第二章 8.二次函数与一元二次方程 配套课件

合集下载

《二次函数与一元二次方程》二次函数PPT(第2课时)教学课件

《二次函数与一元二次方程》二次函数PPT(第2课时)教学课件
3.理解一元二次方程的根就是二次函数与x轴交点的横坐标.
新课导入
新课导入
情境引入
1.一元二次方程ax2+bx+c=0 的求根公式是什么? 当b2-4ac≥0时,
x b b2 4ac 2a
当b2-4ac<0时,方程无实数根.
新课导入
新课导入
2 . 求出下列一元二次方程的根: (1)x2+2x=0 (2)x2-2x+1=0 (3)x2-2x+2=0 . 解:(1)x1=0, x2=-2.
平移后的解析式为y=-(x+2)2+2=-x2-4x-2.
新课导入
新知探究
(3)由
y=2x+n, y=-x2-4x-2,
消去y得到x2+6x+n+2=0,
由题意Δ≥0,
∴36-4n-8≥0,∴n≤7,
∵n≥m,m=1,
∴1≤n≤7,
令y′=n2-4n=(n-2)2-4,
∴当n=2时,y′的值最小,最小值为-4,
新课导入
课堂小测
3.已知二次函数y=x2+bx-c的图象与x轴两交点的坐标分别为(m,0), (-3m,0)(m≠0). (1)证明:4c=3b2. (2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值.
新课导入
课堂小测
解 :(1)证明:依题意知m,-3m是一元二次方程x2+bx-c=0的两个根. 根据一元二次方程根与系数的关系, 得m+(-3m)=-b , m·(-3m)=-c , b=2m , c=3m2 , ∴4c=12m2=3b2 .
新课导入
新知探究
【跟踪训练】 1.若抛物线y=ax2+bx+c,当 a>0,c<0时,图象与x轴的交点情况是( C )

二次函数与一元二次方程(第1课时)PPT课件

二次函数与一元二次方程(第1课时)PPT课件
(1) h和t的关系式是什么?
解 :1 .h 5 t24t.0
(2) 小球经过多少秒后落地?你 有几种求解方法?与同伴进行交
流. ①图象法
②解方程 -5t2+40t=0
议一议 二次函数与一元二次方程
画出二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(1).每个图象与x轴有几个交点?
(1)2.个,1个,0个程
二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(2) 一元二次方程x2+2x=0,x2-2x+1=0有几个根?验 证一下一元二次方程x2-2x+2=0有根吗?
2.抛物线y=ax2+bx+c(a≠0)的图象全部在x
轴下方的条件是( D )
(A)a<0 b2-4ac≤0(B)a<0 b2-4ac>0 (C)a>0 b2-4ac>0 (D)a<0 b2-4ac<0
小结 拓展 我思考,我进步
一个关系:二次函数图象与一元二次
我 方程根的关系:

函数
方程
的 收
y=ax2+bx+c(a≠0)
9
想一想 二次函数与一元二次方程
思考在本节一开始的小球上抛问题中,
何时小球离地面的高度是60m?你是如 何知道的? 能否达到80米?100米呢?
结论3 当y取定值时,二次函数可转
化为一元二次方程。

《二次函数与一元二次方程》二次函数PPT教学课件

《二次函数与一元二次方程》二次函数PPT教学课件

情境引入
下列二次函数的图象与x轴有公共点吗?如果有,公共的
横坐标是多少?当x轴取公共点的横坐标,函数值是多少?
由此,你能得出相应的一元二次方程的根吗?
(1)y=x2+x-2
(2)y=x2-6x+9
(3)y=x2-x+1

(1)抛物线y=x2+x-2与x轴有___个公共点,
-2,1
它们的横坐标是_____。当x取公共点的横坐
第二十二章 二次函数
二次函数与一元二次方程
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?
关系h=20t-5t2.考虑以下问题:
(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?
解:(2)解方程20=20t-5t2。t2-4t+4=0。
t1=t2=2。当球飞行2s时,它的高度为20m。
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(4)球从飞出到落地要用多少时间?
解:(1)解方程0=20t-5t2。t2-4t=0。t1=0,
t2=4。当球飞行0s和4s时,它的高度为0m,

