10.3解二元一次方程组(3)
数学七年级下册苏教版第十章《二元一次方程组》全章教案

第十章二元一次方程组10.1 二元一次方程(一课时)一、教学目标:1、经历分析实际问题中数量关系的过程,进一步体会方程是刻画现实世界的有效数学模型。
2、了解二元一次方程的概念,并会判断一组数据是否是某个二元一次方程的解。
3、培养学生主动探索、敢于实践、勇于发现、合作交流的精神。
二、教学重难点:重点:二元一次方程的认识。
难点:探求二元一次方程的解。
三、教学方法:引导探索法,讲练结合,探索交流。
四、教学过程:(一)创设情境,感悟新知情境一根据篮球的比赛规则,赢一场得2分,输一场得1分,在某次中学生比赛中,一支球队赛了若干场后积20分,问该队赢了多少场?输了多少场?情境二某球员在一场篮球比赛中共得了35分(其中罚球得10分),问他分别投中了多少个两分球?多少个三分球?情境三小亮在“智力快车”竞赛中回答10个问题,小亮能答对几题、答错几题?(学生自己先思考5分钟后,再讨论。
最后由4个人一小组中的一位同学说出讨论结果.)(二)探索活动,揭示新知1、如果设该队赢了x场,输了y场,那么可得方程:()2、你能列出所有输赢的所有可能情况吗?3、如果设投中了()个两分球,()个三分球,根据题意可列方程:()4、请你设计一个表格,列出这名球员投中两分球和三分球的各种情况,根据你所列的表格回答下列问题:(1)这名球员最多投中了()个三分球(2)这名球员最多投中了()个球(3)如果这名球员投中了10个球,那么他投中了()个三分球,()个两分球列出上面三小题的方程:(1)设该队赢了x场,输了y场,2x+y=20(2)设赢了x场,输了y场,2x+3y=35-10(3)设答对x题,答错y题,x+y=10观察方程:(1)这三个方程有哪些共同的特点?(2)你能根据这些特点给它们起一个名称吗?引导学生和以前学过的一元一次方程相联系,观察方程中有几个未知数,未知数的次数是几次?含有未知数的项的次数是几次?得出结论:像这含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程。
解二元一次方程组(3)

10.3 解二元一次方程组(3)学习目标:会用代入消元法和加减消元法解二元一次方程组,并能根据方程组的特点灵活选用适当的方法。
课前预习:按要求解下列方程组. (代入法) (加减法)学习过程:一、展示交流: 二、合作探究:1.解方程组:3(2)4(2)872(3)3()82x y x y x y x y -+-=⎧⎨---=⎩ 2.解方程组:171163111721x y x y +=⎧⎨+=⎩3.已知关于x ,y 的方程组2101x y ax by +=⎧⎨+=⎩与方程组625bx ay x y +=⎧⎨-=⎩有相同的解,求出这个解及a ,b 的值。
23(1)21x y x y -=⎧⎨+=-⎩231(2)325x y x y -=-⎧⎨+=⎩三、质疑反馈:1、解下列方程组:(1)52427x yy x+=⎧⎨=-⎩(2)235280x yx y-=⎧⎨++=⎩(3)43871x yx y-=-⎧⎨-=⎩(4)6234()5()2x y x yx y x y+-⎧+=⎪⎨⎪+--=⎩(5)331783173367x yx y+=⎧⎨+=⎩(6)23235x y x y++==课后作业:1.已知满足二元一次方程组23205x y y x +=-⎧⎨=-⎩的x 的值是x=-1,应把x=-1代入方程______,• 求出y=_______,得方程组的解为________.2.方程组2352715x y x y +=⎧⎨-=-⎩中x 的系数特点是________;方程组3576511x y x y -=⎧⎨+=⎩中y的系数特点是_______;•这两个方程组用______法解较简便.3.方程组3210______,526______.y x x y x y +==⎧⎧⎨⎨+==⎩⎩的解是 4.用适当的方法解下列方程组.528(1)7640x y x y -=-⎧⎨-=⎩ 1(4)2362(1)3()6x y x x y ⎧+=⎪⎨⎪-+-=⎩(3)4()5()33()2()8x y x y x y x y +--=⎧⎨++-=⎩(4)2230.20.3 2.8m n m n ⎧+=⎪⎨⎪+=⎩5.已知方程组5354x yax y+=⎧⎨+=⎩与2551x yx by-=⎧⎨+=⎩有相同的解,求a,b的值。
