可得出方程解答即可;(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】(1)设这项工程的规定时间是x 天,根据题意得:1110()1513x x x+⨯+=, 解得:x =30.经检验x =30是原分式方程的解.答:这项工程的规定时间是30天;(2)该工程由甲、乙队合做完成,所需时间为:111()22.530303÷+=⨯(天), 则该工程施工费用是:()22.565003500225000⨯+=(元).答:该工程的费用为225000元.【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.22.刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米【分析】设刘峰骑自行车每小时行x 千米,则李明乘公交车每小时行3x 千米,根据他们的行驶时间相差30分钟列出分式方程并解答,注意分式方程的结果要检验.【详解】解:设刘峰骑自行车每小时行x 千米,则李明乘公交车每小时行3x 千米,根据题意列方程得:203030360x x =+ 即201012x x =+ 解这个方程得20x检验:当20x 时,20x ≠所以,20x 是原分式方程的解,当20x 时,332060x =⨯=答:刘峰骑自行车每小时行20千米,则李明乘公交车每小时行60千米【点睛】本题考查分式方程的应用,利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.23.3a;1 【分析】 根据分式的减法和除法可以化简题目中的式子,然后从0,2,3中选择一个使得原分式有意义值,代入化简后的式子即可解答本题.【详解】 解:22122441a a a a a a ⎛⎫-÷ ⎪-⎭-⎝+-+ ()()2212222a a a a a a a ⎛-+-=---÷⎪⎝⎭-⎫ 22322a a a a3a= ∵当0a =或2时,原式没有意义,∴当3a =时,原式1=. 【点睛】本题考查分式的化简求值,明确分式化简求值的方法和分式有意义的条件是解答本题的关键.24.5【分析】先计算绝对值、0指数、负指数,再加减.【详解】解: 0212|( 3.14)()2π---+-214=+5=【点睛】本题考查了包含绝对值、0指数和负指数的实数计算,准确应用各种法则,熟练计算是解题关键.25.21(2)x -,19【分析】先计算括号内的运算,然后进行化简,得到最简分式,再把5x =代入计算,即可得到答案.【详解】 解:22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭ =221[](2)(2)4x x x x x x x +--⨯--- =22224[](2)(2)4x x x x x x x x x ---⨯--- =24(2)4x x x x x -⨯-- =21(2)x -; 当5x =时,原式=211(52)9=-. 【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则,正确的进行化简.26.(1)2324n n --;(2)10253x y x y --;(3)0,2,6,-4;(4)13 【分析】(1)利用分式的基本性质,分子、分母都乘以-1即可;(2)利用分式的基本性质,分子、分母都乘以10 即可;(3)将分式变形得521x +-,要使结果是整数,x-1=±1,或x-1=±5,进而求出x 的整数值即可;(4)倒数法,先求出要求的代数式的倒数,利用整体代入的方法进行计算即可.【详解】解:(1)根据分式基本性质,分子、分母都乘以-1得, 2342n n -=-+2324n n --; (2)根据分式基本性质,分子、分母都乘以10得,0.20.50.3x y x y -=-10253x y x y--; (3)231x x +-=2251x x -+-=22511x x x -+--=521x +-, 要使分式的值为整数,∴x-1=±1,或x-1=±5,解得,x 1=0,x 2=2,x 3=6,x 4=-4,答:整数x 的值为0,2,6,-4. (4)∵12x x +=, ∴221422x x+=-=, ∵422221113x x x x x ++=++=, ∴242113x x x =++. 【点睛】本题考查分式的基本性质、分式的加减运算,掌握分式的基本性质和计算法则是正确解答的前提.。

上海上师初级中学八年级数学上册第五单元《分式》测试卷(包含答案解析)

上海上师初级中学八年级数学上册第五单元《分式》测试卷(包含答案解析)