《二次函数与一元二次方程》精品教学课件

《二次函数与一元二次方程》精品教学课件

再见
(1)yx2x2
2,1
(2)yx26x9
3
(3)yx2x1
没有实数根
y=x2-x+1 y 4
y=x2+x-2
3 2 1
y=x2-6x+9
–3 –2 –1 O –1 –2 –3
1234 x
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
例:利用函数图象求方程x22x2=0的实数根(结果保留小数点后一位).
yax²bxc(a0)
ax²bxcm(a0)

yax²bxc(a0) 与x轴的位置关系 没有公共点 有一个公共点 有两个公共点

ax²bxc0 (a≠0) 根的情况
没有实数根 有两个相等的实数根 有两个不相等的实数根
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
教科书第47页 习题22.2 第1、2、3、5题
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
回顾与思考
一次函数 ykxb 的图象如图所示,则关于x的 一元一次方程 kxb0 的解为 x3 .
关于x的一元一次方程 kxb0 的解
y
4 3 2 1
–4 –3 –2 –1 O –1 –2 –3 –4
1 2 3 4x
函数解析式

数形结合
函数图象 形
解:画出函数y=x22x2的图象, 如图所示,它与x轴的公共点的横坐标 大约是0.7,2.7.
所以方程x22x2=0的实数根为 x1≈0.7,x2≈2.7.
图片是【数学探究】《探究二次函数与x轴 交点》的动画缩略图,可以通过改变参数值, 改变函数图象位置,观察图象与x轴的交点情况.

2.8二次函数与一元二次方程上课课件

2.8二次函数与一元二次方程上课课件
1.小球上抛问题中,何时小球离地面的高度是60m?
解 : 当h 60时, 得 5t 2 40t 60. 解得 : x1 2, x2 6.
2.二次函数y=ax2+bx+c何时为一元二次方程?它们的关 系如何?
一般地,当y取定值时, 二次函数即为一元二次方程.
5
6
1.已知竖直上抛物体的高度h(m)与运动时间t(s)的关 系可用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的 高度,v0(m/s)是抛出时的速度.一个小球从地面以 40m/s的速度竖直向上抛出起,小球的高度h(m)与运动 时间t(s)的关系如图所示,那么
(1).h和t的关系式是什么? 解 : 1.h 5t 2 40t. (2).小球经过多少秒后落地? 你有几种求解方法?与同伴 进行交流.
二次函数 y=ax2+bx+c的图 象和x轴交点 有两个交点 有一个交点 没有交点
一元二次方程 ax2+bx+c=0的根
一元二次方程 ax2+bx+c=0根的判 别式Δ=b2-4ac b2-4ac > 0 b2-4ac = 0 b2-4ac < 0
有两个相异的实数根 有两个相等的实数根
没有实数根
当堂训练
九年级数学(下)第二章 二次函数
8. 二次函数与一元二次方程
学习目标:
1.会根据二次函数的图象和 横轴交点的个数判别一元二 次方程的根的情况 2.理解一元二次方程的根就 是二次函数与x轴交点的横坐 标。
自学指导:
1.完成课本70页的两个问题。 2.完成课本71页的议一议。 3.二次函数的图象与x轴的交点有几种 情况?即y=ax2+bx+c与x轴交点的横坐 标与一元二次方程ax2+bx+c=0的根有 什么关系?

二次函数与一元二次方程-用PPT课件

二次函数与一元二次方程-用PPT课件

点的是( D )
(A)yx2 2
(B)yx2 x
(C)yx26x9 (D . )yx2x+c(a≠0)的图象全部 在x轴下方的条件是( D ) (A)a<0 b2-4ac≤0 (B)a<0 b2-4ac>0 (C)a>0 b2-4ac>0
(D)a<0 b2-4ac<0
b2-4ac > 0
有一个交点
有两个相等的实数根
b2-4ac = 0
没有交点
没有实数根
b2-4ac < 0
结论2:抛物线y=ax2+bx+c与x轴的交点个数可由
一元二次方程ax2+bx+c=0的根的情况说明:
1 . △>0
一元二次方程ax2+bx+c=0
有两个不等的实数根
抛物线y=ax2+bx+c
x1 x2
x
OA B
(3)二次函数y=ax2+bx+c的图象和x轴交点横坐标与一元二次方 程ax2+bx+c=0的根有什么关系?
二次函数y=ax2+bx+c的图象和x 轴交点
一元二次方程ax2+bx+c=0的根
一元二次方程ax2+bx+c=0根的判别 式Δ=b2-4ac
有两个交点
有两个相异的实数根
B(x2,0
),
a
a
随堂练习
1、方程 x24x50的根是 -5,1 ; 则函数 yx24x5的图象与x轴的交点 有 2 个,其坐标是 (-5,0)、(1.,0)
2、方程 x21x0 2 50的根是 x1 x2 5;
则函数 yx210x25的图象与x轴的交点

