新北师大九年级数学下册知识点总结

合集下载

(完整版)新北师大九年级数学下册知识点总结

(完整版)新北师大九年级数学下册知识点总结

新北师大版九年级数学下册知识点总结第一章直角三角形边的关系一•锐角三角函数 1.正切:定义:在Rt △ ABC 中,锐角/A 的对边与邻边的比叫做/A的正切,记作tanA ,① tanA 是一个完整的符号,它表示/A的正切,记号里习惯省去角的符号“/”;② tanA 没有单位,它表示一个比值,即直角三角形中/A 的对边与邻边的比;③ tanA 不表示"tan ”乘以"A ”;④ 初中阶段,我们只学习直角三角形中,/A是锐角的正切;⑤ tanA 的值越大,梯子越陡,ZA 越大;ZA 越大,梯子越陡,tanA 的值越大。

2. 正弦:定义:在Rt △ ABC 中,锐角/A 的对边与斜边的比叫做/A 的正弦,记作sinA ,即sin AA的对边................................... """■ 斜边3. 余弦:定义:在Rt △ ABC 中,锐角/A 的邻边与斜边的比叫做/A 的余弦,记作cosA ,即cosA A的邻边 .............................. ■■■■■斜边之变化三•三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为 仰角2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为 俯角值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大 < sin a< 1, 0< cos a< 1。

4. 坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度i tan Al5. 方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。

如图3,OA OB OC 的方位角分别为 45 °、135 °、225 °。

6. 方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角.。

北师版九年级数学下册中考知识点梳理

北师版九年级数学下册中考知识点梳理

第一部分教材知识梳理·系统复习第一单元数与式第1讲实数第2讲整式与因式分解一、知识清单梳理第3讲分式二、知识清单梳理第4讲二次根式三、知识清单梳理第二单元方程(组)与不等式(组)第5讲一次方程(组) 四、知识清单梳理第6讲一元二次方程五、知识清单梳理第7讲分式方程六、知识清单梳理第8讲一元一次不等式(组) x≥a x>a x≤a x<a第9讲平面直角坐标系与函数八、知识清单梳理第10讲一次函数九、知识清单梳理第11讲反比例函数的图象和性质十、知识清单梳理(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程面积;②也要注意系数k的几何意义三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S第12讲二次函数的图象与性质第13讲二次函数的应用第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线十三、知识清单梳理第15讲一般三角形及其性质第16讲等腰、等边及直角三角形十五、知识清单梳理第17讲相似三角形D cD c10cm的线段进行黄金分的比叫做黄金比.CE第18讲解直角三角形十七、知识清单梳理解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,弄清题中名词、术语,根据题意画出图形,建立数学模型;第五单元四边形第19讲多边形与平行四边形十八、知识清单梳理:平行四边形的判定第20讲特殊的平行四边形一、知识清单梳理如图,四边形形.(变式:如图④,四边形图①图②图③图④第六单元圆第21讲圆的基本性质垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧.只要满足其中两个,另外三个结论一定成立,即推二知三.图a 图b 图cBAC=40°,则∠D第22讲与圆有关的位置关系二十、知识清单梳理第23讲与圆有关的计算二十一、知识清单梳理(2)特殊正多边形中各中心角、长度比:中心角=120°中心角=90°中心角=60°,△BOCa:r:R=2:1:2 a:r:R=2::2知识点二:与圆有关的计算公式n第七单元图形与变换第24讲平移、对称、旋转与位似第25讲视图与投影第八单元统计与概率第26讲统计第27讲概率。