一、选择题1.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ayy y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .32.若关于x 的分式方程122x a x -=-的解为非负数,且关于x 的不等式组5x x a ≥⎧⎨>⎩的解集是5x ≥,则符合条件的整数a 有( )A .1个B .2个C .3个D .4个3.若a =1,则2933a a a -++的值为( ) A .2B .2-C .12D .12-4.已知2340x x --=,则代数式24xx x --的值是( ) A .3B .2C .13D .125.已知2,1x y xy +==,则y xx y+的值是( ) A .0B .1C .-1D .26.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每名同学比原来少分摊3元车费.设原来参加游览的学生共x 人.则所列方程是( ) A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=- D .18018032x x -=+ 7.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .2222x xy y x xy-+-D .21628x x -+8.3333x a a y x y y x +--+++等于( ) A .33x y x y-+B .x y -C .22x xy y -+D .22xy +9.已知227x ,y ==-,则221639yx y x y ---的值为( ) A .-1B .1C .-3D .310.下列各式中正确的是( )A .263333()22=x x y y B .222224()=++a a a b a b C .22222()--=++x y x y x y x yD .333()()()++=--m n m n m n m n 11.020122012(31)(0.125)8-+⨯的结果是( ) A .3 B .32-C .2D .012.若分式2-3xx 在实数范围内有意义,则实数x 的取值范围是( ) A .x >32 B .x <32 C .x =32D .x ≠32二、填空题13.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.14.如图是一个数值转换器,每次输入3个不为零的数,经转换器转换后输出3个新数,规律如下:当输入数分别为x ,y ,z 时,对应输出的新数依次为11x y z ++,11y z x++,11z x y ++.例如,输入1,2,3,则输出65,34,23.那么当输出的新数为13,14,15时,输入的3个数依次为____.15.已知2510m m -+=,则22125m m m-+=____. 16.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________. 17.方程111x x x x -+=-的解是______. 18.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________. 19.计算:05(21)-+-=__. 20.已知关于x 的方程321x mx -=-的解是正数,则m 的取值范围为____________. 三、解答题21.某高速公路有300km 的路段需要维修,拟安排甲、乙两个工程队合作完成.已知甲队每天维修公路的长度是乙队每天维修公路长度的2倍,并且在各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.(1)求甲乙两工程队每天能完成维修公路的长度分别是多少km ?(2)两个工程队合作15天后乙队另有任务,余下工程由甲队完成,请你用所学过的知识判断能否在规定的30天工期完成并写出求解过程.22.已知点()0,A y 在y 轴正半轴上,以OA 为边作等边OAB ,其中y 是方程31222y +-31y =-的解. (1)求点A 的坐标;(2)如图1,点P 在x 轴正半轴上,以AP 为边在第一象限内作等边APQ ,连QB 并延长交x 轴于点C ,求证:OC BC =;(3)如图2,若点M 为y 轴正半轴上一动点,点M 在点A 的上边,连MB ,以MB 为边在第一象限内作等边MBN △,连NA 并延长交x 轴于点D ,当点M 运动时,DN AM -的值是否发生变化?若不变,求出其值;若变化,求出其变化的范围.23.解分式方程: (1)13x -+2=43x x --;(2)()3211x x x x +---= 0 24.先化简,再求值:22141244x x x x x ,其中3x =-25.(112019(2)(3)2π-⎛⎫---+ ⎪⎝⎭(2)化简:2(2)()x x y x y --+26.计算:(1)化简:()()22n m n m n -++; (2)解分式方程:2132163x x x -=---.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可. 【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩,∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解,∴2015a+<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a=, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3 ∴所有满足条件的整数a 的值之和是4, 故选A . 【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.2.C解析:C 【分析】解分式方程的得出x=2a-2,根据解为非负数得出2a-2≥0,且2a-2≠2,据此求出解得a≥1且a≠2;解不等式组两个不等式,根据解集得出a <5;综合以上两点得出整数a 的值,从而得出答案. 【详解】 解:分式方程122x a x -=-, 去分母,得:2(x-a )=x-2, 解得:x=2a-2,∵分式方程的解为非负数, ∴2a-2≥0,且2a-2≠2, 解得a≥1且a≠2, ∵不等式组5x x a ≥⎧⎨>⎩的解集是x≥5, ∴1≤a <5,且a≠2,则整数a 的值为1、3、4共3个, 故选:C . 【点睛】本题主要考查分式方程的解和解一元一次不等式组,解题的关键是根据分式方程的解的情况及不等式组解集的情况得出a 的取值范围.3.B解析:B 【分析】根据同分母分式减法法则计算,再将a=1代入即可求值. 【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2, 故选:B . 【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键.4.D解析:D 【分析】利用等式的性质对2340x x --=变形可得43x x-=,利用分式的性质对24x x x --变形可得141x x--,从而代入求值即可. 【详解】由条件2340x x --=可知,0x ≠,∴430x x --=,即:43x x-=, 根据分式的性质得:21144411x x x x x x x==------, 将43x x-=代入上式得:原式11312==-, 故选:D . 【点睛】本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键.5.D解析:D 【分析】 将y xx y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D . 【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.6.D解析:D 【分析】设原来参加游览的学生共x 人,增加2人后的人数为(x+2)人,用租价180元除以人数,根据后来每名同学比原来少分摊3元车费列方程. 【详解】设原来参加游览的学生共x 人,由题意得18018032x x -=+, 故选:D . 【点睛】此题考查分式的实际应用,正确理解题意是解题的关键.7.B解析:B 【分析】最简分式的标准是分子、分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分;【详解】A 、()()21111111x x x x x x ++==-+-- ; B 、2211x x -+ 的分子分母不能再进行约分,是最简分式;C 、()()22222x y x xy y x y x xy x x y x--+-==-- ; D 、()()()24416428242x x x x x x +---==++ ; 故选:B . 【点睛】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意;.8.A解析:A 【分析】按同分母分式相减的法则计算即可. 【详解】333333x a a y x y x y y x x y+---+=+++ 故选:A 【点睛】本题考查同分母分式相加减法则:分母不变,分子相加减.9.B解析:B 【分析】先通分,再把分子相加减,把x 、y 的值代入进行计算即可. 【详解】原式=()()16333yx y x y x y --+- =()()3633x y y x y x y +-+-=()()333x yx y x y -+-=13x y+,当227x ,y ==-,原式=112221=-,故选B . 【点睛】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.10.D解析:D 【分析】根据分式的乘法法则计算依次判断即可. 【详解】A 、2633327()28=x x y y ,故该项错误; B 、22224()()=++a a a b a b ,故该项错误; C 、222()()()--=++x y x y x y x y ,故该项错误; D 、333()()()++=--m n m n m n m n ,故该项正确; 故选:D . 【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.11.C解析:C 【分析】根据零次幂定义,积的乘方的逆运算进行计算. 【详解】020122012201211)(0.125)81(8)1128+⨯=+⨯=+=.故选:C 【点睛】此题考查实数的混合运算,掌握零次幂定义,积的乘方的逆运算是解题的关键.12.D解析:D 【分析】根据分式有意义的条件是分母不等于零列出不等式,解不等式得到答案. 【详解】解:由题意得,2x-3≠0, 解得,x ≠32, 故答案为:D . 【点睛】本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.二、填空题13.6【分析】先设第一组有x 人则第二组人数是15x 人根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1根据等量关系列出方程即可【详解】解:设第一组有解析:6 【分析】先设第一组有x 人,则第二组人数是1.5x 人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方程即可. 【详解】解:设第一组有x 人. 根据题意,得242711.5x x-=, 解得x=6.经检验,x=6是原方程的解,且符合题意. 答:第一组有6人, 故答案为6. 【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验.14.11【分析】根据转换器转换后输出3个新数得到关于xyz 的方程组解之即可【详解】解:根据题意得:则3(x+y+z )=xy+zx①4(x+y+z )=xy+yz②5(x+y+z )=yz+zx③①+②+③得解析:113,112,11 【分析】根据转换器转换后输出3个新数得到关于x 、y 、z 的方程组,解之即可 【详解】 解:根据题意得:111=3++x y z ,111=4++y z x ,111=5++z x y ,则3(x+y+z )=xy+zx①,4(x+y+z )=xy+yz②,5(x+y+z )=yz+zx③, ①+②+③,得6(x+y+z )=xy+yz+zx ,④ ④﹣①,得3(x+y+z )=yz⑤, ④﹣②,得2(x+y+z )=zx⑥, ④﹣③,得x+y+z=xy⑦, ∴23x y =,z=2y , 把23x y =,z=2y 代入⑦,得y (2y ﹣11)=0, ∴y=112(由题意知y≠0), ∴x=113,z=11, ∴x=113,y=112,z=11 【点睛】本题考查了分式的混合运算、方程组的计算.解题关键是求出6(x+y+z )=xy+yz+zx ,进而用y 分别表示x 、z .15.22【分析】根据m2﹣5m+1=0可得m+=55m=m2+1然后将原分式适当变形后整体代入计算即可【详解】解:∵m2﹣5m+1=0∴m ﹣5+=05m=m2+1∴m+=5∴2m2﹣5m+=2m2﹣m2解析:22 【分析】根据m 2﹣5m+1=0可得m +1m=5,5m=m 2+1,然后将原分式适当变形后整体代入计算即可. 【详解】解:∵m 2﹣5m+1=0, ∴m ﹣5+1m=0,5m=m 2+1, ∴m +1m=5, ∴2m 2﹣5m+21m =2m 2﹣m 2﹣1+21m=m 2+21m﹣1=(m +1m)2﹣3 =52﹣3=25﹣3=22.故答案为:22.【点睛】 本题考查分式的求值.掌握整体代入思想是解题关键.在本题中还需理解22211()2m m m m+=++. 16.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 17.【分析】先通过去分母将分式方程化为整式方程求出的值然后再检验即可即可【详解】解:方程两边都乘以得:解得:检验:时所以分式方程的解为故答案为【点睛】本题主要考查解分式方程解分式方程的步骤如下:①去分母 解析:13x = 【分析】先通过去分母将分式方程化为整式方程求出x 的值,然后再检验即可即可.【详解】解:方程两边都乘以(1)x x -,得:2(1)(1)x x x -=+, 解得:13x =,检验:13x =时,2(1)09x x -=-≠, 所以分式方程的解为13x =. 故答案为13x =. 【点睛】 本题主要考查解分式方程,解分式方程的步骤如下:①去分母;②求出整式方程的解;③检验;④得出结论.18.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是万元/台根 解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.19.【分析】分别计算绝对值和0次幂再计算和即可【详解】解:原式=5+1=6故答案为:6【点睛】此题主要考查了实数运算解题的关键是熟练掌握绝对值及零次幂的性质解析:【分析】分别计算绝对值和0次幂,再计算和即可.【详解】解:原式=5+1=6.故答案为:6.【点睛】此题主要考查了实数运算,解题的关键是熟练掌握绝对值及零次幂的性质.20.m >2且m≠3【分析】先给分式方程去分母化为整式方程用m 表示出方程的解再由解为正数求出m 的取值范围即可【详解】解:去分母得:3x ﹣m=2(x ﹣1)解得:x=m ﹣2∵分式方程的解是正数且x≠1∴m ﹣2解析:m >2且m≠3【分析】先给分式方程去分母化为整式方程,用m 表示出方程的解,再由解为正数求出m 的取值范围即可.【详解】解:去分母,得:3x ﹣m=2(x ﹣1),解得:x=m ﹣2,∵分式方程的解是正数,且x≠1,∴m ﹣2>0,且m ﹣2≠1,解得:m >2且m≠3,故答案为:m >2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.三、解答题21.(1)甲、乙工程队每天能完成维修公路的长度分别是8km 和4km ;(2)能,理由见解析【分析】(1)设乙工程队每天能完成维修公路的长度是xkm .由甲队每天维修公路的长度是乙队每天维修公路长度的2倍,可得甲队每天维修公路的长度为2xkm ,根据等量关系各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.列方程484862x x -=,解方程及检验即可;(2)求出甲乙两队合作15天的工作量,求出余下的工作量,最后利用公式余下的工作量除以甲的工作效率求出余下的时间,比较合作时间15天+甲作余下工作时间与30天的大小即可.【详解】解:()1设乙工程队每天能完成维修公路的长度是xkm , 依题意得484862x x-=, 解得:4x =,经检验:4x =是原方程的解.则甲工程队每天能完成维修公路的长度是()24=8km ⨯.答:甲、乙工程队每天能完成维修公路的长度分别是8km 和4km .()()2154+8=180km ⨯,300-180=120km ,1208=15÷天,15+15=30(天),所以能在规定工期内完成.【点睛】本题考查工程问题列分式方程解应用题,掌握列分式方程解应用题的方法,以及工作量,工作时间,和工作效率之间关系,抓住由甲队每天维修公路的长度是乙队每天维修公路长度的2倍设未知数,各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.构造方程,注意分式方程要验根.22.(1)()0,4A ;(2)见解析;(3)DN AM -的值不变,其值为12.【分析】(1)解分式方程求出y 即可知道A 点坐标;(2)证明△AOP ≌△ABQ ,进而得到∠ABQ=∠AOP=90°,再由∠AOB=∠ABO=60°得到∠BOC=∠OCB=30°,由此可以证明CO=CB ;(3)证明△ABN ≌△OBM ,得到OM AN =,60BAN BOM ∠=∠=︒,进而求出∠DAO=60°,在Rt △DAO 中求出DA=2AO=8,最后DN-AM=(DA+AN)-(MO-AO)= (DA+AN)-(AN-AO)=8+4=12.【详解】解:(1)∵y 是方程3132221y y +=--的解, 方程两边同时乘以最简公分母2(1)-y :解得4y =经检验4y =是原方程的解∴点()0,4A .(2)∵APQ 、ABO 都是等边三角形∴AO AB =,AP AQ =,60BAO PAQ ∠=∠=︒,∴PAO BAQ ∠=∠,∴()≌PAO QAB SAS △△,∴90QBA POA ∠=∠=︒, ∵ABO 是等边三角形,∴60AOB ABO ∠=∠=︒,∴30COB CBO ∠=∠=︒∴CO BC =.(3)其值不会变化,且12DN AM -=,理由如下:∵AOB ∆、MBN ∆都是等边三角形,∴4BO AB AO ===,MB BN =,60BAO ABO MBN ∠=∠=∠=︒, ∴OBM ABN ∠=∠,∴()ABN OBM SAS ≌△△,∴OM AN =,60BAN BOM ∠=∠=︒,∴4AN OM OA AM AM ==+=+,∵18060OAD OAB BAN ∠=︒-∠-∠=︒,∴30ADO ∠=︒∴28AD AO ==∴4812DN AM AN AD AM AM AM -=+-=++-=即DN AM -的值不变,其值为12. 【点睛】本题是三角形综合题,考查了分式方程的解法,等边三角形性质,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力.23.(1)x =1;(2)无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程无解;【详解】解:(1)去分母得:1+2(x ﹣3)=x ﹣4,解得:x =1,经检验x =1是分式方程的解;(2)去分母,得3x-(x+2)=0,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.24.32x +,3-. 【分析】 先算括号里面的,再算除法,最后将x 的值代入进行计算即可.【详解】解:22141244x x x x x 22212=222x x x x x x x23=22x x x 23=22x x x 3=2x当3x =-时,原式3=332. 【点睛】本题考查的是分式的化简求值,熟悉相关运算法则是解题的关键.25.(1)8;(2)24y xy --【分析】(1)先计算算术平方根,乘方,零次幂及负整数指数幂,再计算加减法;(2)先计算单项式乘以多项式及完全平方公式,再合并同类项.【详解】解:(1)原式3412=+-+8=;(2)原式22222x xy x y xy =----24y xy =--.【点睛】此题考查实数的混合运算及整式的混合运算,掌握实数算术平方根,乘方,零次幂及负整数指数幂计算法则,以及整式的单项式乘以多项式及完全平方公式计算法则是解题的关键.26.(1)24m mn +;(2)x=1【分析】(1)根据单项式乘多项式法则和完全平方公式,即可得到结果;(2)通过去分母,把分式方程化为整式方程,即可求解.【详解】(1)原式=22222mn n m mn n -+++=24m mn +;(2)2132163x x x -=--- 213213(21)x x x -=---2(21)3--=-x x--=-423x xx5=5x=1,经检验,x=1是方程的解,∴x=1.【点睛】本题主要考查整式的混合运算以及解分式方程,熟练掌握完全平方公式以及解分式方程的步骤,是解题的关键.。

上海所在地区八年级数学上册第五单元《分式》检测题(答案解析)

上海所在地区八年级数学上册第五单元《分式》检测题(答案解析)