解二元一次方程组 重难点专项练习【八大题型】-七年级数学下册同步精品课堂(苏科版)(解析版)

10.3解二元一次方程组重难点题型专项练习考察题型一代入消元法解二元一次方程组典例1-1.用代入消元法解关于x 、y 的方程组43231x y x y =-⎧⎨-=-⎩时,代入正确的是()A .2(43)31y y --=-B .4331y y --=-C .4331y y --=D .2(43)31y y --=【详解】解:43231x y x y =-⎧⎨-=-⎩①②,把①代入②得:2(43)31y y --=-.故本题选:A .变式1-1.用代入法解方程组124y xx y =-⎧⎨-=⎩时,代入正确的是()A .24x x --=B .224x x --=C .224x x -+=D .24x x -+=【详解】解:124y x x y =-⎧⎨-=⎩①②,把①代入②得:2(1)4x x --=,去括号得:224x x -+=.故本题选:C .典例1-2.用代入法解方程组2521,38x y x y +=⎧⎨+=⋅⎩①②,下列解法中最简便的是()A .由①得21522x y =-代入②B .由①得21255y x =-代入②C .由②得83x y =-代入①D .由②得833xy =-代入①【详解】解:由于两方程中只有②中未知数的系数最小,故可把②变形为用y 表示x 的形式,再代入①求解.故本题选:C .变式1-2.用代入法解方程组34225x y x y -=⎧⎨-=⎩①②,使得代入后化简比较容易的变形是()A .由①得243yx -=B .由①得234x y -=C .由②得52y x +=D .由②得25y x =-【详解】解:观察可知,由②得25y x =-代入后化简比较容易.故本题选:D .典例1-3.解方程组:(1)415y x y x =⎧⎨+=⎩;(2)2451x y x y +=⎧⎨=-⎩.变式1-3-1.若25b =,且218a b +=,则a 的值为.(1)3759x y x y =-⎧⎨+=⎩;(2)23328y x x y =-⎧⎨+=⎩.考察题型二利用代入元法求式典例2.现有方程组2331x y mx y m -=⎧⎨+=+⎩,消去m ,得x 与y 的关系式为()A .321x y +=B .41x y +=C .561x y +=D .61x y -=-【详解】解:方程组2331x y m x y m -=⎧⎨+=+⎩①②,把①代入②得:233()1x y x y +=-+,整理得:61x y -=-.故本题选:D .变式2-1.已知423x ty t =-⎧⎨=-⎩,写成用含x 的代数式表示y 的形式,得.【详解】解:4x t =- ,4t x ∴=-,2323(4)310y t x x ∴=-=--=-.故本题答案为:310y x=-.变式2-2.若方程组232x my m-=⎧⎨+=⎩,则y=.(用含x的代数式表示)考察题型三加减消元法解二元一次方程组典例3-1.用加减法解方程组368323x yx y-=⎧⎨+=⎩①②时,②-①得()A.89y-=B.6411x y-=C.85y=-D.25y-=【详解】解:②-①得:2(6)5y y--=-,整理得:85y=-.故本题选:C.变式3-1.已知二元一次方程组522048x yx y+=⎧⎨-=⎩①②,若用加减法消去y,则正确的是()A.①1⨯+②1⨯B.①1⨯+②2⨯C.①1⨯-②1⨯D.①1⨯-②2⨯【解答】解:用加减法消去y,需①1⨯+②2⨯.故本题选:B.典例3-2.解下列二元一次方程组:(1)524 21x yx y-=⎧⎨-=⎩;(2)111 23 3210yxx y+⎧-=⎪⎨⎪+=⎩;(3)0.80.92 63 2.5x yx y-=⎧⎨-=⎩.(1)224 x yx y+=-⎧⎨+=⎩;(2)13 52 3432 x yx y+-⎧=⎪⎨⎪+=⎩;(3)0.60.4 1.1 0.20.4 2.3x yx y-=⎧⎨-=⎩.变式3-2-2.