北师大版初中数学九年级(下册)知识点汇总

北师大版初中数学九年级(下册)知识点汇总

北师大版初中数学九年级(下册)知识点汇总函数1. 函数的定义函数是一种特殊的关系,它将一个自变量通过特定的规律映射为唯一的因变量。

函数的定义包括自变量与因变量的关系式及定义域、值域。

2. 函数的性质函数有唯一性和有界性两个重要性质,还有奇偶性、周期性等其他性质。

其中,绝对值函数、反比例函数、幂函数、指数函数等具有一定的特殊性质。

3. 函数图像函数图像是将函数的自变量与因变量的关系绘制在直角坐标系中所得到的图形。

在绘制函数图像的过程中,需要研究函数的单调性、零点、极值等特点。

三角函数1. 角度制与弧度制在三角函数中,角的度量单位可以是角度制和弧度制。

角度制是以度数作为单位,弧度制是以弧长所对应的圆心角的度数作为单位。

两种度量方式可以相互转换。

2. 常用三角函数常用三角函数有正弦函数、余弦函数、正切函数、余切函数等。

在计算中,需要掌握三角函数的各种性质和公式,如正弦定理、余弦定理、正切定理等。

3. 解三角形解三角形是指通过给定的三角形中的一些已知量求解其余未知量的过程。

在解三角形时,常用的方法包括正弦定理、余弦定理、正切定理等。

解析几何1. 平面直角坐标系平面直角坐标系是解析几何的基本工具。

在平面直角坐标系中,直线可以表示成一元一次方程,圆可以表示为二元二次方程。

2. 直线与圆的位置关系直线与圆的位置关系有相离、相切和相交三种情况。

通过圆心的坐标与半径,可以确定圆的位置关系。

3. 解析几何中的重点知识点解析几何中还有许多重要的知识点,如向量的基本概念与性质、平面向量的数量积和叉积、直线和平面的方程等。

概率统计1. 随机事件随机事件是指在试验过程中,其结果不能确定的事件。

随机事件可以用事件的概率来描述。

2. 概率和事件的运算概率是指某个随机事件在所有可能事件中出现的概率。

概率可以用加法原理、乘法原理和条件概率等进行计算。

3. 抽样调查和统计图表的制作概率统计的重要应用包括抽样调查和统计图表的制作。

在抽样调查中,需要考虑样本的大小与抽样误差;在统计图表的制作中,需要了解直方图、折线图、饼图等基本图形的制作方法。

九年级下数学北师大知识点

九年级下数学北师大知识点

九年级下数学北师大知识点数学作为一门学科,无疑对学生的思维能力和逻辑分析能力有着极大的提升作用。

而在九年级下学期,北师大数学知识点扮演着重要的角色。

本文将重点介绍九年级下数学北师大知识点的重要性及其内容。

首先,九年级下数学北师大知识点的学习对理解高中数学知识打下了坚实的基础。

北师大数学在全国享有盛誉,其数学体系严谨、深入,能够提高学生的数学思维能力和问题解决能力。

通过学习北师大数学,学生能够形成正确的数学思维方式,培养出良好的数学品味。

一、代数与函数代数与函数是九年级下数学的重点内容之一。

在代数与函数中,我们学习了多项式的四则运算、整式的因式分解、分式方程以及根式的运算等等。

这些内容的学习与应用能够提高学生的抽象思维能力和数学建模能力。

代数与函数还与我们的日常生活息息相关,例如,分式方程可以应用于解决实际生活中的比例问题,而多项式的因式分解则可以帮助我们简化复杂的数学运算。

二、几何几何是另一个重要的数学知识点,九年级下数学北师大知识点中的几何部分主要包括三角形的性质、向量与坐标等内容。

通过学习几何,我们能够加深对图形性质的理解和把握,培养我们的几何直观、空间想象能力。

三、概率与统计在九年级下学期,概率与统计是数学知识体系中不可或缺的一部分。

概率与统计是对事物随机性和不确定性进行量化和描述的一门学科。

学习概率与统计,我们需要了解概率的基本概念、事件的计算、统计分布以及抽样调查等等。

通过这些知识的学习,我们能够更好地理解和解决生活中的一些概率与统计问题,例如评估事件发生的可能性、分析数据并得出结论等。

总之,九年级下数学北师大知识点的学习不仅能够提高学生的数学思维能力和解决问题的能力,还对学生的高中数学学习打下了坚实的基础。

代数与函数、几何以及概率与统计等内容涵盖了数学学科的不同领域,通过学习这些知识,我们能够全面地了解和应用数学在生活中的各个方面。

因此,我们应该重视九年级下数学北师大知识点的学习,不断提高自己的数学水平。

北师大版九年级(下)数学知识点归纳总结

北师大版九年级(下)数学知识点归纳总结

第一章直角三角形的边角关系九年级下册第1节锐角三角函数一、锐角三角函数锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数。

如图所示,在Rt△ABC中,∠C=90°【说明】①三角函数表示的是两边的比值,所以它只是一个数值,没有单位。

②当用一个大写字母表示角时,其三角函数中角的符号省略,如sin A,cos B,tan C;当用一个希腊字母表示角时,其三角函数中角的符号省略,如sinα,cosβ,tanθ;当用三个大写字母表示角时,其三角函数中角的符号不能省略,如sin∠ABC,cos∠DEF,tan∠GHI;当用一个阿拉伯数字表示角时,其三角函数中角的符号不能省略,如sin∠1,cos∠2,tan∠3。

③如果要表示三角函数的倍数与乘方,应分别表示为2 sin A,3cos B,4tan C,sin2A,cos3B,tan4C;2 sin30°,3cos30°,4tan30°,sin230°,cos330°,tan430°。

二、坡度1、坡度的概念如图所示,我们把坡面的铅直高度h和水平宽度l的比值叫做坡度(或坡比),通常用字母i表示。

【说明】坡面的坡度实际上就是坡角的正切值,即i=tanα=hl2、三角函数与坡面的陡峭程度(1)tan A的值越大,坡面越陡。

(2)sin A的值越大,坡面越陡。

(3)cos A的值越小,坡面越陡。

三、锐角三角函数的增减性(0°~90°)1、正弦值随着角度的增大(或减小)而增大(或减小);2、余弦值随着角度的增大(或减小)而减小(或增大);3、正切值随着角度的增大(或减小)而增大(或减小)。

四、同角三角函数的关系1、互余关系:sinA =cos(90°-A) cosA =sin(90°-A)2、平方关系:s in 2A +cos 2A =13、弦切关系:tan A =sin cos AA4、倒数关系:tan A ·tan(90°-A)=1第2节 30°,45°,60°角的三角函数值一、探索30°,45°,60°角的三角函数值求30°角的三角函数值,关键根据“直角三角形中30°的锐角所对的直角边等于斜边的一半”,可设30°的锐角的对边为a ,则斜边为2a ,由勾股定理可求得30°3a ,因此可以求出30°的锐角的各个三角函数值:sin30°=2a a =12 cos30°3a3 tan30°3a 33也可以求出60°的锐角的各个三角函数值:sin60°3a =3 cos60°=2a a =12tan60°3a 3求45°角的三角函数值,关键根据“有一个角是45°的直角三角形是等腰直角三角形”,可设一条直角边为a ,则另一条直角边也为a 2a ,因此可以求出45°的锐角的各个三角函数值:sin45°2a 22 cos45°2a 2 tan45°=aa =1二、熟记特殊角的三角函数值第3节三角函数的计算一、用计算器求任意锐角的三角函数值1、求整数度数的锐角的三角函数值首先使计算器的面板上出现DEG,然后再按sin cos tan这三个键之一,再从高位向低位按出表示度数的整数,再按键=,就可以在显示屏上得到答案。