一、选择题1.关于x的一元一次不等式组31, 224xm xx x⎧-≤+⎪⎨⎪-≤⎩的解集为4x≤,且关于y的分式方程13122my yy y--+=--有整数解,则符合条件的所有整数m的和为()A.9 B.10 C.13 D.142.如果分式2121xx-+的值为0,则x的值是()A.1B.0C.1-D.±13.如图,若x为正整数,则表示3211327121(1)(1)543x x xx xx x x x--++--÷++++的值的点落在().A.段①B.段②C.段③D.段④4.下列各式中,正确的是()A.22a ab b=B.11a ab b+=+C.2233a b aab b=D.232131a ab b++=--5.下列说法正确的是()A.分式242xx--的值为零,则x的值为2±B.根据分式的基本性质,mn可以变形为22mxnxC.分式32xyx y-中的,x y都扩大3倍,分式的值不变D.分式211xx++是最简分式6.若整数a使得关于x的不等式组3(1)32(1)x ax x>⎧⎨-+>+⎩的解集为2x>,且关于x的分式方程21111axx x+=---的解为整数,则符合条件的所有整数a的和是()A.2-B.1-C.1 D.27.若分式()22222x y x y a x a y ax ay+-÷-+的值等于5,则a 的值是( ) A .5B .-5C .15D .15-8.若实数a 使关于x 的不等式组313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .19.22()-n b a (n为正整数)的值是( )A .222+n n b aB .42n n b aC .212+-n n b aD .42-nn b a10.若分式2-3xx 在实数范围内有意义,则实数x 的取值范围是( ) A .x >32 B .x <32 C .x =32D .x ≠3211.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1C .2D .112.计算a ba b a÷⨯的结果是() A .aB .2aC .2b aD .21a 二、填空题13.计算2216816a a a -++÷428a a -+=__________.14.计算22a b a b a b-=-- _________.15.若32a b =,则22a ba+=____. 16.计算:112a a-=________.17.化简23x x+=____. 18.化简:(﹣2y x)3÷(223⋅y x x y )=_______________.19.已知关于x 的方程321x mx -=-的解是正数,则m 的取值范围为____________. 20.已知:4a b +=,2210a b +=,求11a b+=______. 三、解答题21.解分式方程: (1)13x -+2=43x x --;(2)()3211x x x x +---= 0 22.计算:(1)()()22x y x x y -++;(2)22362369m m m m m -⎛⎫-÷ ⎪--+⎝⎭. 23.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元 (2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 24.在今年新冠肺炎防疫工作中,学校购买了A 、B 两种不同型号的口罩,已知A 型口罩的单价比B 型口罩的单价多1.5元,且用8000元购买A 型口罩的数量与用5000元购买B 型口罩的数量相同.(1)求A 、B 两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B 型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A 型口罩的数量最多是多少个? 25.小红到离家2100米的学校参加艺术节联欢会,到学校时发现演出道具忘在家中,此时距联欢会开始还有45分钟,于是她马上步行回家取道具,随后骑自行车返回学校.已知小红骑自行车到学校比她从学校步行到家用时少20分钟,且骑自行车的平均速度是步行平均速度的3倍.(1)小红步行的平均速度(单位:米/分)是多少?(2)小红能否在联欢会开始前赶到学校?(通过计算说明你的理由)26.计算:2212yx y x y ---.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可. 【详解】解:31224xm x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得 x≤2m+2, 解②得 x≤4,∵不等式组31224xm x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4, ∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得 my-1+y-2=3y , ∴32y m =-, ∵m≥1,分式方程13122my yy y--+=--有整数解, ∴m=1,3,5, ∵y-2≠0, ∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意,1+3+5=9. 故选A . 【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键.2.D解析:D 【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案. 【详解】解:∵分式2121x x -+值为0,∴2x+1≠0,210x -=, 解得:x=±1. 故选:D . 【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零分母不为零是解题关键.3.B解析:B 【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择. 【详解】原式221(1)71211543(1)x x x x x x x-++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x-++=-++++ 1111x x x-=-++ 1x x =+ 又因为x 为正整数,所以1121x x ≤<+, 故选B . 【点睛】本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.4.C解析:C 【分析】利用分式的基本性质变形化简得出答案. 【详解】A .22a a b b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B .11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误; C .2233a b a ab b=,从左边到右边分子和分母同时除以ab ,分式的值不变,故正确; D .232131a a b b ++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误. 故选:C . 【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.5.D解析:D 【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案. 【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误;C 、分式32xyx y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误;D 、分式211x x ++是最简分式,正确; 故选:D . 【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.6.D解析:D 【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和. 【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①②解不等式①得,x a >; 解不等式②得,2x >; ∵不等式组的解集为2x >, ∴a≤2,解方程21111ax x x+=---得:21x a =-∵分式方程的解为整数, ∴11a -=±或2± ∴a=0、2、-1、3 又x≠1,∴211a≠-,∴a≠-1, ∴a≤2且a≠-1, 则a=0、2,∴符合条件的所有整数a 的和=0+2=2, 故选:D . 【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.7.C解析:C 【分析】先进行分式除法,化简后得到关于a 的式子,列方程即可求解. 【详解】解:()22222x y x y a x a y ax ay+-÷-+ ()22()(()=))(a x y a x x y y y x x y ++-⨯-+, 1=a, 根据题意,15a=,解得,15a =, 经检验,15a =是原方程的解, 故选C 【点睛】本题考查了分式的除法和分式方程的解法,正确化简分式,列出分式方程,是解决问题的关键.8.D解析:D 【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②,由①得:x ≤﹣3, 由②得:x ≥a+2, ∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解, 所以﹣7<a+2≤﹣3, 解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去), 当a =﹣6时,y =﹣2.5(不是整数,舍去), 当a =﹣5时,y =﹣2(是整数,符合题意), 所以符合条件的所有整数a 为﹣5.【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.9.B解析:B 【分析】根据分式的乘方计算法则解答. 【详解】2422()-=nn n b b a a . 故选:B . 【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.10.D解析:D 【分析】根据分式有意义的条件是分母不等于零列出不等式,解不等式得到答案. 【详解】解:由题意得,2x-3≠0, 解得,x ≠32, 故答案为:D . 【点睛】本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.11.C解析:C 【分析】先根据分式为零的条件列出不等式组,然后再求解即可. 【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C . 【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.12.C【分析】先把除法变成乘法,然后约分即可. 【详解】解:2a b b b b a a b a a a a÷⨯=⋅⋅=,故选:C . 【点睛】本题考查了分式的乘除混合运算,解题的关键是熟练掌握乘除混合运算法则.二、填空题13.-2【分析】原式利用除法法则变形约分即可得到结果【详解】解:原式==-2故答案为:-2【点睛】本题考查了分式的除法熟练掌握运算法则是解本题的关键解析:-2 【分析】原式利用除法法则变形,约分即可得到结果 【详解】 解:原式=2(4)(4)2(4)(4)4a a a a a-++-⋅+-=-2, 故答案为:-2. 【点睛】本题考查了分式的除法,熟练掌握运算法则是解本题的关键.14.【分析】根据分式运算的性质结合平方差公式计算即可得到答案【详解】故答案为:【点睛】本题考查了分式平方差公式的知识;解题的关键是熟练掌握分式加减运算平方差公式的性质从而完成求解 解析:+a b【分析】根据分式运算的性质,结合平方差公式计算,即可得到答案. 【详解】22a b a b a b ---()()22a b a b a b a b a b a b+--===+-- 故答案为:+a b . 【点睛】本题考查了分式、平方差公式的知识;解题的关键是熟练掌握分式加减运算、平方差公式的性质,从而完成求解.15.2【分析】将代入式子化简即可得到答案【详解】∴原式故答案为:2【点睛】此题考查分式的化简求值解题的关键是正确代入及掌握分式化简方法 解析:2【分析】将32a b =代入式子化简即可得到答案.【详解】23b a =,∴原式34222a a a a a+===. 故答案为:2.【点睛】 此题考查分式的化简求值,解题的关键是正确代入及掌握分式化简方法.16.【分析】根据异分母分式加减法法则计算即可【详解】原式故答案为:【点睛】本题考查了分式的加减—异分母分式的减法关键是掌握分式加减的计算法则 解析:12a. 【分析】 根据异分母分式加减法法则计算即可.【详解】 原式211222a a a=-=. 故答案为:12a . 【点睛】本题考查了分式的加减—异分母分式的减法,关键是掌握分式加减的计算法则. 17.【分析】原式利用同分母分式的加法法则计算即可得到结果【详解】故答案为:【点睛】此题考查了分式的加减法熟练掌握运算法则是解本题的关键 解析:5x. 【分析】 原式利用同分母分式的加法法则计算即可得到结果.【详解】232+3x x x+=5x =. 故答案为:5x【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.18.﹣【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】解:原式=﹣÷=﹣•=﹣故答案为:﹣【点睛】本题考查分式的混合运算按照正确的运算顺序进行运算并及时化简是解题的关键解析:﹣2 5 y x【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】解:原式=﹣36yx÷yx=﹣36yx•xy=﹣25yx,故答案为:﹣25yx.【点睛】本题考查分式的混合运算,按照正确的运算顺序进行运算并及时化简是解题的关键.19.m>2且m≠3【分析】先给分式方程去分母化为整式方程用m表示出方程的解再由解为正数求出m的取值范围即可【详解】解:去分母得:3x﹣m=2(x ﹣1)解得:x=m﹣2∵分式方程的解是正数且x≠1∴m﹣2解析:m>2且m≠3【分析】先给分式方程去分母化为整式方程,用m表示出方程的解,再由解为正数求出m的取值范围即可.【详解】解:去分母,得:3x﹣m=2(x﹣1),解得:x=m﹣2,∵分式方程的解是正数,且x≠1,∴m﹣2>0,且m﹣2≠1,解得:m>2且m≠3,故答案为:m>2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.20.【分析】根据a2+b2=(a+b)2-2ab把相应数值代入即可求解【详解】解:∵a+b=4∴a2+b2=(a+b)2-2ab=10即42-2ab=10解得ab=3∴故答案为:【点睛】本题主要考查了完 解析:43【分析】根据a 2+b 2=(a+b )2-2ab ,把相应数值代入即可求解.【详解】解:∵a+b=4,∴a 2+b 2=(a+b )2-2ab=10,即42-2ab=10,解得ab=3. ∴1143a b a b ab ++== 故答案为:43. 【点睛】 本题主要考查了完全平方公式以及分式的运算,熟记公式是解答本题的关键.三、解答题21.(1)x =1;(2)无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程无解;【详解】解:(1)去分母得:1+2(x ﹣3)=x ﹣4,解得:x =1,经检验x =1是分式方程的解;(2)去分母,得3x-(x+2)=0,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.22.(1)222x y +;(2)36m m -+ 【分析】(1)先根据完全平方公式、单项式与多项式的乘法法则计算,再合并同类项即可; (2)把括号内通分,并把除法转化为除法,然后约分化简即可.【详解】(1)原式22222x xy y x xy =-+++222x y =+;(2)原式=2226693336m m m m m m m --+⎛⎫-⨯ ⎪---⎝⎭ ()()()236366m m m m m --=⋅--+ 36m m -=+. 【点睛】 本题考查了整式的混合运算,以及分式的混合运算,熟练掌握运算法则是解答本题的关键.23.(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =, 经检验, = 5x 是原方程的解,且符合题意,1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.24.(1)4元;2.5元 (2)800个【分析】(1)设A 型口罩的单价为x 元,则B 型口罩的单价为( 1.5)x 元,根据“用8000元购买A 型口罩的数量与用5000元购买B 型口罩的数量相同”列出方程并解答;(2)设增加购买A 型口罩的数量是m 个,根据“增加购买B 型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元”列出不等式并解答即可.【详解】解:(1)设A 型口罩的单价为x 元,则B 型口罩的单价为()1.5x -元, 根据题意,得800050001.5x x =-. 解方程,得:4x =.经检验:4x =是原方程的根,且符合题意.所以 1.5 2.5x -=.答:A 型口罩的单价为4元,则B 型口罩的单价为2.5元.(2)设增加购买A 型口罩的数量是m 个,根据题意,得:2.5247200m m ⨯+≤.解不等式,得:800m ≤.答:增加购买A 型口罩的数量最多是800个.【点睛】本题主要考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.25.(1)70米/分;(2)能,见解析【分析】(1)设小红步行的平均速度为x 米/分,则骑自行车的平均速度为3x 米/分.由小红骑自行车到学校比她从学校步行到家用时少20分钟为等量关系建立方程求出其解即可; (2)根据(1)求出的结论计算小红往返的时间之和与45分钟作比较就可以得出结论.【详解】(1)解:设小红步行的平均速度是x 米/分,则骑自行车的平均速度是3x 米/分. 根据题意,得21002100203x x-=,方程两边同乘最简公分母3x ,得6300210060x -=,解得70x =.检验:把70x =代入最简公分母3x ,得33700x =⨯≠,因此,70x =是原方程的根.答:小红步行的平均速度是70米/分.(2)由(1),得70x =,3210x =,所以小红骑自行车的速度是210米/分,于是,小红回家取道具共花时间:2100210030104070210+=+=(分), 由于4045<,因此,小红能在联欢会开始前赶到学校.【点睛】本题是一道行程问题的应用题,考查了列分式方程解实际问题,分式方程的解法,解答时小红骑自行车到学校比她从学校步行到家用时少20分钟为等量关系建立方程是关键.26.1x y+ 【分析】首先把两分式通分化为同分母分式后,再按照分母不变,分子相加减的法则计算.【详解】 解:原式2()()()()x y y x y x y x y x y +=-+-+- 2()()x y y x y x y +-=+-. ()()x y x y x y -=+-. 1x y=+. 【点睛】本题考查分式的加减运算,熟练掌握异分母分式的加减法则是解题关键.。

上海南洋模范初级中学八年级数学上册第五单元《分式》测试题(含答案解析)

上海南洋模范初级中学八年级数学上册第五单元《分式》测试题(含答案解析)

