2019年第八章二元一次方程组单元试卷及答案

合集下载

第八章 二元一次方程组单元测试及答案

第八章 二元一次方程组单元测试及答案

第八章 二元一次方程组单元测试及答案一、选择题1.若关于x ,y 的方程组()348217x y mx m y +=⎧⎨+-=⎩的解也是二元一次方程x -2y =1的解,则m的值为( ) A .52B .32C .12D .12.方程组3453572x y x y +=⎧⎪⎨-+=-⎪⎩的解是( )A .20.25x y =⎧⎨=-⎩B . 4.53x y =-⎧⎨=⎩C .10.5x y =-⎧⎨=-⎩D .10.5x y =⎧⎨=⎩3.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( ) A .①②③B .①③C .②③D .①②4.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( ).A .5352x y x y +=⎧⎨+=⎩B .5253x y x y +=⎧⎨+=⎩C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩5.某单位采购小李去商店买笔记本和笔,他先选定了笔记本和笔的种类,若买25本笔记本和30支笔,则他身上的钱缺30元;若买15本笔记本和40支笔,则他身上的钱多出30元.( )A .若他买55本笔记本,则会缺少120元B .若他买55支笔,则会缺少120元C .若他买55本笔记本,则会多出120元D .若他买55支笔,则会多出120元6.小明出门时身上带了100元,下表记录了他今天所有支出,其中饮料与饼干支出的金额被涂黑.若每瓶饮料5元,每包饼干8元,则小明不可能...剩下多少元?( )A.4 B.15 C.22 D.447.已知方程组512x yax by+=⎧⎨+=⎩和521613x ybx ay+=⎧⎨+=⎩的解相同,则a、b的值分别是()A.2,3 B.3,2 C.2,4 D.3,48.《九章算术》是我国东汉初年编订的一部数学经典著作在它的“方程”一章里,一次方程组是由算筹布置而成的《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2图中各行从左到右列出的算筹数分别表示未知数,x y的系数与相应的常数项把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2+327214x yx y=⎧⎨+=⎩类似地,图2所示的算筹图我们可以表述为( )A.2+164322x yx y=⎧⎨+=⎩B.2+164327x yx y=⎧⎨+=⎩C.2+114322x yx y=⎧⎨+=⎩D.2+114327x yx y=⎧⎨+=⎩9.下列方程组的解为31xy=⎧⎨=⎩的是()A.224x yx y-=⎧⎨+=⎩B.253x yx y-=⎧⎨+=⎩C.32x yx y+=⎧⎨-=⎩D.2536x yx y-=⎧⎨+=⎩10.有若干只鸡和兔关在一个笼子里,从上面数,有30个头,从下面数,有84条腿﹐问笼中各有几只鸡和兔?若设笼中有x只鸡,y只兔,则列出的方程组为()A.30284x yx y+=⎧⎨+=⎩B.302484x yx y+=⎧⎨+=⎩C.304284x yx y+=⎧⎨+=⎩D.30284x yx y+=⎧⎨+=⎩二、填空题11.如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的橫、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′,则a=_____,m=_____,n=_____.若正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,则点F的坐标为_____.12.某商场在11月中旬对甲、乙、丙三种型号的电视机进行促销.其中,甲型号电视机直接按成本价1280元的基础上获利25%定价;乙型号电视机在原销售价2199元的基础上先让利199元,再按八五折优惠;丙型号电视机直接在原销售价2399元上减499元;活动结束后,三种型号电视机总销售额为20600元,若在此次促销活动中,甲、乙、丙三种型号的电视机至少卖出其中两种型号,则三种型号的电视机共______有种销售方案. 13.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a +b ﹣m =_____.14.关于x ,y 的方程组223321x y m x y m +=+⎧⎨-=-⎩的解满足不等式组5030x y x y ->⎧⎨-<⎩,则m 的取值范围_____.15.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.16.在某次数学竞赛中每解出一道难题得3分,每解出一道普通题得2分,此外,对于每道未解出的普通题要扣去1分.某人解出了10道题,共得了14分,则该次数学竞赛中一共有____道普通题.17.一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =⎧⎨=⎩和24x y =-⎧⎨=-⎩,试写出符合要求的方程组________(只要填写一个即可). 18.若方程组2232x y k x y k+=-⎧⎨+=⎩的解适合x+y=2,则k 的值为_____.19.王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问王虎油菜籽、西红柿、萝卜籽各买了_______包. 20.某“欣欣”奶茶店开业大酬宾推出...A B C D 四款饮料.1千克A 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克B 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克C 饮料的原料是3千克苹果,9千克梨, 6千克西瓜;1千克D 饮料的原料是2千克苹果,6千克梨,4千克西瓜;如果每千克苹果的成本价为2元,每千克梨的成本价为1.2元,每千克西瓜的成本价为3.5元.