北师大版九年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(提高版)(家教、补习、复习用)

北师大版九年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(提高版)(家教、补习、复习用)

北师大版九年级下册数学全册知识点梳理及重点题型巩固练习锐角三角函数—知识讲解【学习目标】1.结合图形理解记忆锐角三角函数定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值; 3.理解并能熟练运用“同角三角函数的关系”及“锐角三角函数值随角度变化的规律”. 【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A aA c∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c ∠==的邻边斜边; 锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边. 同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边. 要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA ,cosA ,tanA 分别是一个完整的数学符号,是一个整体,不能写成,, ,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成“tanAEF ”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在. (4)由锐角三角函数的定义知: 当角度在0°<∠A<90°间变化时,,,tanA >0. 要点二、特殊角的三角函数值利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:锐角30°B C a b c45° 160°要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);②余弦值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、锐角三角函数值的求解策略1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.【思路点拨】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【答案】D.【解析】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【总结升华】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.举一反三:【变式】在RtΔABC中,∠C=90°,若a=3,b=4,则c =,sinA=,cosA=,sinB=,cosB=.【答案】c= 5 ,sinA=35,cosA=45,sinB=45,cosB=35.类型二、特殊角的三角函数值的计算2.求下列各式的值:(1)(2015•茂名校级一模)6tan230°﹣sin60°﹣2sin45°;(2)(2015•乐陵市模拟)sin60°﹣4cos230°+sin45°•tan60°;(3)(2015•宝山区一模)+tan60°﹣.【答案与解析】解:(1)原式==122-.(2) 原式=×﹣4×()2+×=﹣3+63;Ca bc(3) 原式=+﹣=2+﹣=3﹣2+2=322.【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:【变式】在RtΔABC中,∠C=90°,若∠A=45°,则∠B=,sinA=,cosA=,sinB=,cosB=.【答案】∠B=45°,sinA=22,cosA=22,sinB=22,cosB=22.类型三、锐角三角函数之间的关系3.(2015•河北模拟)已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA)2﹣2﹣(3+tanC)0的值.【答案与解析】解:(1)∵|1﹣tanA)2+|sinB﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴△ABC是锐角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1=.【总结升华】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.类型四、锐角三角函数的拓展探究与应用4.如图所示,AB是⊙O的直径,且AB=10,CD是⊙O的弦,AD与BC相交于点P,若弦CD =6,试求cos ∠APC 的值.【答案与解析】连结AC ,∵ AB 是⊙O 的直径,∴ ∠ACP =90°, 又∵ ∠B =∠D ,∠PAB =∠PCD ,∴ △PCD ∽△PAB ,∴PC CDPA AB=. 又∵ CD =6,AB =10, ∴ 在Rt △PAC 中,63cos 105PC CD APC PA AB ∠====. 【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.锐角的三角函数是针对直角三角形而言的,故可连结AC ,由AB 是⊙O 的直径得∠ACB =90°,cos PC APC PA ∠=,PC 、PA 均为未知,而已知CD =6,AB =10,可考虑利用△PCD ∽△PAB 得PC CDPA AB=.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sadA BCAB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______.(3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值.【答案与解析】(1)1; (2)0<sadA <2;(3)如图2所示,延长AC 到D ,使AD =AB ,连接BD .设AD=AB=5a,由3sin5BCAAB==得BC=3a,∴22(5)(3)4AC a a a=-=,∴CD=5a-4a=a,22(3)10BD a a a=+=,∴10 sadA5BDAD==.【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA=1;(2)在图①中设想AB=AC的长固定,并固定AB让AC绕点A旋转,当∠A接近0°时,BC接近0,则sadA接近0但永远不会等于0,故sadA>0,当∠A接近180°时,BC接近2AB,则sadA接近2但小于2,故sadA <2;(3)将∠A放到等腰三角形中,如图2所示,根据定义可求解.北师大版九年级下册数学重难点突破知识点梳理及重点题型巩固练习锐角三角函数—巩固练习【巩固练习】一、选择题1. (2016•乐山)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是()A.B.C.D.2.(2015•山西)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.3. 已知锐角α满足sin25°=cosα,则α=( )A.25°B.55°C.65°D.75°4.如图所示,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC 的余弦值为( )A.12B.34C3D.45第4题第5题5.如图,在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是( )A.5714B.35C.217D.21146.在Rt△ABC中,∠C=90°,若将各边长度都扩大为原来的2倍,则∠A的正弦值( ) A.扩大2倍B.缩小2倍C.扩大4倍D.不变7.如图所示是教学用具直角三角板,边AC=30cm,∠C=90°,tan∠BAC=33,则边BC的长为( )A.303cm B.203cm C.103cm D.53cm第7题第8题8. 如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AC=5,BC=2,则sin∠ACD 的值为( )A.53B.253C.52D.23二、填空题9.