一、选择题1.已知分式24x x+的值是正数,那么x 的取值范围是( ) A .x >0 B .x >-4C .x ≠0D .x >-4且x ≠0 2.若关于x 的分式方程122x a x -=-的解为非负数,且关于x 的不等式组5x x a≥⎧⎨>⎩的解集是5x ≥,则符合条件的整数a 有( ) A .1个 B .2个C .3个D .4个 3.世界上数小的开花结果植物是激大利亚的出水浮萍,这种植物的果实像一个微小的无花架,质做只有0.000000076克,0.000000076用科学记数法表示正确的是( ) A .-60.7610⨯ B .-77.610⨯ C .-87.610⨯ D .-97.610⨯ 4.下列各分式中,最简分式是( )A .6()8()x y x y -+ B .22y x x y -- C .2222x y x y xy ++ D .222()x y x y -+ 5.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m = 6.若a =1,则2933a a a -++的值为( ) A .2B .2-C .12D .12- 7.已知分式34x x -+的值为0,则x 的值是( ) A .3 B .0 C .-3 D .-48.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( )A .1B .2C .3D .49.下列各式中,正确的是( )A .22a a b b = B .11a a b b +=+ C .2233a b a ab b = D .232131a a b b ++=-- 10.大爱无疆,在爆发新冠病毒疫情后,甲,乙两家单位分别组织了员工捐款.已知甲单位捐款7500元,乙单位捐款9800元,甲单位捐款人数比乙单位少10人,且甲单位人均捐款额比乙单位多20元,若设甲单位的捐款人数为x ,则可列方程为( )A .7500980020x x 10-=- B .9800750020x 10x -=-C .7500980020x x 10-=+D .9800750020x 10x-=+ 11.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y-中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式 12.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8- B .7- C .15 D .15-二、填空题13.已知5a b +=,6ab =,b a a b+=______. 14.计算2216816a a a -++÷428a a -+=__________. 15.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________.(2)方程{}3min 2,322x x x--=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________. 16.计算:()1211x x x x x ⎡⎤-⋅=⎢⎥+-⎣⎦______. 17.如果分式126x x --的值为零,那么x =________ .18.约分:22618m n mn=-________________19.计算:051)-+=__.20.方程22020(1)1x x x ++-=的整数解的个数是_____. 三、解答题21.先化简,再求值:(x ﹣1﹣21x x +)÷221x x x ++,其中x =3. 22.先化简,再求值:214111x x x -⎛⎫+÷ ⎪++⎝⎭,其中5x = 23.计算:(1)202()21)3--;(2)22(1)(21)(21)3(4)m m m m ⎡⎤+-+--÷-⎣⎦;(3)2221121x x x x x x --+-+ 24.解分式方程:(1)1171.572x x += (2)21533x x x-+=-- 25.列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步.在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.26.计算:2212y x y x y ---.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】若24x x +的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围.【详解】 解:∵24x x +>0, ∴x +4>0,x≠0,∴x >−4且x≠0.故选:D .【点睛】 本题考查分式值的正负性问题,若对于分式a b(b≠0)>0时,说明分子分母同号;分式a b(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 2.C解析:C【分析】解分式方程的得出x=2a-2,根据解为非负数得出2a-2≥0,且2a-2≠2,据此求出解得a≥1且a≠2;解不等式组两个不等式,根据解集得出a <5;综合以上两点得出整数a 的值,从而得出答案.【详解】 解:分式方程122x a x -=-, 去分母,得:2(x-a )=x-2,解得:x=2a-2,∵分式方程的解为非负数,∴2a-2≥0,且2a-2≠2,解得a≥1且a≠2,∵不等式组5x x a≥⎧⎨>⎩的解集是x≥5, ∴1≤a <5,且a≠2,则整数a 的值为1、3、4共3个,故选:C .【点睛】本题主要考查分式方程的解和解一元一次不等式组,解题的关键是根据分式方程的解的情况及不等式组解集的情况得出a 的取值范围.3.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】0.000000076=87.610-⨯,故选:C【点睛】此题考查了科学记数法,注意n的值的确定方法,当原数小于1时,n是负整数,n等于原数左数第一个非零数字前0的个数,按此方法即可正确求解4.C解析:C【分析】分式的分子和分母没有公因式的分式即为最简分式,根据定义解答.【详解】A、6()8()x yx y-+=3()4()x yx y-+,故该项不是最简分式;B、22y xx y--=-x-y,故该项不是最简分式;C、2222x yx y xy++分子分母没有公因式,故该项是最简分式;D、222()x yx y-+=x yx y-+,故该项不是最简分式;故选:C.【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.5.B解析:B【分析】先根据分式为零的条件列出关于m的不等式组并求解即可.【详解】解:∵11 mm-+=0∴m-1=0,m+1≠0,解得m=1.故选B.【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.6.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 7.A解析:A【分析】根据分式的值为0的条件可以求出x 的值;分式为0时,分子为0分母不为0;【详解】由分式的值为0的条件得x-3=0,x+4≠0,由x-3=0,得x=3,由x+4≠0,得x≠-4,综上,得x=3时,分式34x x -+ 的值为0; 故选:A .【点睛】本题考查了分式的值为0的情况,若分式的值为0,需要同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可. 8.B解析:B【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答.【详解】解:分式方程不一定会产生增根,故①错误; 方程4102x -=+的根为x=2,故②正确; 方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x+=+-是分式方程,故④正确; 故选:B .【点睛】 此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.9.C解析:C【分析】利用分式的基本性质变形化简得出答案.【详解】A.22a ab b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B.11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误;C.2233a b aab b=,从左边到右边分子和分母同时除以ab,分式的值不变,故正确;D.232131a ab b++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误.故选:C.【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.10.C解析:C【分析】由设甲单位的捐款人数为x,甲单位捐款人数比乙单位少10人,得到乙单位人数为(x+10),根据甲单位人均捐款额比乙单位多20元列得方程.【详解】解:由题意得:7500980020 x x10-=+,故选:C.【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键.11.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A、分式242xx--的值为零,则x的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y -中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.12.B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤, 分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.二、填空题13.【分析】原式整理成再整体代入即可求解【详解】∵∴故答案为:【点睛】本题主要考查分式的加减法解题的关键是掌握分式的加减运算法则和完全平方公式 解析:136【分析】 原式整理成222()2b a b a a b ab a b ab ab++-+==,再整体代入即可求解. 【详解】∵5a b +=,6ab =, ∴222()2b a b a a b ab a b ab ab++-+== 25266-⨯= 136=. 故答案为:136. 【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和完全平方公式. 14.-2【分析】原式利用除法法则变形约分即可得到结果【详解】解:原式==-2故答案为:-2【点睛】本题考查了分式的除法熟练掌握运算法则是解本题的关键解析:-2【分析】原式利用除法法则变形,约分即可得到结果【详解】解:原式=2(4)(4)2(4)(4)4a a a a a-++-⋅+-=-2, 故答案为:-2.【点睛】本题考查了分式的除法,熟练掌握运算法则是解本题的关键.15.-3【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程求解即可;(3)根据题中的新定义化简求出分式方程的解检验即可【详解】解:(1)根据题意;(2)原方程为:去分母得解得:经检验是该解析:-3 34x =0x = 【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程,求解即可;(3)根据题中的新定义化简,求出分式方程的解,检验即可.【详解】解:(1)根据题意,{}min 2,33--=-; (2)原方程为:3322x x x-=---, 去分母得33(2)x x +=--, 解得:34x =,经检验34x =是该方程的根, 故{}3min 2,322x x x --=---的解为:34x =; (3)当1322x x <--时,x >2,方程变形得:11222x x x -=---, 去分母得:1=x-1-2x+4,解得:x=2,不符合题意; 当1322x x >--时,即x <2,方程变形得:31222x x x -=---, 解得:x=0,经检验x=0是分式方程的解,综上,所求方程的解为x=0. 故答案为:-3,34x =,0x =. 【点睛】本题考查新定义的实数运算,解分式方程.能将题目新定义的运算化为一般运算是解题关键. 16.【分析】先把括号里的分式通分再相减然后运用分式乘法进行计算即可【详解】解:===故答案为:【点睛】本题考查了分式的混合运算掌握正确的运算顺序和运算法则是解题关键 解析:11x + 【分析】先把括号里的分式通分,再相减,然后运用分式乘法进行计算即可.【详解】 解:()1211x x x x x ⎡⎤-⋅⎢⎥+-⎣⎦, =()12(1)11x x x x x x x ⎡⎤+-⋅⎢⎥++-⎣⎦, =1(1)1x x x x x -⋅+-, =11x +, 故答案为:11x +. 【点睛】 本题考查了分式的混合运算,掌握正确的运算顺序和运算法则是解题关键.17.1【分析】根据分式的值为零可得解方程即可得【详解】由题意得:解得分式的分母不能为零解得符合题意故答案为:1【点睛】本题考查了分式的值为零正确求出分式的值和掌握分式有意义的条件是解题关键解析:1【分析】根据分式的值为零可得10x -=,解方程即可得.【详解】由题意得:10x -=,解得1x =,分式的分母不能为零,260x ∴-≠,解得3x ≠,1x ∴=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键. 18.【分析】根据分式的基本性质:分子和分母同时除以6mn 化简【详解】故答案为:【点睛】此题考查分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不等于零的整式分式的值不变 解析:3m n-【分析】根据分式的基本性质:分子和分母同时除以6mn 化简.【详解】22618m n mn=-3m n -, 故答案为:3m n-. 【点睛】此题考查分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不等于零的整式,分式的值不变. 19.【分析】分别计算绝对值和0次幂再计算和即可【详解】解:原式=5+1=6故答案为:6【点睛】此题主要考查了实数运算解题的关键是熟练掌握绝对值及零次幂的性质解析:【分析】分别计算绝对值和0次幂,再计算和即可.【详解】解:原式=5+1=6.故答案为:6.【点睛】此题主要考查了实数运算,解题的关键是熟练掌握绝对值及零次幂的性质.20.4【分析】方程的右边是1有三种可能需要分类讨论第1种可能:指数为0底数不为0;第2种可能:底数为1;第3种可能:底数为-1指数为偶数【详解】解:(1)当x+2020=0x2+x -1≠0时解得x=﹣2解析:4【分析】方程的右边是1,有三种可能,需要分类讨论.第1种可能:指数为0,底数不为0;第2种可能:底数为1;第3种可能:底数为-1,指数为偶数.【详解】解:(1)当x+2020=0,x 2+x -1≠0时,解得x=﹣2020;(2)当x 2+x -1=1时,解得x=﹣2或1.(3)当x 2+x -1=﹣1,x+2020为偶数时,解得x=0因而原方程所有整数解是﹣2020,-2,1,0共4个.故答案为:4.【点睛】本题考查了:a 0=1(a 是不为0的任意数)以及1的任何次方都等于1.容易遗漏第3种可能情况,需特别注意.三、解答题21.14,3x x +--【分析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】解:原式=(x ﹣1﹣21x x +)÷221x x x ++ =22(1)(1)()111x x x x x x x ⎡⎤-++-⋅⎢⎥⎣⎦++ =2221(1)1x x x x x--+⋅+ =1x x+- 当x =3时,原式=31433+-=-. 【点睛】本题主要考查分式的化简求值,熟练掌握分式的减法和除法法则,是解题的关键.22.12x -;13【分析】 分式的混合运算,注意先算乘除,然后算加减,有小括号先算小括号里面的,然后代入求值即可【详解】 解:214111x x x -⎛⎫+÷ ⎪++⎝⎭ 2111114x x x x x ++⎛⎫=+⋅ ⎪++-⎝⎭ ()()21122x x x x x ++=⋅++- 12x =- 把5x =代入上式,得:1112523x ==-- 【点睛】本题考查分式的混合运算,掌握运算法则和运算顺序正确计算是解题关键.23.(1)0;(2)112m -;(3)x 【分析】(1)根据实数的混合运算的法则计算即可;(2)利用完全平方公式,平方差公式去括号、合并同类项后再计算除法即可; (3)根据分式乘法的法则进行计算即可.【详解】解:(1)原式=23212⎛⎫- ⎪⎝⎭=92314--+ =0.25﹣3+1=-1.75; (2)原式=()()222424134m m m m ++-+-÷- =()()2244m m m -+÷- =22444m m m m-+-- =112m -; (3)原式=()()()()2111·11x x x x x x +--+- =x .【点睛】本题考查实数的混合运算、整式的混合运算、完全平方公式,平方差公式,分式的乘法运算,正确计算负整数指数幂、零指数幂、多项式乘法公式和因式分解是解题关键. 24.(1)1207x =;(2)无解 【分析】(1)先去分母,解整式方程,求解后检验是否为原分式方程的解即可;(2)先去分母,解整式方程,求解后检验是否为原分式方程的解即可.【详解】 (1)解:1171.572x x +=方程两边都乘72x , 得:72+48=7x , 解得:1207x =, 经检验:1207x =是原方程的解; (2)21533x x x-+=--方程两边都乘(3x -), 得:x-2-1=5(x-3),解得:3x =,检验:当3x =时,x-3=3-3=0,是增根,故原方程无解.【点睛】此题考查解分式方程,掌握解分式方程的步骤:去分母化为整式方程,解整式方程,检验解的情况.25.这名女生跑完800米所用时间是224秒【分析】设这名女生跑完800米所用时间x 秒,由题意可得关于x 的分式方程,解分式方程并经过检验即可得到问题答案.【详解】解:设这名女生跑完800米所用时间x 秒,则这名男生跑完1000米所用时间(56)x +秒, 根据题意,得800100056x x =+. 解得:224=x .经检验,224=x 是所列方程的解,并且符合实际问题的意义.答:这名女生跑完800米所用时间是224秒.【点睛】本题考查分式方程的应用,根据题目中的数量关系正确地列出分式方程并求解是解题关键.26.1x y+ 【分析】首先把两分式通分化为同分母分式后,再按照分母不变,分子相加减的法则计算.【详解】 解:原式2()()()()x y y x y x y x y x y +=-+-+- 2()()x y y x y x y +-=+-. ()()x y x y x y -=+-. 1x y=+. 【点睛】本题考查分式的加减运算,熟练掌握异分母分式的加减法则是解题关键.。