开业当天全部售罄,销售后,共计苹果的总成本为100元,并且梨的总成本为126元,那么西瓜的总成本为_____元三、解答题21.某校规划在一块长AD 为18 m 、宽AB 为13 m 的长方形场地ABCD 上,设计分别与AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?22.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y q x y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.23.已知关于x 、y 的二元一次方程组23221x y k x y k-=-⎧⎨+=-⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示); (2)若方程组的解x 、y 满足+x y >5,求k 的取值范围; (3)若1k ≤,设23m x y =-,且m 为正整数,求m 的值.24.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?25.某小区为了绿化环境,计划分两次购进A 、B 两种花草,第一次分别购进A 、B 两种花草30棵和15棵,共花费675元;第二次分别购进A 、B 两种花草12棵和5棵.两次共花费940元(两次购进的A 、B 两种花草价格均分别相同).()1A 、B 两种花草每棵的价格分别是多少元?()2若再次购买A 、B 两种花草共12棵(A 、B 两种花草价格不变),且A 种花草的数量不少于B 种花草的数量的4倍,请你给出一种费用最省的方案,并求出该方案所需费用. 26.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A 、B 两种原料,生产甲产品需要A 种原料4吨/件,B 种原料2吨/件,生产乙产品需要A 种原料3吨/件,B 种原料1吨/件,每个季节该厂能获得A 种原料120吨,B 种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元? (2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A ,B 两种原料还剩下多少吨?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】联立不含m 的方程求出x 与y 的值,进而求出m 的值即可. 【详解】解:联立得:34821x y x y +=⎧⎨-=⎩①②,①+②2⨯得:510x =, 解得:2x =, 把2x =代入①得:12y =, 把2x =,12y =代入得:12(21)72m m +-=, 解得:52m =. 故选:A . 【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.2.D解析:D 【分析】整理后①×7+②×2得出41x=41,求出x ,把x 的值代入①求出y 即可.【详解】解:整理得:34510143x y x y +=⎧⎨-=⎩①② , ①×7+②×2得:41x=41, ∴x=1,把x=1代入①得:3+4y=5, ∴y=0.5,∴方程组的解是:10.5x y =⎧⎨=⎩,故选D . 【点睛】本题考查了解二元一次方程组,关键是把二元一次方程组转化成一元一次方程,解题时要根据方程组的特点进行有针对性的计算.3.A解析:A 【分析】根据二元一次方程组的解法逐个判断即可. 【详解】当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解∴结论①正确由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:2345x y ⎧=⎪⎪⎨⎪=⎪⎩把23x =,45y =代入310x ky +=得2431035k ⨯+=解得10k =,则结论②正确解方程组356310x y x ky +=⎧⎨+=⎩得:20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩又k 为整数x 、y 不能均为整数∴结论③正确综上,正确的结论是①②③ 故选:A . 【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键.4.A解析:A 【分析】根据大小桶所盛酒的数量列方程组即可. 【详解】∵5个大桶加上1个小桶可以盛酒3斛, ∴5x+y=3,∵1个大桶加上5个小桶可以盛酒2斛, ∴x+5y=2,∴得到方程组5352x y x y +=⎧⎨+=⎩,故选:A. 【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.5.D解析:D 【分析】设笔记本的单价为x 元,笔的单价为y 元,根据小李身上的总额列出方程,然后变形即可求解. 【详解】设笔记本的单价为x 元,笔的单价为y 元,根据题意得: 25x+30y-30=15x+40y+30 整理得:10x-10y=60,即x-y=6∴()253063055210x x x +--=-,即买55个笔记本缺少210元()256303055120y y y ++-=+,即买55支笔多出120元故选D . 【点睛】本题考查了二元一次方程组,根据题意列出等量关系然后进行推导是本题的关键.6.C解析:C 【分析】设买了x 瓶饮料,y 盒饼干,求出买三餐所剩的钱数,对四个选项分别讨论,得到买饮料、饼干的总钱数,列出关于,x y 二元一次方程,若这个方程有自然数解,则可能,反之,不可能. 【详解】解:设买了x 瓶饮料,y 盒饼干,,x y 为自然数, 买三餐还剩100-10-15-18=57元A. 