解方程组321x y -=-⎧⎨-=-⎩①②时,两位同学的解法如下:解法一:由①-②得:22x -=;解法二:由②得:2(2)1x x y +-=-③;把①代入③得:2(3)1x +-=-.(1)上述两种消元过程是否正确?你的判定是.A .两种解法都正确B .解法一错误,解法二正确C .解法一正确,解法二错误D .两种解法都错误(2)解这个方程组.【详解】解:(1)由①-②得:22x -=-,即解法一错误,由②得:221x x y +-=-③,把①代入③得:2(3)1x +-=-,即解法二正确,故本题选:B ;(2)23321x y x y -=-⎧⎨-=-⎩①②,由②得:2(2)1x x y +-=-③,把①代入③得:2(3)1x +-=-,解得:1x =,把1x =代入①得:123y -=-,解得:2y =,所以原方程组的解是12x y =⎧⎨=⎩.考察题型四利用加减消元法求式、求参典例4-1.已知x ,y 满足方程组2425x y x y +=⎧⎨+=⎩,则x y +等于.【详解】解:2425x y x y +=⎧⎨+=⎩①②,①+②得:3()9x y +=,则3x y +=.故本题答案为:3.变式4-1.已知方程组2321x y x y +=⎧⎨-=⎩,则3x y +的值是()A .2-B .2C .4-D .4【详解】解:2321x y x y +=⎧⎨-=⎩①②,①+②得:34x y +=.故本题选:D .典例4-2.已知x ,y 满足方程组2425x y x y +=⎧⎨+=⎩,则x y -等于()A .9B .3C .1D .1-【详解】解:在方程组2425x y x y +=⎧⎨+=⎩①②中,①-②得:1x y -=-.故本题选:D .变式4-2.若28a b +=,3418a b +=,则a b +的值为()A .10B .26C .5D .13【详解】解:28a b += ,3418a b +=,a b∴+[(34)(2)]2a b a b =+-+÷(188)2=-÷102=÷5=.故本题选:C .典例4-3.由方程组3234x y m x y m -=+⎧⎨+=+⎩消去m ,可得x 与y 的关系式是()A .255x y -=B .251x y +=-C .255x y -+=D .413x y -=【详解】解:3234x y m x y m -=+⎧⎨+=+⎩①②,①3⨯-②得:255x y -=.故本题选:A .变式4-3.已知3235352x y ax y a-=-⎧⎨-=-⎩,则x y -的值为()A .1B .3C .5D .7【详解】解:3235352x y a x y a -=-⎧⎨-=-⎩①②,①2⨯可得:6462x y a -=-③,③-②可得:(64)(53)(62)(52)x y x y a a ---=---,1x y ∴-=.故本题选:A .典例4-4.关于x ,y 的二元一次方程组59x y kx y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值是()A .34-B .34C .43D .43-变式4-4-1.已知关于x 、y 的方程组28x y m ⎧⎨-=⎩的解满足423x y +=,求m 的值.【详解】解:方程组528x y mx y m +=⎧⎨-=⎩,两方程相减得:33y m =-,解得:y m =-,将y m =-代入5x y m +=,56x m m m =+=,将x ,y 代入423x y +=得:2423m m -=,解得:1m =.变式4-4-2.若关于x 、y 的二元一次方程组5323x y x y p +=⎧⎨+=⎩的解满足1x y -=-,则p 的值为.典例4-5.若方程组312323x y ax y a +=+⎧⎨+=--⎩的解满足1x y -=-,则a 的值为.变式4-5-1.已知方程组321x y +=⎧⎨+=-⎩的解满足42x y a -=+,则a 的值为.【详解】解:239321x y x y +=⎧⎨+=-⎩①②,②-①得:10x y -=-,方程组的解满足42x y a -=+,4210a ∴+=-,解得:3a =-.故本题答案为:3-.变式4-5-2.