最新人教版初中数学八年级数学上册第五单元《分式》检测卷(包含答案解析)

最新人教版初中数学八年级数学上册第五单元《分式》检测卷(包含答案解析)

一、选择题1.关于x 的分式方程5222m x x+=--有增根,则m 的值为( ) A .2m = B .2m =- C .5m = D .5m =-2.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510yy a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2B .3C .6D .113.若关于x 的分式方程122x a x -=-的解为非负数,且关于x 的不等式组5x x a ≥⎧⎨>⎩的解集是5x ≥,则符合条件的整数a 有( )A .1个B .2个C .3个D .4个4.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m =5.计算233222()m n m n -⋅-的结果等于( )A .2mnB .2nmC .2mnD .72mn6.下列各式中,正确的是( )A .22a a b b =B .11a ab b +=+ C .2233a b a ab b=D .232131a ab b ++=-- 7.若a 与b 互为相反数,则22201920212020a bab+=( )A .-2020B .-2C .1D .28.若x 2y 5=,则x y y+的值为( ) A .25 B .72C .57D .759.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .1410.大爱无疆,在爆发新冠病毒疫情后,甲,乙两家单位分别组织了员工捐款.已知甲单位捐款7500元,乙单位捐款9800元,甲单位捐款人数比乙单位少10人,且甲单位人均捐款额比乙单位多20元,若设甲单位的捐款人数为x ,则可列方程为( ) A .7500980020x x 10-=- B .9800750020x 10x-=- C .7500980020x x 10-=+D .9800750020x 10x-=+ 11.下列计算正确的是( )A .1112a a a+=B .2211()()a b b a +--=0C .m n a -﹣m na +=0 D .11a b b a+--=0 12.22()-n b a (n为正整数)的值是( )A .222+n n b aB .42n n b aC .212+-n n b aD .42-nn b a二、填空题13.已知13x x-=,则21x x ⎛⎫+= ⎪⎝⎭________.14.已知实数a 、b 满足32a b =,则a ba b +-_________. 15.已知2510m m -+=,则22125m m m-+=____.16.若13x x +=,则231xx x ++的值是_______.17.化简:(﹣2y x)3÷(223⋅y x x y )=_______________.18.对于两个不相等的实数a ,b ,我们规定符号Min{,}a b 表示a ,b 中的较小的值,如Min{3,4}3=,按照这个规定,方程135Min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_____________.19.计算35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=__. 20.已知114y x-=,则分式2322x xy yx xy y +---的值为______.三、解答题21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为30元,用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共50件,其中甲种玩具不低于22件,商场决定此次进货的总资金不超过750元,求商场共有几种进货方案?22.为做好新冠肺炎疫情防控,某学校购入了一批洗手液与消毒液.购买洗手液花费3200元,购买消毒液花费3000元,购买的洗手液瓶数是消毒液瓶数的2倍,每瓶消毒液的价格比每瓶洗手液的价格高7元.(1)求一瓶洗手液的价格与一瓶消毒液的价格分别是多少元?(2)入冬以后,常见呼吸道传染病进入高发期,加剧了疫情防控的复杂性,学校决定第二次购入一批洗手液与消毒液,洗手液和消毒液的瓶数分别都比第一次的购入量多100瓶.适逢经销商进行价格调整,每瓶洗手液的价格比第一次的价格降低5%4a ,每瓶消毒液的价格比第一次的价格降低%a ,最终第二次购买洗手液与消毒液的总费用只比第一次购买洗手液 与消毒液的总费用多400元,求a 的值. 23.先化简,再求值.(1)22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x 是9的平方根; (2)2222221211⎛⎫-+-÷ ⎪-+-⎝⎭a a a aa a a ,然后从-1,0,1,2中选一个合适的数作为a 的值代入求值.24.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明. (分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升. ②两次加油,每次只加40升的平均油价为:_______________元/升. (解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算. 25.(1)计算:0)4π+-(2)解不等式:452(1)x x +≤+ 26.先化简,再求值:2222631121x x x x x x x ++-÷+--+,其中2x =-.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】先把分式方程化为整式方程,再把增根代入整式方程,即可求解. 【详解】5222m x x+=-- 去分母得:52(2)x m +-=-,∵关于x 的分式方程5222m x x+=--有增根,且增根x=2, ∴把x=2代入52(2)x m +-=-得,5m =-,即:m=-5,故选D . 【点睛】本题主要考查分式方程的增根,掌握分式方程增根的定义:使分式方程的分母为零的根,叫做分式方程的增根,是解题的关键.2.B解析:B 【分析】根据分式方程的解为正整数解,即可得出a =0,1,2,5,11,根据不等式组的解集为a−1<4,即可得出a <5,找出a 的所有的整数,将其相加即可得出结论. 【详解】解:∵分式方程有解, ∴解分式方程得x =121a +, ∵x≠3, ∴121a +≠3,即a≠3, 又∵分式方程有正整数解, ∴a =0,1,2,5,11, 又∵不等式组至少有2个整数解, ∴解不等式组得51y y a ≤⎧⎨-⎩>,∴a−1<4, 解得,a <5, ∴a =0,1,2, ∴0+1+2=3, 故选:B . 【点睛】本题考查了一元一次不等式组的整数解、分式方程的解,有一定难度,注意分式方程中的解要满足分母不为0的情况.3.C解析:C【分析】解分式方程的得出x=2a-2,根据解为非负数得出2a-2≥0,且2a-2≠2,据此求出解得a≥1且a≠2;解不等式组两个不等式,根据解集得出a<5;综合以上两点得出整数a的值,从而得出答案.【详解】解:分式方程122x ax-=-,去分母,得:2(x-a)=x-2,解得:x=2a-2,∵分式方程的解为非负数,∴2a-2≥0,且2a-2≠2,解得a≥1且a≠2,∵不等式组5xx a≥⎧⎨>⎩的解集是x≥5,∴1≤a<5,且a≠2,则整数a的值为1、3、4共3个,故选:C.【点睛】本题主要考查分式方程的解和解一元一次不等式组,解题的关键是根据分式方程的解的情况及不等式组解集的情况得出a的取值范围.4.B解析:B【分析】先根据分式为零的条件列出关于m的不等式组并求解即可.【详解】解:∵11 mm-+=0∴m-1=0,m+1≠0,解得m=1.故选B.【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.5.A解析:A【分析】根据整数指数幂的运算法则进行运算即可.解:原式=43431222m m m n n m n n---=⋅=⋅=故选:A . 【点睛】本题考查了整数指数幂的运算,掌握运算法则是解题的关键6.C解析:C 【分析】利用分式的基本性质变形化简得出答案. 【详解】A .22a a b b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B .11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误; C .2233a b a ab b=,从左边到右边分子和分母同时除以ab ,分式的值不变,故正确; D .232131a a b b ++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误. 故选:C . 【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.7.B解析:B 【分析】a 与b 互为相反数,由相反数的定义与性质得22=,a b a b -=,将代数式中字母统一成b,合并约分即可. 【详解】∵a 与b 互为相反数, ∴22=,a b a b -=,222222019202120192021220202020a b b b ab b ++==--, 故选择:B . 【点睛】本题考查分式求值问题,掌握相反数的定义与性质,会利用相反数将代数式的字母统一为b 是解题关键.8.D【分析】根据同分母分式的加法逆运算得到x y x y y y y +=+,将x 2y 5=代入计算即可. 【详解】 解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D . 【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.9.B解析:B 【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可. 【详解】去分母得:()()22421x k x --+=,整理得:22290x kx k ---=, ∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义, ∴14k =- 故选:B 【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.10.C解析:C 【分析】由设甲单位的捐款人数为x ,甲单位捐款人数比乙单位少10人,得到乙单位人数为(x+10),根据甲单位人均捐款额比乙单位多20元列得方程. 【详解】解:由题意得:7500980020x x 10-=+, 故选:C . 