(2016•临夏州)如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.10. 用不等号连接下面的式子.(1)cos50°________cos20°(2)tan18°________tan21°11.在△ABC中,若223sin cos022A B⎛⎫+-=⎪⎪⎝⎭,∠A、∠B都是锐角,则∠C的度数为.12.如图所示,△ABC的顶点都在方格纸的格点上,则sinA=________.13.已知:正方形ABCD的边长为2,点P是直线CD上一点,若DP=1,则tan∠BPC的值是________.第12题第15题14.如果方程2430x x-+=的两个根分别是Rt△ABC的两条边,△ABC的最小角为A,那么tanA的值为________.15.如图所示,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为112y x=-,则tanA的值是________.16.(2014•高港区二模)若α为锐角,且,则m的取值范围是.三、解答题17.如图所示,△ABC中,D为AB的中点,DC⊥AC,且∠BCD=30°,求∠CDA的正弦值、余弦值和正切值.18. 计算下列各式的值.(1) (2015•普陀区一模);(2) (2015•常州模拟)sin45°+tan45°﹣2cos60°.(3) (2015•奉贤区一模)﹣cos60°.19.如图所示,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.(1)求证:AB=DF;(2)若AD=10,AB=6,求tan∠EDF的值.20. 如图所示,已知⊙O的半径为2,弦BC的长为23A为弦BC所对优弧上任意一点(B、C两点除外).(1)求∠BAC的度数;(2)求△ABC面积的最大值.(参考数据:3sin60=°,3cos30=°,3tan30=°.【答案与解析】 一、选择题 1.【答案】C.【解析】在Rt △ABC 中,∠BAC=90°,sinB=,∵AD ⊥BC , ∴sinB=,sinB=sin ∠DAC=,综上,只有C 不正确 故选:C . 2.【答案】D ;【解析】如图:由勾股定理得,AC=,AB=2,BC=,∴△ABC 为直角三角形,∴tan∠B==,故选:D .3. 【答案】C ;【解析】由互余角的三角函数关系,cos sin(90)αα=-°,∴ sin25°-sin(90°-α), 即90°-α=25°,∴ α=65°.4.【答案】C ;【解析】设⊙A 交x 轴于另一点D ,连接CD ,根据已知可以得到OC =5,CD =10,∴ 2210553OD =-=,∵ ∠OBC =∠ODC , ∴ 533cos OB cos 102OD C ODC CD ∠=∠===.5.【答案】D ;【解析】如图所示,过点C 作CD ⊥AB 于D ,∵ ∠BAC =120°,∴ ∠CAD =60°, 又∵ AC =2,∴ AD =1,CD =3, ∴ BD =BA+AD =5,在Rt △BCD 中,222827BC BD CD =+==,∴ 321sin 1427CD B BC ===.6.【答案】D ;【解析】根据锐角三角函数的定义,锐角三角函数值等于相应边的比,与边的长度无关,而只与边的比值或角的大小有关.7.【答案】C ;【解析】由3tan 3BC BAC AC ∠==,∴ 333010333BC AC ==⨯=8. 【答案】A ; 【解析】 ∵ 223AB AC BC =+=,∴ 5sin sin 3AC ACD B AB ∠=∠==二、填空题 9.【答案】.【解析】过点A 作AB ⊥x 轴于B , ∵点A (3,t )在第一象限, ∴AB=t ,OB=3, 又∵tanα===,∴t=. 故答案为:.10.【答案】(1)<; (2)<;【解析】当α为锐角时,其余弦值随角度的增大而减小,∴ cos50°<cos20°;当α为锐角时,其正切值随角度的增大而增大,∴ tan18°<tan21°.11.【答案】105°;【解析】∵ 223sin cos 022A B ⎛⎫-+-= ⎪ ⎪⎝⎭, ∴ 2sin 02A -=3cos 0B = 即2sin A =3cos B =.又∵ ∠A 、∠B 均为锐角,∴ ∠A =45°,∠B =30°,在△ABC 中,∠A+∠B+∠C =180°,∴ ∠C =105°. 12.5【解析】假设每一个小正方形的边长为1,利用网格,从C 点向AB 所在直线作垂线CH .垂足为H ,则∠A在直角△ACH中,利用勾股定理得224225AC +=,∴5sin 525CH A AC ===13.【答案】2或23【解析】此题为无图题,应根据题意画出图形,如图所示,由于点P 是直线CD 上一点,所以点P既可以在边CD 上,也可以在CD 的延长线上,当P 在边CD 上时,tan 2BC BPC PC ∠==;当P 在CD 延长线上时,2tan 3BC BPC PC ∠==.14.【答案】13或24; 【解析】由2430x x -+=得11x =,23x =,①当3为直角边时,最小角A 的正切值为1tan 3A =;②当3为斜边时,另一直角边为223122-=,∴ 最小角A 的正切值为12tan 422A ==. 故应填13或24.15.【答案】13;【解析】由△ABC 的内心在y 轴上可知OB 是∠ABC 的角平分线,则∠OBA =45°,易求AB 与x 轴的交点为(-2,0),所以直线AB 的解析式为:2y x =+,联立2112y x y x =+⎧⎪⎨=-⎪⎩可求A 点的坐标为(-6,-4), ∴ 2262AB AD BD =+=,又OC =OB =2,∴ BC =22.在Rt △ABC 中,221tan 362BC A AB ===.16.【答案】 ; 【解析】∵0<cosα<1,∴0<<1,解得.三、解答题17.【答案与解析】过D作DE∥AC,交BC于点E.∵AD=BD,∴CE=EB,∴AC=2DE.又∵DC⊥AC,DE∥AC,∴DC⊥DE,即∠CDE=90°.又∵∠BCD=30°,∴EC=2DE,DC=3DE.设DE=k,则CD=3k,AC=2k.在Rt△ACD中,227AD AC CD k=+=.∴227sin77AC kCDAAD k∠===,321cos77CD kCDAAD k∠===.223tan33AC kCDACD k∠===.18.【答案与解析】解:(1)原式=4×﹣×+×=1+3.(2) 原式=×+1﹣2×=1+1﹣1=1.(3) 原式=﹣×=﹣231-19.【答案与解析】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC∴∠DAF=∠AEB又∵AE=BC,∴AE=AD又∵∠B=∠DFA=90°,∴△EAB≌△ADF.∴AB=DF.(2)解:在Rt△ABE中,22221068BE AE AB--=∵△EAB≌△ADF,∴DF=AB=6,AF=EB=8,∴EF=AE-AF=10-8=2.∴21 tan63EFEDFDF∠===.20.【答案与解析】(1)连接BO并延长,交⊙O于点D,连接CD.∵BD是直径,∴BD=4,∠DCB=90°.在Rt△DBC中,233 sin42BCBDCBD∠===,∴∠BDC=60°,∴∠BAC=∠BDC=60°.(2)因为△ABC的边BC的长不变,所以当BC边上的高最大时,△ABC的面积最大,此时点A应落在优弧BC的中点处.过O作OE⊥BC于点E,延长EO交⊙O于点A,则A为优孤BC的中点.连结AB,AC,则AB=AC,∠BAE12=∠BAC=30°.在Rt△ABE中,∵BE3=BAE=30°,∴33tan303BEAE===°,∴1233332ABCS=⨯=△答:△ABC面积的最大值是33北师大版九年级下册数学重难点突破知识点梳理及重点题型巩固练习解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.要点二、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解. 【典型例题】 类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,3b =. 【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan6043b a B ==⨯=°. 