关于xy 的二元一次方程组3565163x y m x y m +=+⎧⎨+=-⎩的解,满足23x y -=-,则m 的值是.考察题型五利用整体法求方程组的解典例5.已知方程组23124x y x y +=⎧⎨-=⎩的解是21x y =⎧⎨=-⎩,则出方程组2(1)3(2)1(1)2(2)4x y x y ++-=⎧⎨+--=⎩的解是.【详解】解: 方程组23124x y x y +=⎧⎨-=⎩的解是21x y =⎧⎨=-⎩,∴方程组2(1)3(2)1(1)2(2)4x y x y ++-=⎧⎨+--=⎩的解满足关系式1221x y +=⎧⎨-=-⎩,解得:11x y =⎧⎨=⎩.故本题答案为:11x y =⎧⎨=⎩.变式5.已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是49x y =⎧⎨=⎩,则与方程组111222234234a x b y c a x b y c '+'=⎧⎨'+'=⎩有关的2x y '-'的值为.考察题型六方程组的应用典例6-1.若2(2)x y -与|25|x y +-互为相反数,则2022()x y -=.【详解】解:2(2)x y - 与|25|x y +-互为相反数,2(2)|25|0x y x y ∴-++-=,20x y ∴-=,250x y +-=,∴20250x y x y -=⎧⎨+-=⎩①②,①2⨯得:420x y -=③,②+③得:550x -=,解得:1x =,把1x =代入①得:20y -=,解得:2y =,∴原方程组的解为:12x y =⎧⎨=⎩,20222022()(12)1x y ∴-=-=.故本题答案为:1.变式6-1.已知2(5)|2|0x y x y +-+-+=,x 、y 分别为小正方形和大正方形的边长,则阴影部分面积为.【详解】解:2(5)|2|0x y x y +-+-+= ,∴52x y x y +=⎧⎨-=-⎩,则阴影部分面积为:22y x -()()y x y x =+-()()x y x y =-+-5(2)=-⨯-10=.故本题答案为:10.典例6-2.在等式y kx b =+中,当1x =时,5y =,当2x =-时,11y =,则k 、b 的值为()A .72k b =⎧⎨=-⎩B .72k b =-⎧⎨=⎩C .27k b =⎧⎨=-⎩D .27k b =-⎧⎨=⎩【详解】解:由题意得:5211k b k b +=⎧⎨-+=⎩,解得:27k b =-⎧⎨=⎩.故本题选:D .变式6-2-1.在等式y kx b =+中,当1x =-时,2y =-,当2x =时,7y =,则这个等式是()A .31y x =-+B .31y x =+C .23y x =+D .31y x =-【详解】解:分别把当1x =-时,2y =-,当2x =时,7y =代入等式y kx b =+得:272k b k b -=-+⎧⎨=+⎩,①-②得:39k -=-,解得:3k =,把3k =代入①得:23b -=-+,解得:1b =,分别把3k =、1b =的值代入等式y kx b =+得:31y x =+.故本题选:B .变式6-2-2.已知(0)y kx b k =+≠中,当1x =-时,5y =,当2x =时,14y =,则k b ⋅=.【详解】解:(0)y kx b k =+≠ 中,当1x =-时,5y =,当2x =时,14y =,∴5214k b k b -+=⎧⎨+=⎩①②,②-①得:39k =,解得:3k =,把3k =代入①得:35b -+=,解得:8b =,3824k b ∴⋅=⨯=.故本题答案为:24.考察题型七同解方程组典例7.关于x 、y 的两个方程组2227ax by x y -=⎧⎨-=⎩和359311ax by x y -=⎧⎨-=⎩具有相同的解,则a b +的值是()A .1-B .5C .6D .不能确定【详解】解:由题意得:27311x y x y -=⎧⎨-=⎩①②,②-①得:4x =,把4x =代入①中得:87y -=,解得:1y =,∴原方程组的解为41x y =⎧⎨=⎩;把41x y =⎧⎨=⎩代入方程组22359ax by ax by -=⎧⎨-=⎩中可得:4221259a b a b -=⎧⎨-=⎩①②,①3⨯得:1266a b -=③,③-②得:3b -=-,解得:3b =,把3b =代入①中得:462a -=,解得:2a =,∴此方程组的解为23a b =⎧⎨=⎩,235a b ∴+=+=.