《二次函数与一元二次方程》参考PPT课件

《二次函数与一元二次方程》参考PPT课件

有两个不相 等的实数根
b2 – 4ac > 0
只有一个交点 有两个相等的 实数根
b2 – 4ac = 0
没有交点
没有实数根
b2 – 4ac < 0 16
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
7.一元二次方程 3 x2+x-10=0的两个根是x1-2 , x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交点坐
标是__(_-2_,_0)_(_5/_3,. 0)
19
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
20.5 m
6
0m
0s
4s
(4)当 h = 0 时, 20 t – 5 t 2 = 0 t2-4t =0 t 1 = 0,t 2 = 4 当球飞行 0s 和 4s 时,它的高度为 0m ,即 0s时,球从地面飞出,4s 时球落回地面。
7
二次函数与一元二次方程的关系(1)
已知二次函数,求自变量的值
2.若抛物线 y = ax2+bx+c= 0,当 a>0,c<0时,图
象与x轴交点情况是( C )
A. 无交点
B. 只有一个交点
C. 有两个交点 D. 不能确定
17
3. 如果关于x的一元二次方程 x2-2x+m=0有两
个相等的实数根,则m=_1__,此时抛物线 y=x2- 2x+m与x轴有_1_个交点.

《二次函数与一元二次方程》数学PPT课件

《二次函数与一元二次方程》数学PPT课件
虑空气阻力,球的飞行高度 h (单位:m)与飞行时间t (单位:s)之间具有关系:h= 20t–5t2 .
考虑下列问题:
(1)球的飞行高度能否达到 15 m? 若能,需要多少时间?
(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?
(3)球的飞行高度能否达到 20.5 m?为什么?
(4)球从飞出到落地要用多少时间?
b2-4ac=0
有一个
有两个相等的实数根
b2-4ac<0
没有公共点
没有实数根
课堂小结
判别式(△)
b2-4ac
二次函数
y=ax2+bx+c
(a≠0)
b2-4ac>0
与x轴有两个不同的交点
(x1,0)
(x2,0)
b2-4ac=0
b2-4ac<0
与x轴有唯一个

交点(- ,0)
图象
y
x
有两个不同的解
x=x1,x=x2
(2)当h=20时,20t-5t2=20,
化简得t2-4t+4=0,
t1=t2=2.
当球飞行2s时,它的高度为20m.
思考:结合图形,你知道为什么在1)中有两个点
符合题意,而在2)中只有一个点符合题意?
情景思考
分析:由于小球的飞行高度h与飞行时间t有函数关系h=20t-5t2,所以可以将问题中h的值代
x1=-2,
x2=1
x1=x2=3
无实根
思考探究
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么
关系?
抛物线y=ax2+bx+c(a≠0)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.已知二次函数 y=-x2+2x+m 的部分图象如图 1,则关 于 x 的一元二次方程-x2+2x+m=0 的解为________________ x=3 或 x=-1 .
图1
在利用b2-4ac判定二次函数的图象与x轴交点个数时, 一定要注意二次项系数不为零.
8.二次函数与一元二次方程
1.二次函数图象与一元一次方程的关系 二次函数 y=ax2+bx+c 的图象与 x 轴的交点有三种情况: 有______ 两 个交点、有一个交点、______ 没有 交点,当二次函数 y =ax2+bx+c 的图象与 x 轴有交点时,交点的横坐标就是当 y =0 时自变量 x 的值,即一元二次方程 ax2+bx+c=0 的根. 2.利用二次函数的图象估计一元二次方程的根 一般步骤: (1)作二次函数 y=ax2+bx+c(a≠0)的图象; (2)确定抛物线与 x 轴交点的个数在两个数之间取值估计,并用计算器估算近似根, 近似根在对应 y 值的正负交换的地方,当 x 由 x1 取到 x2 时,对 应的 y 值出现 y1>0,y2<0 时,则 x1、x2 中必有一个是方程的近 似根,再比较|y1|和|y2|,若|y1|____| < y2|,则 x1 是方程的近似根; 当|y1|____| > y2|时,x2 是方程的近似根.
二次函数图象与一元二次方程的关系(重点) 1 . 抛物线 y = a(x - 2)(x + 5) 与 x 轴的交点坐标为 (2,0),(-5,0) ________________ . 2.若抛物线 y=x2+2x+m-1 与 x 轴只有一个交点,则 m =________. 2
利用二次函数的图象估计一元二次方程的根 3.已知所给表格是二次函数 y=ax2+bx+c 的自变量 x 与
函数值 y 的对应值,判断方程 ax2+bx+c=0(a≠0,a、b、c
为常数)的一个解 x 的范围是( x 6.17 -0.03 C ) 6.18 -0.01 6.19 0.02 6.20 0.04
y=ax2+bx+c
A . 6<x<6.17 B . 6.17<x<6.18 C . 6.18<x<6.19 D . 6.19<x<6.20
相关文档
最新文档