由cos a B c =知,48cos cos 60a c B ===°. (2)由tan 3bB a==得∠B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2242c a b =+==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值.举一反三:【变式】(1)已知∠C=90°,a=23,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ; 【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=252.(2015•湖北)如图,AD 是△ABC 的中线,tanB=,cosC=,AC=.求:(1)BC 的长;(2)sin∠ADC 的值.【答案与解析】解:过点A作AE⊥BC于点E,∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•c osC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△A BC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【总结升华】正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.类型二、解直角三角形在解决几何图形计算问题中的应用3.(2016•盐城)已知△ABC中,tanB=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为.【思路点拨】分两种情况,根据已知条件确定高AD的长,然后根据三角形面积公式即可求得.【答案】8或24.【解析】解:如图1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=,∴=,∴AD=BD=,∴S△ABC=BC•AD=×6×=8;如图2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=,∴=,∴AD=BD=8,∴S△ABC=BC•A D=×6×8=24;综上,△ABC面积的所有可能值为8或24,故答案为8或24.【总结升华】本题考查了解直角三角形,以及三角函数的定义,三角形面积,分类讨论思想的运用是本题的关键.举一反三:【变式】(2015•河南模拟)如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为多少?【答案与解析】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为1:3i =(i =1:3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==. (2)在Rt △DEC 中,∵ 3tan 3DE C EC ∠==,∴ ∠C =30°.又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AG AFG FG ∠=,即3535FB =+,解得535 3.66(m)FB =-=. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3=1.73).【答案与解析】过点C作CE⊥AB于E.∵∠D=90°-60°=30°,∠ACD=90°-30°=60°,∴∠CAD=180°-30°-60°=90°.∵CD=10,∴AC=12CD=5.在Rt△ACE中,AE=AC·sin∠ACE=5×sin 30°=52,CE=AC·cos ∠ACE=5×cos 30°=53 2,在Rt△BCE中,∵∠BCE=45°,∴5553(31)222AB AE BE=+=+=+≈6.8(米).∴雕塑AB的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.北师大版九年级下册数学重难点突破知识点梳理及重点题型巩固练习解直角三角形及其应用--巩固练习【巩固练习】一、选择题1.在△ABC中,∠C=90°,4sin5A=,则tan B=( ).A.43B.34C.35D.452.(2016•绍兴)如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB 于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A .B .C .D .3.河堤、横断面如图所示,堤高BC =5米,迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ). A .53米 B .10米 C .15米 D .103米4.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点, 则cos ∠OMN 的值为( ).A .12 B .22C .32D .1第3题 第4题 第5题5.如图所示,某游乐场一山顶滑梯的高为h ,滑梯的坡角为α,那么滑梯长l 为 ( )A .sin h α B .tan h α C .cos h αD .sin h α 6.如图所示,在△ABC 中,∠C =90°,AC =16 cm ,AB 的垂直平分线MN 交AC 于D ,连接BD , 若3cos 5BDC ∠=,则BD 的长是( ). A .4 cm B .6 cm C .8 cm D .10 cm7.如图所示,一艘轮船由海平面上A 地出发向南偏西40°的方向行驶40海里到达B 地,再由B 地向北偏西20°的方向行驶40海里到达C 地,则A 、C 两地相距( ). A .30海里 B .40海里 C .50海里 D .60海里第6题 第7题 第8题8.如图所示,为了测量河的宽度,王芳同学在河岸边相距200 m 的M 和N 两点分别测定对岸一棵树P 的位置,P 在M 的正北方向,在N 的北偏西30°的方向,则河的宽度是( ).A .2003mB .20033m C .1003m D .100m 二、填空题9.(2015•揭西县一模)在菱形ABCD 中,DE⊥AB,,BE=2,则tan∠DBE 的值是 .10.如图所示,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,则AGAF的值为________.11.如图所示,一艘海轮位于灯塔P的东北方向,距离灯塔402海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为________海里(结果保留根号).12.如图所示,直角梯形ABCD中,AB⊥BC,AD∥BC,BC>AD,AD=2,AB=4,点E在AB上,将△CBE沿CE翻折,使B点与D点重合,则∠BCE的正切值是________.13.如图所示.线段AB、DC分别表示甲、乙两座建筑物的高.AB⊥BC,DC⊥BC,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在A点测得D点的仰角α=45°,则乙建筑物高DC=__ __米.第12题第13题第14题14.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图所示),那么,由此可知,B、C两地相距________m.三、解答题15.如图所示,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为3即AB:BC=3,且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).16. (2016•包头)如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sinA=,求AD的长.(注意:本题中的计算过程和结果均保留根号)17.(2015•资阳)北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)【答案与解析】一、选择题1.【答案】B;【解析】如图,sin A=45BCAB=,设BC=4x.则AB=5x.根据勾股定理可得AC=223AC AB BC x=-=,∴33 tan44AC xBBC x===.2.