故本题选:B .变式7-1.已知方程组45321x y x y +=⎧⎨-=⎩和31ax by ax by +=⎧⎨-=⎩有相同的解,求222a ab b -+的值.【详解】解:解方程组45321x y x y +=⎧⎨-=⎩得:11x y =⎧⎨=⎩,把11x y =⎧⎨=⎩代入第二个方程组得:31a b a b +=⎧⎨-=⎩,解得:21a b =⎧⎨=⎩,则22222222111a ab b -+=-⨯⨯+=.变式7-2.已知关于x ,y 的方程组354522x y ax by -=⎧⎨+=-⎩和2348x y ax by +=-⎧⎨-=⎩有相同解,求()b a -值.【详解】解:因为两组方程组有相同的解,所以原方程组可化为35234x y x y -=⎧⎨+=-⎩,45228ax by ax by +=-⎧⎨-=⎩,解方程组35234x y x y -=⎧⎨+=-⎩得:12x y =⎧⎨=-⎩,代入45228ax by ax by +=-⎧⎨-=⎩得:4102228a b a b -=-⎧⎨+=⎩,解得:23a b =⎧⎨=⎩,所以3()(2)8b a -=-=-.考察题型八新定义问题典例8-1.对于有理数x ,y ,定义一种新运算:x ⊕y ax by =+,其中a ,b 为常数.已知1⊕210=,(3)-⊕22=,则a ⊕b =.【详解】解:根据题中的新定义化简得:210322a b a b +=⎧⎨-+=⎩①②,①-②得:48a =,解得:2a =,把2a =代入①得:2210b +=,解得:4b =,则原式2=⊕441620=+=.故本题答案为:20.变式8-1.定义一种新运算“⊕”,规定:x ⊕y ax bxy =+,其中a ,b 为常数,且1⊕24=,2⊕(1)5-=,则a b +=.【详解】解:x ⊕y ax bxy =+,其中a ,b 为常数,且1⊕24=,2⊕(1)5-=,∴24225a b a b +=⎧⎨-=⎩①②,①+②得:39a =,解得:3a =,把3a =代入①,解得:0.5b =,∴原方程组的解是30.5a b =⎧⎨=⎩,30.5 3.5a b ∴+=+=.故本题答案为:3.5.典例8-2.定义:数对(,)x y 经过一种运算可以得到数对(,)x y '',将该运算记作:(d x ,)(y x '=,)y ',其中(x ax by a y ax by '=+⎧⎨'=-⎩,b 为常数).例如,当1a =,1b =时,(2d -,3)(1=,5)-.(1)当2a =,1b =时,(3,1)d =;(2)若(3d -,5)(1=-,9),求a 和b 的值;(3)如果组成数对(,)x y 的两个数x ,y 满足二元一次方程30x y -=时,总有(d x ,)(y x =-,)y -,则a =,b =.【详解】解:(1)当2a =,1b =时,22x x y y x y '=+⎧⎨'=-⎩,2317x '=⨯+= ,2315y '=⨯-=,(3d ∴,1)(7=,5),故本题答案为:(7,5);中(x ax by a y ax by '=+⎧⎨'=-⎩,b 为常数).如,当1a =,1b =时,(2ϕ-,3)(1=,5)-.(1)当2a =,1b =时,(1,0)ϕ=;(2)若(2ϕ,1)(0=,4),则a =,b =;(3)如果组成数对(,)x y 的两个数x ,y 满足20x y -=,0xy ≠,且数对(,)x y 经过运算ϕ又得到数对(,)x y ,求a 和b 的值.【详解】解:(1)当2a =,1b =时,21102x '=⨯+⨯=,21102y '=⨯-⨯=,故本题答案为:(2,2);(2)根据题意得:2024a b a b +=⎧⎨-=⎩,解得:12a b =⎧⎨=-⎩,故本题答案为:1,2-;。
初中数学七年级下册《10.3 解二元一次方程组》PPT课件 (3)

知识回顾
1.用代入法解方程组
x 2y 1 3x 2 y 5
① ②
、用代入法解方程的关键是什么?