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键.11.D解析:D 【分析】直接根据分母不变,分子相加运算出结果即可. 【详解】 解:A 、112a a a+=,故错误; B 、原式=2211()()a b a b +--=22()a b -,故错误;C 、原式=m n m n a ---=﹣2na ,故错误;D 、原式=11a b a b---=0,故正确. 故选D . 【点睛】本题主要考查了分式的加减法,解题的关键是掌握运算法则,此题基础题,比较简单.12.B解析:B 【分析】根据分式的乘方计算法则解答. 【详解】2422()-=nn n b b a a. 故选:B . 【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.二、填空题13.13【分析】把已知等式两边分别平方适当变形后再将所求代数式展开整体代入求解【详解】解:∵∴即∴故答案为:13【点睛】此题主要考查了分式的求值以及完全平方公式正确运用公式是解题关键解析:13 【分析】把已知等式两边分别平方适当变形后,再将所求代数式展开整体代入求解. 【详解】 解:∵13x x-=, ∴2211()29x x x x -=+-=,即22111x x+=, ∴22211211213x x x x ⎛⎫+=++=+= ⎪⎝⎭,故答案为:13. 【点睛】此题主要考查了分式的求值以及完全平方公式,正确运用公式是解题关键.14.5【分析】根据已知用b 表示a 然后把a 的值代入所求的代数式分子分母约掉b 后可以得到解答【详解】∴∴故答案为:5【点睛】本题考查分式的化简与求值熟练掌握分式化简与求值的各种方法是解题关键解析:5 【分析】根据已知用b 表示a ,然后把a 的值代入所求的代数式,分子分母约掉b 后可以得到解答. 【详解】32a b =, ∴32a b =∴32532b ba b a b b b ++==--, 故答案为:5. 【点睛】本题考查分式的化简与求值,熟练掌握分式化简与求值的各种方法是解题关键.15.22【分析】根据m2﹣5m+1=0可得m+=55m=m2+1然后将原分式适当变形后整体代入计算即可【详解】解:∵m2﹣5m+1=0∴m ﹣5+=05m=m2+1∴m+=5∴2m2﹣5m+=2m2﹣m2解析:22 【分析】根据m 2﹣5m+1=0可得m +1m=5,5m=m 2+1,然后将原分式适当变形后整体代入计算即可. 【详解】解:∵m 2﹣5m+1=0, ∴m ﹣5+1m=0,5m=m 2+1, ∴m +1m=5, ∴2m 2﹣5m+21m =2m 2﹣m 2﹣1+21m =m 2+21m ﹣1 =(m +1m )2﹣3 =52﹣3 =25﹣3 =22.故答案为:22. 【点睛】本题考查分式的求值.掌握整体代入思想是解题关键.在本题中还需理解22211()2m m m m+=++. 16.【分析】把原分式分子分母除以x 然后利用整体代入的方法计算【详解】当原式=故答案为:【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算解析:34【分析】把原分式分子分母除以x ,然后利用整体代入的方法计算. 【详解】233111x x x x x=++++,当13x x +=,原式=33314=+. 故答案为:34. 【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算.17.﹣【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】解:原式=﹣÷=﹣•=﹣故答案为:﹣【点睛】本题考查分式的混合运算按照正确的运算顺序进行运算并及时化简是解题的关键解析:﹣25y x【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】 解:原式=﹣36y x ÷y x=﹣36y x •x y=﹣25y x, 故答案为:﹣25y x. 【点睛】本题考查分式的混合运算,按照正确的运算顺序进行运算并及时化简是解题的关键. 18.【分析】根据题中的新定义化简求出分式方程的解检验即可【详解】当<时>2方程变形得:=−2去分母得:1=解得:(不符合题意舍去);当>即<2方程变形得:=−2去分母得:3=解得:经检验是分式方程的解综解析:4x =-【分析】根据题中的新定义化简,求出分式方程的解,检验即可.【详解】 当12x -<32x -时,x >2,方程变形得:12x -=52x x --−2, 去分母得:1=()522x x ---,解得:=2x -(不符合题意,舍去); 当12x ->32x -,即x <2,方程变形得:32x -=52x x --−2, 去分母得:3=()522x x ---,解得:4x =-,经检验4x =-是分式方程的解,综上,所求方程的解为4x =-.故填:4x =-.【点睛】此题考查了解分式方程,以及实数的运算,弄清题中的新定义是解本题的关键. 19.【分析】首先计算积的乘方再计算中括号内的同底数幂的乘法最后计算单项式除以单项式即可得出答案【详解】解:===故答案为:【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式熟练掌握运算法则是解答此 解析:7a .【分析】首先计算积的乘方,再计算中括号内的同底数幂的乘法,最后计算单项式除以单项式即可得出答案.【详解】解:35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=1526()a a a -÷-=158()a a -÷-=7a .故答案为:7a .【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式,熟练掌握运算法则是解答此题的关键. 20.【分析】先根据题意得出x-y=4xy 然后代入所求的式子进行约分就可求出结果【详解】∵∴x-y=4xy ∴原式=故答案为:【点睛】此题考查分式的基本性质正确对已知式子进行化简约分正确进行变形是关键 解析:112【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果.【详解】 ∵114y x-=, ∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112. 【点睛】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键. 三、解答题21.(1)甲,乙两种玩具分别是16元/件,14元/件;(2)4种【分析】(1)设甲种玩具进价x 元/件,则乙种玩具进价为(30﹣x )元/件,然后根据用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同列分式方程求解,注意结果要检验; (2)设购进甲种玩具y 件,则购进乙种玩具(50﹣y )件,然后利用甲种玩具不低于22件,商场决定此次进货的总资金不超过750元列不等式求解,从而确定y 的取值【详解】解:(1)设甲种玩具进价x 元/件,则乙种玩具进价为(30﹣x )元/件依题意得:80x =7030x- 解得:x =16, 经检验x =16是原方程的解.∴30﹣x =14.甲,乙两种玩具分别是16元/件,14元/件;(2)设购进甲种玩具y 件,则购进乙种玩具(50﹣y )件,依题意得: 16y +14(50-y )≤750,解得:y≤25,又∵y≥22∴22≤y≤25因为y 为非负整数,∴y 取22,23,24, 25共有4种方案.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式组. 22.(1)一瓶洗手液的价格为8元,一瓶消毒液的价格为15元;(2)20a =.【分析】(1)设一瓶洗手液的价格为x 元,则一瓶消毒液的价格为(x +7)元.根据题意可列出关于x 的分式方程,求出x 即可.(2)先求出第二次购入洗手液和消毒液各多少瓶,再结合题意列出关于a 的一元一次方程,解出a 即可.【详解】(1)设一瓶洗手液的价格为x 元,则一瓶消毒液的价格为(x +7)元. 根据题意可列方程:3200300027x x =⨯+, 解得:8x =,经检验8x =是原方程得解.故一瓶洗手液的价格为8元,一瓶消毒液的价格为8+7=15元.(2)第二次购入洗手液32001005008+=瓶,购入消毒液300010030015+=瓶.根据题意可列等式:55008(1%)30015(1%)320030004004a a ⨯⨯-+⨯⨯-=++. 解得:20a =.【点睛】 本题考查一元一次方程和分式方程的实际应用.根据题意找准等量关系,列出相应方程是解答本题的关键.23.(1)3x ;±1;(2)1a a +,2a =,值为32【分析】(1)先化简,后把x=3或x=-3分别代入求值;(2)先化简,根据分母不能为零的原则,选择数值代入计算即可.【详解】(1)原式=212(2)2(2)x x x x x x +-+-⎛⎫⨯ ⎪--⎝⎭ =23(2)2(2)x x x x -⨯-- =3x, ∵x 是9的平方根, ∴3x =±,∴原式=±1.(2)原式=2(1)(1)(1)(1)(1)(1)a a a a a a a ⎛⎫-++-⨯ ⎪-+⎝⎭ 1a a+=, 由题意当1,1,0a =-时,原分式没有意义, ∴2a =,此时原分式32=. 【点睛】本题考查了分式的化简求值,选值时,确保每一个分式有意义是解题的关键.24.【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+xy ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格;解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.25.(1)3-;(2)x≤32-. 【分析】(1)原式利用零指数幂法则,绝对值的意义,以及算术平方根性质计算即可得到结果; (2)去括号,移项,合并同类项,系数化成1即可求出不等式的解集.【详解】解:(1)原式=14+-3-;(2)去括号,得4x+5≤2x+2,移项合并同类项得,2x≤-3,解得x≤32-. 【点睛】此题考查了实数的运算和解一元一次不等式,零指数幂,熟练掌握运算法则是解本题的关键. 26.21x +,-2 【分析】 先将分式的分子分母因式分解,同时将除法转化为乘法,再计算分式的乘法,最后计算分式的减法即可.【详解】 解:2222631121x x x x x x x ++-÷+--+ 222(3)(1)1(1)(1)3x x x x x x x +-=-⋅++-+ 22(1)11x x x x -=-++ 21x =+, 当2x =-时,原式222211===--+-. 【点睛】 本题主要考查分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键.。