【答案】B.【解析】如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根据题意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,则AM=AD=x,在Rt △AEM 中,cos ∠EAD===;3.【答案】A ;【解析】由tan BCi A BC===1:3知,353AC BC ==(米). 4.【答案】B ;【解析】由题意知MN ∥BC ,∠OMN =∠OBC =45°,∴ 2cos 2OMN ∠=. 5.【答案】A ;【解析】由定义sin h l α=,∴ sin h l α=. 6.【答案】D ;【解析】∵ MN 是AB 的中垂线, ∴ BD =AD .又3cos 5DC BDC BD ∠==, 设DC =3k ,则BD =5k ,∴ AD =5k ,AC =8k .∴ 8k =16,k =2,BD =5×2=10.7.【答案】B ;【解析】 连接AC ,∵ AB =BC =40海里,∠ABC =40°+20°=60°, ∴ △ABC 为等边三角形,∴ AC =AB =40海里. 8.【答案】A【解析】依题意PM ⊥MN ,∠MPN =∠N =30°,tan30°200PM=,2003PM =. 二、填空题 9.【答案】2;【解析】设菱形ABCD 边长为t ,∵BE=2,∴AE=t﹣2,∵cosA=,∴,∴=,∴t=5,∴AE=5﹣2=3, ∴DE==4,∴tan∠DB E===2.故答案为:2.10.【答案】32; 【解析】由已知条件可证△ACE ≌△CBD .从而得出∠CAE =∠BCD .∴ ∠AFG =∠CAE+∠ACD =∠BCD+∠ACD =60°,在Rt △AFG 中,3sin 602AG AF ==°.11.【答案】40403+;【解析】在Rt△APC中,PC=AC=AP·sin∠APC=2 402402⨯=.在Rt△BPC中,∠BPC=90°-30°=60°,BC=PC·tan∠BPC=403,所以AB=AC+BC=40403+.12.【答案】12;【解析】如图,连接BD,作DF⊥BC于点F,则CE⊥BD,∠BCE=∠BDF,BF=AD=2,DF=AB=4,所以21 tan tan42BFBCE BDFDF∠=∠===.13.【答案】58;【解析】α=45°,∴DE=AE=BC=30,EC=AB=28,DE=DE+EC=58 14.【答案】200;【解析】由已知∠BAC=∠C=30°,∴BC=AB=200.三、解答题15.【答案与解析】过点A作AF⊥DE于F,则四边形ABEF为矩形,∴AF=BE,EF=AB=2.设DE=x,在Rt△CDE中,3tan tan603DE DECE xDCE===∠°.在Rt△ABC中,∵13ABBC=,AB=2,∴23BC=.在Rt△AFD中,DF=DE-EF=x-2.∴23(2) tan tan30DF xAF xDAF-===-∠°∵AF=BE=BC+CE.∴33(2)233x x-=+,解得6x=.答:树DE的高度为6米.16.【答案与解析】解:(1)∵∠A=60°,∠ABE=90°,AB=6,tanA=,∴∠E=30°,BE=tan60°•6=6,又∵∠CDE=90°,CD=4,sinE=,∠E=30°,∴CE==8,∴BC=BE﹣CE=6﹣8;(2))∵∠ABE=90°,AB=6,sinA==,∴设BE=4x,则AE=5x,得AB=3x,∴3x=6,得x=2,∴BE=8,AE=10,∴tanE====,解得,DE=,∴AD=AE﹣DE=10﹣=,即AD的长是.17.【答案与解析】解:作CD⊥AB交AB延长线于D,设CD=x 米.Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan 60°==,解得:x≈3米.所以生命迹象所在位置C的深度约为3米.北师大版九年级下册数学重难点突破知识点梳理及重点题型巩固练习《锐角三角函数》全章复习与巩固--巩固练习(提高)【巩固练习】一、选择题1. 计算tan 60°+2sin 45°-2cos 30°的结果是( ).A.2 B3C2D.12.如图所示,△ABC中,AC=5,2cos B=,3sin5C=,则△ABC的面积是( )A.212B.12 C.14 D.213.如图所示,A、B、C三点在正方形网格线的交点处,若将△ACB绕着点A逆时针旋转得到△AC B'',则tan B'的值为( )A.12B.13C.14D.24第2题图第3题图第4题图4.如图所示,小明要测量河内小岛B到河边公路l的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,那么小岛B到公路l的距离为( ).A.25米B.253米C.10033米D.25253+米5.如图所示,将圆桶中的水倒入一个直径为40 cm,高为55 cm的圆口容器中,圆桶放置的角度与水平线的夹角为45°.要使容器中的水面与圆桶相接触,则容器中水的深度至少应为( ).A.10 cm B.20 cm C.30 cm D.35 cm6.如图所示,已知坡面的坡度13i=:,则坡角α为( ).A.15°B.20°C.30°D.45°第5题图第6题图第7题图7.如图所示,在高为2 m,坡角为30°的楼梯上铺地毯,则地毯的长度至少应为( ).A.4 m B.6 m C.42m D.(223)m+8.(2016•绵阳)如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为()A.B.C.D.二、填空题9.如图,若AC、BD的延长线交于点E,5 11CD AB =,则cos CEB∠= ;tan CEB∠= .10.如图,AD⊥CD,AB=10,BC=20,∠A=∠C=30°,则AD的长为;CD的长为.A BCDEO第9题图 第10题图 第11题图11.如图所示,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α=________.12.如果方程2430x x -+=的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值为__ ______.13.(2015•荆州)如图,小明在一块平地上测山高,先在B 处测得山顶A 的仰角为30°,然后向山脚直行100米到达C 处,再测得山顶A 的仰角为45°,那么山高AD 为 米(结果保留整数,测角仪忽略不计,≈1.414,,1.732)14. 在△ABC 中,AB =8,∠ABC =30°,AC =5,则BC =____ ____.15. 如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为 .第15题图16. (2016•临沂)一般地,当α、β为任意角时,sin (α+β)与sin (α﹣β)的值可以用下面的公式求得:sin (α+β)=sinα•cosβ+c osα•sinβ;sin (α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=×+×=1.类似地,可以求得sin15°的值是 .三、解答题17.如图所示,以线段AB 为直径的⊙O 交线段AC 于点E ,点M 是AE 的中点,OM 交AC 于点D , ∠BOE =60°,cos C =12,BC =23 (1)求∠A 的度数;(2)求证:BC 是⊙O 的切线;(3)求MD 的长度.18. (2015•湖州模拟)如图,坡面CD的坡比为,坡顶的平地BC上有一棵小树AB,当太阳光线与水平线夹角成60°时,测得小树的在坡顶平地上的树影BC=3米,斜坡上的树影CD=米,则小树AB的高是多少米?19.如图所示,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A、B重合),过C作CP的垂线CD交PB的延长线于D点.(1)求证:AC·CD=PC·BC;(2)当点P运动到AB弧中点时,求CD的长;(3)当点P运动到什么位置时,△PCD的面积最大?并求这个最大面积S.20. 如图所示,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y.(1)求点D到BC的距离DH的长;(2)求y关于x的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.。