二元
消元 转化
一元
x 2y 1 3x 2 y 5
方程组的系数有什么特 殊的地方吗?
Y的系数互为相反数
根据系数特点,你不用代入法能解这个方程组吗?
2. 任意一个二元一次方程组都能用加减消元法求 解吗?
知识延伸
4x 3y 5
你能用几种方法解方程组 2x y 5呢?
(1)某个未知数的系数互为相反数,则可以直接 把这两个方程中的两边分别相加, 消去这个未知数;
(2)把如这果两某个个方未程知中数的系两数边相分等别,相则减可,以直接
二.填空题:
1.已知方程组
只要两边
2x-3y=6 x+3y=17
②
两个方程
就可以消去未知数
2.已知方程组 只要两边
25x-7y=16
25x+6y=10 ② 两个方程 就可以消去未知数
三.选择题
6x+7y=-19①
1. 用加减法解方程组 6x-5y=17② 应用( )
A.①-②消去y
B.①-②消去x
C. ②- ①消去常数项 D. 以上都不对
3x+2y=13
2.方程组 3x-2y=5 消②去y后所得的方程是( )
A.6x=8 B.6x=18 C.6x=5 D.x=18
例3 解下列方程组
1、39xx
2 4
y y
15 10
① ②
1.能否直接用加减法来消元? 2.为什么?该怎么办?
(2)75xx
苏科版七年级下10.3解二元一次方程组【课时训练二】含答案

10.3二元一次方程组一、选择题(每题5分,共25分)1.若二元一次方程73=-y x ,132=+y x ,9-=kx y 有公共解,则k 的取值为( )A.3B.-3C.-4D.42.若992213y x y x y x n n m m =⋅++-,则n m 43-的值为( )A.3B.4C.5D. 63.二元一次方程组⎩⎨⎧-=-=+13243y x y x 的解是( ) ⎩⎨⎧==11.y x A ⎩⎨⎧-=-=11.y x B ⎩⎨⎧=-=22.y x C D. ⎩⎨⎧-==22y x4.若0=+y x ,且2=x 则y 的值为( ) A.0 B. 2 C. 1 D. 2±5.如果773+y x b a 和 x y b a 2427--是同类项,则x 、y 的值是( )A.x =-3,y =2B.x =2,y =-3C.x =-2,y =3D.x =3,y =-2二、填空题(每题5分,共25分)[来源:Zx k .C o m ] 6.如果方程10=+by ax 的两组解为⎩⎨⎧==⎩⎨⎧=-=51,01y x y x ,则a = ,b = 。
7.如果关于x 的方程2324+=-x m x 和m x x 32-=的解相同,则m = 。
8.若方程组()4x 3y 1kx k 1y 3+=⎧⎪⎨+-=⎪⎩ 的解x 和y 的值相等, 那么k 的值等于_______。
9.小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发现“⊗”“ ⊕”处被墨水污损了,请你帮他找出⊗、⊕ 处的值分别是 。
10.写出 一个 以 ⎩⎨⎧-==32y x 为解的二元一次方程组 。
三、解答题(每题10分,共50分)11.解方程组(1)⎩⎨⎧=+=+825y x y x (2)⎩⎨⎧=+=-7332y x y x12.已知二元一次方程组 ⎩⎨⎧=++=9129by ax x y 的解也是二元一次方程组 ⎩⎨⎧=-=+-133201418y ax y x 的解,求b a ,的值。
10.3解二元一次方程组的解(2)加减消元法

习题11.3 P112 1(3)(4) 3 , 4
板书设计
方程组 解方程组
(1)
(2)
(3)
教学后记
板演:
解:〈1〉+〈2〉得:
4x=6
x=
把x= 代入〈1〉得
+2y=1
解出这个方程,得
y=
所以原方程组的解是
2.解方程组
通过议一议,让学生都有感觉消去含x或y的项都可以,但哪个更简便?