最新人教版初中数学八年级数学上册第五单元《分式》检测题(包含答案解析)

最新人教版初中数学八年级数学上册第五单元《分式》检测题(包含答案解析)

一、选择题1.已知分式24x x+的值是正数,那么x 的取值范围是( )A .x >0B .x >-4C .x ≠0D .x >-4且x ≠02.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( )A .6000600052x x-= B .6000600052x x -= C .6000600052x x -=+ D .6000600052x x-=+ 3.若关于x 的方程1044m xx x--=--无解,则m 的值是( ) A .2- B .2 C .3- D .34.计算:2x y x yx y xy-⋅-=( ) A .x B .y xC .yD .1x5.已知分式34x x -+的值为0,则x 的值是( ) A .3 B .0C .-3D .-46.若x 2y 5=,则x y y+的值为( ) A .25 B .72C .57D .757.小红用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小红和小丽买到相同数量的笔记本.设硬面笔记本每本售价为x 元,根据题意可列出的方程为( ) A .1524x x 3=+ B .1524x x 3=- C .1524x 3x=+ D .1524x 3x=- 8.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④9.下列各式计算正确的是( )A .()23233412a b a b-=-B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba b b -÷=-D .()325339a ba b -=-10.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++ B .222()x y x y +- C .222()x y x y-+ D .222()x y x y ++11.2a ab b a ++-的结果是( ).A .2a-B .4aC .2b a b--D .b a - 12.下列各式中,无论x 取何值,分式都有意义的是( ). A .132x - B .213x + C .231x x + D .21xx + 二、填空题13.若x =2是关于x 的分式方程31k x x x -+-=1的解,则实数k 的值等于_____. 14.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.15.当2x =,3y =-时,代数式22222-⋅++x y xx x xy y 的值为________. 16.计算:222213699211-+-+⋅⋅=--++x x x x x x x x ___________.17.已知(3)1a a -=,则整数a 的值为______. 18.计算:262393x x x x -÷=+--______. 19.某工人现在平均每天比原计划多做20个零件,现在做4000个零件和原来做3000个零件的时间相同,问现在平均每天做______个零件.20.计算:22a 1a 1a 2a a--÷+=____. 三、解答题21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为30元,用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共50件,其中甲种玩具不低于22件,商场决定此次进货的总资金不超过750元,求商场共有几种进货方案? 22.解方程: (1)x 21x 1x-=- (2)3142x x -=-+ 23.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等 (1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 24.列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步.在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒. 25.解方程:813(3)x x x x x ++=--. 26.(提示:我们知道,如果0a b ->,那么a b >.) 已知0m n >>.如果将分式nm的分子、分母都加上同一个不为0的数后,所得分式的值比nm是增大了还是减小了?请按照以下要求尝试做探究. (1)当所加的这个数为1时,请通过计算说明; (2)当所加的这个数为2时,直接说出结果;(3)当所加的这个数为0a >时,直接说出结果.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】若24x x +的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围. 【详解】解:∵24x x +>0, ∴x +4>0,x≠0, ∴x >−4且x≠0. 故选:D . 【点睛】本题考查分式值的正负性问题,若对于分式ab(b≠0)>0时,说明分子分母同号;分式ab(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 2.A解析:A 【分析】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天列分式方程. 【详解】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 根据题意得:6000600052x x-=, 故选:A . 【点睛】此题考查分式方程的实际应用,正确理解题意找到等量关系从而列出方程是解题的关键.3.D解析:D 【分析】根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值. 【详解】解:去分母得:m +1−x =0,∵方程1044m xx x --=--无解, ∴x =4是方程的增根, ∴m =3. 故选:D .【点睛】本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根.4.A解析:A【分析】根据分式乘法计算法则解答.【详解】解:2x y x yx y xy-⋅-=x,故选:A.【点睛】此题考查分式的乘法计算法则,熟记计算法则是解题的关键.5.A解析:A【分析】根据分式的值为0的条件可以求出x的值;分式为0时,分子为0分母不为0;【详解】由分式的值为0的条件得x-3=0,x+4≠0,由x-3=0,得x=3,由x+4≠0,得x≠-4,综上,得x=3时,分式34xx-+的值为0;故选:A.【点睛】本题考查了分式的值为0的情况,若分式的值为0,需要同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可.6.D解析:D【分析】根据同分母分式的加法逆运算得到x y x yy y y+=+,将x2y5=代入计算即可.【详解】解:∵x2y5 =,∴x y x y2y y y5+=+=+175=,故选:D.【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.7.D解析:D 【分析】由设硬面笔记本每本售价为x 元,可得软面笔记本每本售价为()x 3-元,根据小红和小丽买到相同数量的笔记本列得方程. 【详解】解:设硬面笔记本每本售价为x 元,则软面笔记本每本售价为()x 3-元, 根据题意可列出的方程为:1524x 3x=-. 故选:D . 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程是解题的关键.8.C解析:C 【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案. 【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()aa 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa1a 1a a 1÷+-+ =()()aa 11a 1a a+⋅+- =11a-; ∵a 为负整数,且a 1≠-, ∴1a -是大于1的正整数, 则1101a 2<<-. 故选C . 【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.9.A解析:A 【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可. 【详解】A 、()23233412ab a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误; C 、()24222842a b a b b -÷=-,故这个选项错误; D 、()3263327a b a b -=-,故这个选项错误;故选:A . 【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.10.C解析:C 【分析】根据分式的除法法则计算即可. 【详解】2222x y x y x y x y -+÷+-()()22x y x y x y x y x y +--=⨯++222()x y x y -=+ 【点睛】此题考查分式的除法法则:先把除式的分子分母颠倒位置,再化为最简分式即可.11.C解析:C 【分析】根据分式的加减运算的法则计算即可. 【详解】222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.12.B解析:B 【分析】根据分式有意义的条件:分母不等于0确定答案.【详解】A 、若3x-2≠0,即23x ≠时分式有意义,故该选项不符合题意; B 、∵230x +>,∴无论x 取何值,分式都有意义,故该项符合题意;C 、∵20x ≥,∴x ≠0时分式有意义,故该选项不符合题意;D 、若210x +≠即12x ≠-时分式有意义,故该选项不符合题意; 故选:B . 【点睛】此题考查分式有意义的的条件:分母不等于0.二、填空题13.4【分析】将x=2代入求解即可【详解】将x=2代入=1得解得k=4故答案为:4【点睛】此题考查分式方程的解解一元一次方程正确理解方程的解是解题的关键解析:4 【分析】将x=2代入求解即可. 【详解】 将x=2代入31k x x x -+-=1,得112k -=,解得k=4, 故答案为:4. 【点睛】此题考查分式方程的解,解一元一次方程,正确理解方程的解是解题的关键.14.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可.15.-5【分析】根据平方差公式完全平方公式和分式运算的性质先化简代数式;再将代入到代数式计算即可得到答案【详解】∵∴故答案为:-5【点睛】本题考查了乘法公式分式运算代数式的知识;解题的关键是熟练掌握分式解析:-5 【分析】根据平方差公式、完全平方公式和分式运算的性质,先化简代数式;再将2x =,3y =-代入到代数式计算,即可得到答案. 【详解】22222-⋅++x y xx x xy y 2()()()x y x y xx x y +-=⋅+x y x y-=+ ∵2x =,3y =-∴22222-⋅++x y xx x xy y x y x y-=+ 2(3)23--=- 5=-故答案为:-5. 【点睛】本题考查了乘法公式、分式运算、代数式的知识;解题的关键是熟练掌握分式运算、乘法公式的性质,从而完成求解.16.【分析】先将分子和分母分解因式再计算乘法并将结果化为最简分式【详解】【点睛】此题考查分式的乘法计算法则:分子相乘作积的分子分母相乘作积的分母 解析:31x x -- 【分析】先将分子和分母分解因式,再计算乘法,并将结果化为最简分式.【详解】2222221369(1)(1)3(3)39211(3)(3)(1)11-+-++-+--⋅=⋅⋅=--+++--+-x x x x x x x x x x x x x x x x x x . 【点睛】此题考查分式的乘法计算法则:分子相乘作积的分子,分母相乘作积的分母.17.24【分析】由于底数和指数都不确定所以本题分三种情况进行讨论即可求解【详解】①若时∴;②若时1的任何次幂都等于1∴;③若时-1的偶次幂等于1∴而∴符合题意;故答案为:024【点睛】本题主要考查了零指解析:2、4 【分析】由于(3)1aa -=,底数和指数都不确定,所以本题分三种情况进行讨论即可求解. 【详解】①若30a -≠时,(3)1a a -=, ∴0a =;②若31a -=时,1的任何次幂都等于1, ∴4a =;③若31a -=-时,-1的偶次幂等于1, ∴2a =,而2(23)1-=, ∴2a =符合题意; 故答案为:0、2、4. 【点睛】本题主要考查了零指数幂的性质以及有理数的乘方,正确把握定义是解题关键.18.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1 【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可. 【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+1=.故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 19.80【分析】设现在每天做x 个零件则原计划每天做个零件根据工作时间=工作总量÷工作效率结合现在做4000个零件和原来做3000个零件的时间相同即可得出关于x 的方程求解即可【详解】设现在每天做x 个零件则解析:80【分析】设现在每天做x 个零件,则原计划每天做()20x -个零件,根据工作时间=工作总量÷工作效率,结合现在做4000个零件和原来做3000个零件的时间相同,即可得出关于x 的方程,求解即可.【详解】设现在每天做x 个零件,则原计划每天做()20x -个零件, 依题意得:4000300020x x =-, 解得:80x =;经检验x=80是原方程的解∴现在平均每天做80个零件故答案为:80.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解答本题的关键. 20.【分析】根据分式除法法则先将除法转化为乘法再运用分式的乘法法则进行计算即可得出结果【详解】解:故答案为:【点睛】本题考查了分式的除法运算掌握分式的乘除法的关系及运算法则是解题的关键 解析:12a a ++ 【分析】根据分式除法法则先将除法转化为乘法,再运用分式的乘法法则进行计算,即可得出结果.【详解】 解:22a 1a 1a 2a a--÷+ ()()()a 1a 1a a a 2a 1+-=⋅+- 12a a +=+故答案为:12a a ++ 【点睛】 本题考查了分式的除法运算,掌握分式的乘、除法的关系及运算法则是解题的关键.三、解答题21.(1)甲,乙两种玩具分别是16元/件,14元/件;(2)4种【分析】(1)设甲种玩具进价x 元/件,则乙种玩具进价为(30﹣x )元/件,然后根据用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同列分式方程求解,注意结果要检验; (2)设购进甲种玩具y 件,则购进乙种玩具(50﹣y )件,然后利用甲种玩具不低于22件,商场决定此次进货的总资金不超过750元列不等式求解,从而确定y 的取值【详解】解:(1)设甲种玩具进价x 元/件,则乙种玩具进价为(30﹣x )元/件依题意得:80x =7030x- 解得:x =16, 经检验x =16是原方程的解.∴30﹣x =14.甲,乙两种玩具分别是16元/件,14元/件;(2)设购进甲种玩具y 件,则购进乙种玩具(50﹣y )件,依题意得: 16y +14(50-y )≤750,解得:y≤25,又∵y≥22∴22≤y≤25因为y 为非负整数,∴y 取22,23,24, 25共有4种方案.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式组. 22.(1)2x =;(2)1x =-.【分析】(1)等式两边同时乘()1x x -去分母,再按照整式方程的解法求解即可;(2)等式两边同时乘()+2x 去分母,再按照整式方程的解法求解即可.【详解】(1)解:等式两边同时乘()1x x -得:()()221=1x x x x ---, 去括号得:222+2=x x x x --,移项并合并同类项得:=2x --,解得:2x =,经检验2x =是原分式方程的根;(2)解:等式两边同时乘()+2x 得:()3142x x -=-+,去括号得:3148x x -=--,移项并合并同类项得:77x =-,解得:1x =-,经检验1x =-是原分式方程的根.【点睛】本题考查分式方程的解法,化分式方程为整式方程是关键.23.(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =, 经检验, = 5x 是原方程的解,且符合题意,1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.24.这名女生跑完800米所用时间是224秒【分析】设这名女生跑完800米所用时间x 秒,由题意可得关于x 的分式方程,解分式方程并经过检验即可得到问题答案.【详解】解:设这名女生跑完800米所用时间x 秒,则这名男生跑完1000米所用时间(56)x +秒, 根据题意,得800100056x x =+. 解得:224=x .经检验,224=x 是所列方程的解,并且符合实际问题的意义.答:这名女生跑完800米所用时间是224秒.【点睛】本题考查分式方程的应用,根据题目中的数量关系正确地列出分式方程并求解是解题关键.25.2x =-【分析】原分式方程两边同乘以x(x-3),即可去分母将原方程转化为整式方程,求出整式方程的解,检验后即可完成解此分式方程.【详解】 解:813(3)x x x x x ++=-- 去分母,得2283x x x x ++=-,解此方程,得2x =-,经检验,2x =-是原方程的解.【点睛】此题考查了解分式方程,掌握解分式方程的一般步骤以及利用了转化的思想是解题的关键,并切记解分式方程要检验.26.(1)所得分式的值比原来增大了,计算说明见解析;(2)增大;(3)增大.【分析】(1)先求出11n n m m +-+,通分化简,然后根据0m n ->,0m >判断即可; (2)先求出22n n m m +-+,通分化简,然后根据0m n ->,0m >判断即可; (3)先求出n a n m a m+-+,通分化简,然后根据0m n ->,0m >,0a >判断即可. 【详解】解:(1)由题意得:11n n m m+-+, (1)(1)(1)(1)m n n m m m m m ++=-++, (1)mn m mn n m m +--=+, (1)m n m m -=+, ∵0m n >>,∴0m n ->,0m >,10m +>, ∴0(1)m n m m ->+, ∴101n n m m+->+, 11n n m m+∴>+,即所得分式的值比原来增大了; (2)22n n m m+-+ (2)(2)(2)(2)m n n m m m m m ++=-++ 22(2)mn m mn n m m +--=+ ()2(2)m n m m -=+同理可得()20(2)m n m m ->+, ∴22n n m m+>+,即所得分式的值比原来增大了; (3)n a n m a m +-+ ()()()()m n a n m a m m a m m a ++=-++ ()mn ma mn na m m a +--=+ ()(2)a m n m m -=+∵0m n ->,0m >,0a >,∴()0(2)a m n m m ->+ ∴n a n m a m+>+,即所得分式的值比原来增大了. 【点睛】本题考查分式的运算,解题的关键是掌握分式运算的法则.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.如果分式2121x x -+的值为0,则x 的值是( )A .1B .0C .1-D .±12.若关于x 的方程1044m xx x--=--无解,则m 的值是( ) A .2-B .2C .3-D .33.关于代数式221a a +的值,以下结论不正确的是( ) A .当a 取互为相反数的值时,221a a+的值相等B .当a 取互为倒数的值时,221a a +的值相等 C .当1a >时,a 越大,221a a+的值就越大 D .当01a <<时,a 越大,221a a+的值就越大 4.小红用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小红和小丽买到相同数量的笔记本.设硬面笔记本每本售价为x 元,根据题意可列出的方程为( ) A .1524x x 3=+ B .1524x x 3=- C .1524x 3x=+ D .1524x 3x=- 5.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④6.