(完整版)北师大版九年级数学下册知识点归纳复习提纲

(完整版)北师大版九年级数学下册知识点归纳复习提纲

图1 新北师大版九年级数学下册知识点总结第一章 直角三角形边的关系一.锐角三角函数 1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。

2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ; 锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。

二.特殊角的三角函数值30 º45 º 60 º sin α21 22 23 h i=h:lBC三.三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。

(2)0≤sin α≤1,0≤cos α≤1。

4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。

用字母i 表示,即A lhi tan ==5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。

新北师大版九年级数学下册知识点复习汇总

新北师大版九年级数学下册知识点复习汇总

新北师大版九年级数学下册知识点汇总第一章 直角三角形边的关系一.锐角三角函数1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”;②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比;③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。

2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ; 3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ; 锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。

二.特殊角的三角函数值图1 图3 图4三.三角函数的计算 1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。

(2)0≤sin α≤1,0≤cos α≤1。

4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。

用字母i 表示,即A lh i tan == 5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。

如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新北师大九年级数学下册知识点总结The pony was revised in January 2021新北师大版九年级数学下册知识点总结第一章 直角三角形边的关系一.锐角三角函数1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。

2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ; 3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ;锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。

二.特殊角的三角函数值三.三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。

(2)0≤sin α≤1,0≤cos α≤1。

4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。

用字母i 表示,即A lh i tan == 5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。

如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。

6.方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角...。

如图4,OA 、OB 、OC 、OD 的方向角分别是;北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。

30 o 45 o 60 o sin αcos α tan α 17.同角的三角函数间的关系:①互余关系sinA=cos(90°-A)、cosA=sin(90°-A) ②平方关系:③商数关系: 8.解直角三角形:在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。

由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形(须知一条边)。

9.直角三角形变焦关系:在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则有(1)三边之间的关系:a 2+b 2=c 2;(2)两锐角的关系:∠A +∠B=90°;(3)边与角之间的关系:(4)面积公式:c ch ab 2121S ==∆(h c 为C 边上的高); (5)直角三角形的内切圆半径2c b a r -+=(6)直角三角形的外接圆半径c R 21= 10.三角函数的应用 教材第18页11.利用三角函数测高 教材第22页第二章 二次函数1.概念:一般地,若两个变量x ,y 之间对应关系可以表示成c bx ax y ++=2(a 、b 、c 是常数,a ≠0)的形式,则称y 是x 的二次函数....。