解:〈1〉 3,得
15x-6y=12〈3〉
〈2〉 2,得
4x-6y=-10〈4〉
〈3〉-〈4〉,得
11x=22
x=2
课题
第十章二元一次方程组教案
课时分配
本课(章节)需2课时
本节课为第2课时
为本学期总第课时
10.3解二元一次方程组(加减消元法)
教学目标
1.使学生会用加减法解二元一次方程组。
2.学生通过解决问题,了解代入法与加减法的共性及个性。
重点
探寻用加减法解二元一次的方程组的进程。
难点
消元转化的过程
教学方法讲练结合、探索交流源自(2)(3)(4)
(5)
B组题:运用“转化”的思想方法,你能解下面的三元一次方程组吗?
(1)
(2)
学生读题,议一议
学生想一想,如感到困难则看道简单题。
由学生观察,如何求出x,y的值,学生再讨论。
试一试。学生口述。
老师板演
得到一元一次方程
学生再观察,议一议
①消去哪个未知数
②怎样消去?
P112 1(1)(2)(3)(4)
将x=2代入〈1〉,得
5 2-2y=4
y=3
所以原方程组的解是
10.3解二元一次方程组(2)

归纳总结
1.加减消元法
把方程组的两个方程(或先作适当变形)相加 或相减,消去其中一个未知数,把解二元一次 方程组转化为解一元一次方程,这种解方程组 的方法叫做加减消元法,简称加减法.
2.代入法的基本思想:消元. 3.代入法解二元一次方程组主要步骤:
(1)加减消元(有时先作适当变形) (2)解一元一次方程; (3)求方程组的解.
(2)方程组的系数有什么特殊的地方吗? y的系数互为相反数 (3)你能想办法消去未知数y吗? 将两个方程相加,直接消去y
(1)除了用代入消元法求解以外,观察方程组的
练一练
解下列方程组:
(1)
2 x y 32 2 x y 0
(2)
7 x 3 y 11 2 x 3 y 7
5 x 2 y 4, 例2:解方程组 2 x 3 y 5.
解: ①×3, 得 ②×2,得 15x-6y=12 ③ 4x- 6y=- 10 ④
③- ④,得
解这个方程得
11 x=22
x=2
将x=2 代入①,得 5×2- 2y=4 解这个方程得
x 2, 所以原方程组的解是 y 3.
y=3
试一试
5 x 2 y 4, 解方程组 2 x 3 y 5.
本题能否通过消去x解这个方程组?
加减消元法:
把方程组的两个方程(或先作适 当变形)相加或相减,消去其中一个 未知数,把解二元一次方程组转化为 解一元一次方程,这种解方程组的方 法叫做加减消元法,简称加减法.
练一练
1.解下列方程组:
3x 2 y 5 1 x 3y 9 3s 4t 7 3 3t 2s 1 6 x 5 z 25 2 3x 4 z 20
苏教版数学课本目录(小五到高中)

小学五年级数学五年级上册(约66课时)第一章小数乘除法(以计算题、填空题为主)1、小数乘除法重点考点:连乘、连加、连除、连减,混合运算和简便运算9课时2、整数乘法运算乘法运算的换算、估算,小数点的移位、列式计算6课时3、循环小数循环节的概念、循环小数的简便写法6课时4、积和商的凑整四舍五入法的凑整3课时第二章统计(以简答题为主)1、平均数平均数的计算和应用9课时第三章简易方程(以简答题为主)1、应用题、方程、化简与求值15课时此部分要讲重点题型、一般会涉及到相遇与追及问题,比例问题,初步二元一次方程(拓展)第四章几何小实践(以简答题为主,必考)9课时1、平行四边形、梯形、三角形(学校好的话会涉及到圆、正方形、长方形)周长面积的计算第五章整理与提高(好的学校的拓展部分)9课时一般会涉及到:数学广场(竞赛)中包括、时间的计算、编码五年级下册(约63课时)第一章正数和负数初步认识1、正数与负数、数轴3课时第二章简易方程(重难点,以简答题为主)30课时1、列方程解应用题图形应用题:面积、周长、边长(下学期重视几何,考的较多)6课时经济型应用题:买东西3课时统计型应用题:平均数3课时和倍差应用题:几倍多少(考的最多)9课时路程型应用题:相遇、追及6课时第三章几何小实践(以简答题为主)1、长方形、正方形、组合图形的体积与表面积(难)18课时第四章问题解决(若好学校试题会很难,依据学生情况和选择学校定难易程度12课时)1、可能性问题(类似于概率,不会考很难很深入的)3课时选择题4-5题3分12-15分填空题10-12题3分30-36分简答题5-6题8-12分49-58分(期中有1-2道必定是图形题)小学六年级数学六年级上册(约42—66课时)1、方程(以计算题为主)3—6课时2、长方体和正方体(以应用题为主)3—6课时2.1 