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2±B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xyx y-中的,x y 都扩大3倍,分式的值不变D .分式211x x ++是最简分式7.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1- B .1 C .3 D .3-8.下列计算正确的是( )A .22a a a ⋅=B .623a a a ÷=C .2222a b ba a b-=-D .3339()28a a-=- 9.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .2222x xy y x xy-+-D .21628x x -+10.已知227x ,y ==-,则221639yx y x y ---的值为( ) A .-1B .1C .-3D .311.22()-n b a (n为正整数)的值是( )A .222+n n b aB .42n n b aC .212+-n n b aD .42-nn b a12.若220.3,3a b --=-=-,213c -⎛⎫=- ⎪⎝⎭,013d ⎛⎫=- ⎪⎝⎭,则( ) A .a b c d <<<B .b a c d <<<C .b a d c <<<D .a b d c <<<二、填空题13.计算:22311x x x -=+-____________. 14.分式2222,39a bb c ac 的最简公分母是______. 15.计算:()1211x x x x x ⎡⎤-⋅=⎢⎥+-⎣⎦______. 16.已知215a a+=,那么2421a a a =++________.17.PM2.5是指大气中直径小于或等于2.5微米(0.0000000025千米)的颗粒物,也称为可入肺颗粒物.2.5微米用科学记数法表示为________千米.18.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5400元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数多100盒,且每盒花的进价比第一批的进价少3元.设第一批盒装花的进价是x 元,则根据题意可列方程为________.19.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________.20.九年级()1班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x 千米/时,根据题意列方程为________.三、解答题21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等 (1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 22.某小区购买了A 型和B 型两种垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?(要求列分式方程求解) 23.计算:2212yx y x y ---. 24.先化简,再求值:2222224414y x x xy y x x x y ⎛⎫+-++-÷ ⎪-⎝⎭,其中x ,y 满足()2230x y ++-=.25.观察下列等式: 第1个等式:111122=-⨯; 第2个等式:1112323=-⨯; 第3个等式:1113434=-⨯;…… (1)写出第5个等式:________________; (2)探究规律:猜想第n 个等式,并证明;(3)问题解决:一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,……,第n 次倒出的水量是1n 升的11n +,如果不考虑实际操作因素,按照这种倒水的方法,这1升水能倒完吗?为什么? 26.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯. 将以上三个等式左、右两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯ (1)若n 为正整数,猜想并填空:1(1)n n =+______.(2)计算111111223344520202021+++++⨯⨯⨯⨯⨯的结果为______.(3)解分式方程:11122(2)(3)(3)(4)1x x x x x x ++=------.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案. 【详解】解:∵分式2121x x -+值为0,∴2x+1≠0,210x -=, 解得:x=±1. 故选:D . 【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零分母不为零是解题关键.2.D解析:D 【分析】根据方程1044m xx x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值. 【详解】解:去分母得:m +1−x =0,∵方程1044m xx x--=--无解,∴x =4是方程的增根, ∴m =3. 故选:D . 【点睛】本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根.3.D解析:D 【分析】根据相反数的性质,倒数的性质以及不等式的性质来解决代数式的值即可; 【详解】当a 取互为相反数的值时,即取m 和-m ,则-m+m=0, 当a 取m 时,①222211=m a a m ++ ,当a 取-m 时,②()()222222111a m m a m m +=-+=+- , ①=②,故A 正确;B 、当a 取互为倒数的值时,即取m 和1m ,则11m m⨯= , 当a 取m 时,①222211=m a a m ++,当a 取1m时,②2222221111m 1m a m a m ⎛⎫+=+=+ ⎪⎝⎭⎛⎫⎪⎝⎭①=②,故B 正确;C 、可举例判断,由a >1得,取a=2,3(2<3)则22112=424++< 22113=939++ , 故C 正确;D 、可举例判断,由01a <<得,取a=12,13(12>13) 2222111111=4+=924391123⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭< , 故D 错误; 故选:D . 【点睛】本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键.4.D解析:D 【分析】由设硬面笔记本每本售价为x 元,可得软面笔记本每本售价为()x 3-元,根据小红和小丽买到相同数量的笔记本列得方程. 【详解】解:设硬面笔记本每本售价为x 元,则软面笔记本每本售价为()x 3-元, 根据题意可列出的方程为:1524x 3x=-. 故选:D . 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程是解题的关键.5.C解析:C 【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案. 【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()aa 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa1a 1a a 1÷+-+ =()()aa 11a 1a a+⋅+- =11a-; ∵a 为负整数,且a 1≠-, ∴1a -是大于1的正整数, 则1101a 2<<-. 故选C . 【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.6.D解析:D 【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案. 【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误;C 、分式32xyx y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误;D 、分式211x x ++是最简分式,正确; 故选:D . 【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.7.D解析:D 【分析】先将分式方程化为整式方程,再将1x =代入求解即可. 【详解】解:原式化简为81233ax a x +=-, 将1x =代入 得81233a a +=- 解得-3a =.当a =-3时a -x=-3-1=-4≠0 ∴a =-3 故选则:D . 【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.8.C解析:C 【分析】A 、B 两项利用同底数幂的乘除法即可求解,C 项利用合并同类项法则计算即可,D 项利用分式的乘方即可得到结果,即可作出判断. 【详解】解:A 、原式=a 3,不符合题意; B 、原式=a 4,不符合题意;C 、原式=-a 2b ,符合题意;D 、原式=3278a- ,不符合题意, 故选:C . 【点睛】此题考查了分式的乘方,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.9.B解析:B 【分析】最简分式的标准是分子、分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分; 【详解】 A 、()()21111111x x x x x x ++==-+-- ; B 、2211x x -+ 的分子分母不能再进行约分,是最简分式;C 、()()22222x y x xy y x y x xy x x y x--+-==-- ; D 、()()()24416428242x x x x x x +---==++ ; 故选:B . 【点睛】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意;.10.B解析:B 【分析】先通分,再把分子相加减,把x 、y 的值代入进行计算即可. 【详解】 原式=()()16333yx y x y x y --+- =()()3633x y y x y x y +-+-=()()333x yx y x y -+-=13x y+, 当227x ,y ==-,原式=112221=-,故选B . 【点睛】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.11.B解析:B 【分析】根据分式的乘方计算法则解答. 【详解】2422()-=nn n b b a a . 故选:B . 【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.12.D解析:D 【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案. 【详解】解:21000.39a -=-=-,2193b -==--,2913c -⎛⎫=- ⎪⎭=⎝,0113d ⎛⎫=-= ⎪⎝⎭,∵10011999-<-<<, ∴a b d c <<<,故选D . 【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.二、填空题13.【分析】根据通分可化成同分母分式根据同分母分式的加减可得答案【详解】故答案为:【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键解析:323x x x-- 【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案. 【详解】()()()()()()()3313323111111x x x x x x x x x x x x x x x x-----==+-+-+--.故答案为:323x x x--. 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.14.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了 解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 【详解】分式222239a bb c ac 、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2. 【点睛】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.15.【分析】先把括号里的分式通分再相减然后运用分式乘法进行计算即可【详解】解:===故答案为:【点睛】本题考查了分式的混合运算掌握正确的运算顺序和运算法则是解题关键 解析:11x + 【分析】先把括号里的分式通分,再相减,然后运用分式乘法进行计算即可. 【详解】解:()1211x x x x x ⎡⎤-⋅⎢⎥+-⎣⎦, =()12(1)11x x x x x x x ⎡⎤+-⋅⎢⎥++-⎣⎦, =1(1)1x x x x x -⋅+-, =11x +, 故答案为:11x +. 【点睛】本题考查了分式的混合运算,掌握正确的运算顺序和运算法则是解题关键.16.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a , ∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】 此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 17.【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数的绝对值<解析:92.510-⨯科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】2.5微米=92.510-⨯千米,故答案为:92.510-⨯.【点睛】此题考查科学记数法,注意n 的值的确定方法,当原数小于1时,n 等于原数左数第一个非零数字前零的个数,按此方法即可正确求解.18.【分析】设第一批盒装花的进价是x 元/盒则第一批进的数量是:第二批进的数量是:再根据等量关系:第二批进的数量=第一批进的数量+100可得方程【详解】解:设第一批盒装花的进价是元/盒则故答案是:【点睛】 解析:54003000100x 3x=+- 【分析】 设第一批盒装花的进价是x 元/盒,则第一批进的数量是:3000x ,第二批进的数量是:5400x 3-,再根据等量关系:第二批进的数量=第一批进的数量+100可得方程. 【详解】解:设第一批盒装花的进价是x 元/盒,则54003000100x 3x=+-, 故答案是:54003000100x 3x=+-. 【点睛】本题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键. 19.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是万元/台根 解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.20.【分析】设慢车的速度为x 千米/小时则快车的速度为12x 千米/小时根据题意可得走过150千米快车比慢车少用小时列方程即可【详解】解:设慢车的速度为则快车的速度为根据题意得:故答案为:【点睛】本题考查了 解析:15011502 1.2x x-= 【分析】设慢车的速度为x 千米/小时,则快车的速度为1.2x 千米/小时,根据题意可得走过150千米,快车比慢车少用12小时,列方程即可. 【详解】解:设慢车的速度为xkm /h ,则快车的速度为1.2xkm /h , 根据题意得:1501150x 2 1.2x-=. 故答案为:1501150x 2 1.2x-=. 【点睛】 本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出合适的等量关系,列方程.三、解答题21.(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =, 经检验, = 5x 是原方程的解,且符合题意,1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设购买一个A 型垃圾桶需x 元,购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元,一个B 型垃圾桶需()30x +元,根据购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,构造分式方程25002000230x x =⨯+,解方程并检验即可. 【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元, 由题意得:25002000230x x =⨯+, 解得50x =,经检验,50x =是原方程的解,且符合题意,30503080x +=+=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.本题考查列分式方程解应用题,掌握列分式方程解应用题的方法,抓住购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元设未知数,购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍构造方程,注意分式方程要验根.23.1x y+ 【分析】首先把两分式通分化为同分母分式后,再按照分母不变,分子相加减的法则计算.【详解】 解:原式2()()()()x y y x y x y x y x y +=-+-+- 2()()x y y x y x y +-=+-. ()()x y x y x y -=+-. 1x y=+. 【点睛】本题考查分式的加减运算,熟练掌握异分母分式的加减法则是解题关键.24.2x y x+,-2 【分析】 先算括号里的加减法运算,再把除法化为乘法,约分化简,最后代入求值,即可求解.【详解】原式=2222(2)(2)(2)x x y x x y x x y x y +---÷-+ =222x y x y x x y --÷+ =222x y x y x x y -+⋅- =2x y x+, ∵()2230x y ++-=,∴()22030x y +=-=,, ∴x=-2,y=3,∴原式=2x y x +=22322-+⨯-=-.本题主要考查分式的化简求值,掌握分式的混合运算法则,通分和约分,是解题的关键.25.(1)1115656=-⨯ (2)()11111n n n n =-++;证明见解析 (3)不能;见解析 【分析】(1)观察各等式,找出分子分母中的数与序号的关系即可写出第五个等式;(2)根据题目中的式子,可以写出生意人猜想,并验证猜想是否正确;(3)根据题意求出前n 次倒水量之和,再与1进行比较即可.【详解】解:(1)第5个等式:1115656=-⨯; 故答案为:1115656=-⨯; (2)猜想:()11111n n n n =-++,证明: 等式右边()()()11111111n n n n n n n n n n +=-=-==++++等式左边, ∴猜想成立;(3)由题意可得:第n 次倒出水量:()11L n n +, ∴前n 次总共倒出水量:()11111223341n n ++++⨯⨯⨯+ 1111112231n n =-+-++-+ 111n =-+ 1n n =+, ∵11n n <+, ∴这1L 水不能倒完.【点睛】本题主要考查了数字变化规律的问题,通过观察、分析、归纳并发现其中的规律,并应用发现的规律解决问题,解题的关键是发现分子分母中的数与序号的关系.26.(1)111n n -+;(2)20202021;(3)7x =. 【分析】(1)观察已知等式可得:连续整数乘积的倒数等于较小数的倒数与较大数的倒数的差,据此可得111(1)1n n n n =-++; (2)利用所得规律列出算式1111111223320202021-+-+++-,再两两相消即可得112021-,计算后可得结果; (3)由所得规律对分式方程进行整理,可变形为111112232431x x x x x x +-+-=------,最终化简为1241x x =--,求解此方程即可. 【详解】 解:(1)∵111122=-⨯,1112323=-⨯,1113434=-⨯, ∴当n 为正整数时,111(1)1n n n n =-++. 故答案为:111n n -+. (2)111111223344520202021+++++⨯⨯⨯⨯⨯ 111111112233420202021=-+-+-+- 112021=- 20202021=. 故答案为:20202021. (3)原方程变形为:111112232431x x x x x x +-+-=------, ∴1241x x =--, 去分母,得:12(4)x x -=-,解得7x =,经检验,7x =是原方程的解.【点睛】本题考查了数字的变化规律及解分式方程,解题的关键是理解题意,找出数字的变化规律,并准确运用所得规律求解分式方程.。

相关文档
最新文档