自变量x 的取值范围是全体实数。

在写二次函数的关系式时,一定要寻找两个变量之间的等量关系,列出相应的函数关系式,并确定自变量的取值范围........。

2. 图像性质:(1)二次函数y =ax 2的图象:是一条顶点在原点且关于y 轴对称的抛物线...。

)0(2≠=a ax y 是二次函数c bx ax y ++=2的特例,此时常数b=c=0.(2)抛物线的描述:开口方向、对称性、y 随x 的变化情况、抛物线的最高(或最低)点、抛物线与x 轴的交点。

①函数的取值范围是全体实数;②抛物线的顶点在(0,0),对称轴是y 轴(或称直线x =0)。

③当a >0时,抛物线开口向上,并且向上方无限伸展。

当a <0时,抛物线开口向下,并且向下方无限伸展。

④函数的增减性:A 、当a >0时⎩⎨⎧≥≤.,0;,0增大而增大随时增大而减小随时x y x x y x B 、当a <0时⎩⎨⎧≥≤.,0;,0增大而减小随时增大而增大随时x y x x y x ⑤当|a |越大,抛物线开口越小;当|a |越小,抛物线的开口越大。

⑥最大值或最小值:当a >0,且x =0时函数有最小值,最小值是0;当a <0,且x =0时函数有最大值,最大值是0。

(3)二次函数c ax y +=2的图象:是一条顶点在y 轴上且与y 轴对称的抛物线,二次函数c ax y +=2的图象中,a 的符号决定抛物线的开口方向,|a|决定抛物线的开口程度大小,c 决定抛物线的顶点位置,即抛物线位置的高低。

(4)二次函数c bx ax y ++=2的图象:是以直线a b x 2-=为对称轴,顶点坐标为(a b 2-,a b ac 442-)的抛物线。

(开口方向和大小由a 来决定)|a|的越大,抛物线的开口程度越小,越靠近对称轴y 轴,y 随x 增长(或下降)速度越快;|a|的越小,抛物线的开口程度越大,越远离对称轴y 轴,y 随x 增长(或下降)速度越慢。

(5)二次函数c bx ax y ++=2的图象与y =ax 2的图象的关系:c bx ax y ++=2的图象可以由y =ax 2的图象平移得到:(利用顶点坐标)(6)二次函数k h x a y +-=2)(的图象:是以直线x=h 为对称轴,顶点坐标为(h ,k )的抛物线。

(开口方向和大小由a 来决定)(7)二次函数c bx ax y ++=2的性质:二次函数c bx ax y ++=2配方成a b ac a b x a y 44)2(22-++=则抛物线的 ①对称轴:x=ab 2-②顶点坐标:(a b 2-,a b ac 442-)③增减性:若a>0,当x<a b 2-时,y 随x 的增大而减小.....;当x>ab 2-时,y 随x 的增大而增....大。

.. 若a<0,则当x<a b 2-时,y 随x 的增大而增大.....;当x>ab 2-时,y 随x 的增大而...减小。

... ④最值:若a>0,则当x=a b 2-时,a b ac y 442-=最小;若a<0,则当x=ab 2-时,ab ac y 442-=最大 3.确定二次函数的表达式:(待定系数法)(1)一般式:c bx ax y ++=2(2)顶点式:k h x a y +-=2)((2)交点式:y=a(x-x 1)(x-x 2)4.二次函数的应用:教材第46页 几何方面教材第48页 应用题5.二次函数与一元二次方程(1)二次函数c bx ax y ++=2的图象(抛物线)与x 轴的两个交点的横坐标x 1,x 2是对应一 二次方程02=++c bx ax 的两个实数根(2)抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ac b 42->0 <===> 抛物线与x 轴有2个交点;ac b 42-=0 <===> 抛物线与x 轴有1个交点;ac b 42-<0 <===> 抛物线与x 轴有0个交点(无交点);(3)当ac b 42->0时,设抛物线与x 轴的两个交点为A 、B ,则这两个点之间的距离: 化简后即为:)04(||4||22>--=ac b a ac b AB 这就是抛物线与x 轴的两交点之间的距离公式。

第三章 圆1.圆的定义:描述性定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的圆形叫做圆.;固定的端点O 叫做圆心..;线段OA 叫做半径..;以点O 为圆心的圆,记作⊙O ,读作“圆O ”集合性定义:圆是平面内到定点距离等于定长的点的集合。

其中定点叫做圆心..,定长叫做圆的半径....,圆心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆..。

对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)。

2.点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则①点在圆上 <===> d=r;②点在圆内 <===> d<r;③点在圆外 <===> d>r.其中点在圆上的数量特征是重点,它可用来证明若干个点共圆,方法就是证明这几个点与一个定点、的距离相等。

3. 圆的对称性:(1) 与圆相关的概念:①弦和直径:弦:连接圆上任意两点的线段叫做弦.。

直径:经过圆心的弦叫做直径..。

②弧、半圆、优弧、劣弧:弧:圆上任意两点间的部分叫做圆弧..,简称弧.,用符号“⌒”表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。

半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..。

劣弧:小于半圆..。

优弧:大于半圆的弧叫做优弧的弧叫做劣弧..。

(为了区别优弧和劣弧,优弧用三个字母表示。

)③弓形:弦及所对的弧组成的图形叫做弓形..。

④同心圆:圆心相同,半径不等的两个圆叫做同心圆...。

⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧..。

⑦圆心角:顶点在圆心的角叫做圆心角....⑧弦心距:从圆心到弦的距离叫做弦心距....(2). 圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

圆是中心对称图形,对称中心为圆心。

定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。

推论: 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.4.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:平分一般弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

相关文档
最新文档