表面积的变化3、分数(以计算题为主)3.1 分数乘法3.2 分数除法理解分数乘除法的意义和分数乘除法之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.3解二元一次方程组(3)练习 编写:王新艳 班级 姓名
一、选择题
⒈方程14-=-x y ax 是二元一次方程,则a 的取值为( )
A 、a ≠0
B 、a ≠-1
C 、a ≠1
D 、a ≠2
⒉下列方程组中是二元一次方程组的是 ( )
A 、22410x y x y +=⎧⎨+=⎩
B 、 3610x y xy -=⎧⎨=⎩
C 、573242y x x y ⎧-=-⎪⎨⎪+=⎩
D 、5323230
x y x y ⎧+=⎪⎨⎪+=⎩ ⒊由方程组⎩⎨⎧=-=-3
12y m m x 可得出x 与y 关系是 ( )
A 、24x y +=
B 、24x y -=
C 、24x y +=-
D 、24x y -=-
⒋已知⎩⎨
⎧-=-=2
3y x 是方程组⎩⎨⎧=-=+21by cx cy ax 的解,则a 、b 间的关系是( )
A 、194=-a b
B 、123=+b a
C 、194-=-a b
D 、149=+b a
⒌若二元一次方程73=-y x ,132=+y x ,9-=kx y 有公共解,则k 的取值为( ) A 、3 B 、-3 C 、-4 D 、4
⒍若方程组31331x y a x y a
+=+⎧⎨+=-⎩的解满足0x y +=,则a 的值为 ( )
A .一1
B .1 C. 0 D .无法确定
二.选择题 ⒎如果7)1(21=++-n m y x
m 是二元一次方程,那么m = , n = . ⒏已知21
x y =⎧⎨=⎩ 是方程26x ay +=的解,则a = .
⒐二元一次方程2315x y +=用含x 的代数式表示y =___________,它的正整数解有_______对. ⒑如果关于x 的方程4232x m x -=+和12-=x x 的解相同,那么 m =
11.等腰△ABC 的两边长是方程组⎩
⎨⎧-=-=+1210y x y x 的解,则△ABC 的周长为 _______________ 12.已知关于x 、y 的方程组 ⎩⎨
⎧=+=+2
32343y mx x x ,若1x y +=,则m 的值是 . 三.解下列方程组 13.122x y x y -=⎧⎨+=⎩ ; 342,2 1.x y x y -=⎧⎨+=⎩ ;
⎩⎨⎧=-=+1153132y x y x ; ⎪⎩⎪⎨⎧-=+=--+)(4)(3632y x y x y x y x
四.解答题
14.甲、乙两人都解方程组221ax y x by +=⎧⎨-=⎩,甲看错a 得解12x y =⎧⎨=⎩
,乙看错b 得解11x y =⎧⎨=⎩,求a 、b 的值.
15.当是为何值时,方程组 23116x y k x y k
+=-⎧⎨+=-⎩ 的解也是方程35x y +=的解?
16.已知方程组45321x y x y +=⎧⎨-=⎩ 和⎧⎨⎩ax+by=3ax-by=1
有相同的解,求222a ab b -+的值
17.已知方程组⎩⎨⎧=++=+a
y x a y x 224253,且x +y =8,求a 的值.
18. 张师傅在铺地板时发现:用8个大小一样的长方形瓷砖恰好可以拼成一个大的长方形(如图①所示),然后,他用这8块瓷砖七拼八凑,又拼出了一个正方形,中间还留下一个2 cm × 2 cm 的小正方形(如图②中的阴影部分所示).请你根据提供的信息,求出这些长方形的长和宽.。