若剩4元,则 58574x y +=-,有整数解9,1x y ==;B. 若剩15元,则 585715x y +=-,有整数解2,4x y ==;C. 若剩22元,则 585722x y +=-,无整数解;D. 若剩44元,则 585744x y +=-,有整数解1,1x y ==; 故选:C. 【点睛】本题考查了二元一次方程的应用,解题关键是读懂题意,列出二元一次方程,把问题转化为二元一次方程的整数解的问题.7.B解析:B 【分析】由于这两个方程组的解相同,所以可以把这两个方程组中的第一个方程联立再组成一个新的方程组,然后求出x 、y 的解,把求出的解代入另外两个方程,得到关于a ,b 的方程组,即可求出a 、b 的值. 【详解】 根据题意,得:55216x y x y +=⎧⎨+=⎩,解得:23x y =⎧⎨=⎩, 将2x =、3y =代入1213ax by bx ay +=⎧⎨+=⎩,得:23122313a b b a +=⎧⎨+=⎩,解得:32a b =⎧⎨=⎩, ∴a 、b 的值分别是3、2. 故选:B . 【点睛】本题主要考查了二元一次方程组的解,理解方程组的解即为能使方程组中两方程都成立的未知数的值是解题的关键.8.D解析:D 【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x 的系数,第二个数是y 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式. 【详解】第一个方程x 的系数为2,y 的系数为1,相加的结果为11;第二个方程x 的系数为4,y 的系数为3,相加的结果为27,所以可列方程组为:2114327x y x y +=⎧⎨+=⎩.故选D . 【点睛】此题主要考查了由实际问题列二元一次方程组,关键是读懂图意,得到所给未知数的系数及相加结果.9.D解析:D 【解析】 把31x y =⎧⎨=⎩代入选项A 第2个方程24x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项B 第2个方程3x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项C 第1个方程3x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项D 两个方程均成立,故正确; 故选D.10.B解析:B 【分析】设这个笼中的鸡有x 只,兔有y 只,根据“从上面数,有30个头;从下面数,有84条腿”列出方程组即可. 【详解】解:若设笼中有x 只鸡,y 只兔, 根据题意可得:302484x y x y +=⎧⎨+=⎩,故选:B . 【点睛】此题考查了二元一次方程组的应用;根据题意列出方程组是解决问题的关键.二、填空题11.(1,4) 【分析】首先根据点A 到A′,B 到B′的点的坐标可得方程组 , ,解可得a 、m 、n 的值,设F 点的坐标为(x ,y ),点F′点F 重合可列出方程组,再解可得F 点坐标.【详解】由点A解析:1212(1,4)【分析】首先根据点A到A′,B到B′的点的坐标可得方程组312a mn-+=-⎧⎨=⎩,322a mn+=⎧⎨=⎩,解可得a、m、n的值,设F点的坐标为(x,y),点F′点F重合可列出方程组,再解可得F点坐标.【详解】由点A到A′,可得方程组312a mn-+=-⎧⎨=⎩;由B到B′,可得方程组322a mn+=⎧⎨=⎩,解得12122amn⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,设F点的坐标为(x,y),点F′点F重合得到方程组1122122x xy y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得14 xy=⎧⎨=⎩,即F(1,4),故答案为:12,12,2,(1,4).【点睛】本题主要考查了坐标与图形变化-平移以及二元一次方程组的应用,关键是正确理解题意,根据点的坐标列出方程组.12.五【分析】设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号解析:五【分析】设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z 台,根据题意得:1280×(1+25%)x+(2199-199)×0.85y+(2399-499)z=20600整理得:16x+17y+19z=206∴16(x+y+z)+y+3z=16×12+14∵x、y、z为非负整数,且x、y、z最多一个为0,∴0≤x≤12,0≤y≤12,0≤z≤10,∴14≤y+3z≤42.设x+y+z=12-k,y+3z=14+16k,其中k为非负整数.∴14≤14+16k≤42,∴0≤k<2.∵k为整数,∴k=0或1.(1)当k=0时,x+y+z=12,y+3z=14,∴0≤z≤4.①当z=0时,y=14>12,舍去;②当z=1时,y=14-3z=11,x=12-y-z=12-11-1=0,符合题意;③当z=2时,y=14-3z=8,x=12-y-z=12-8-2=2,符合题意;④当z=3时,y=14-3z=5,x=12-y-z=12-5-3=4,符合题意;⑤当z=4时,y=14-3z=2,x=12-y-z=12-2-4=6,符合题意.(2)当k=1时,x+y+z=11,y+3z=30∵y=30-3z,∴0≤30-3z≤12,解得:6≤z≤10,当z=6时,y=30-3z=12,x=11-y-z=11-12-6=-7<0,舍去;当z=7时,y=30-3z=9,x=11-y-z=11-9-7=-5<0,舍去;当z=8时,y=30-3z=6,x=11-y-z=11-6-8=-3<0,舍去;当z=9时,y=30-3z=3,x=11-y-z=11-3-9=-1<0,舍去;当z=10时,y=30-3z=0,x=11-y-z=11-10-0=1,符合题意.综上所述:共有0111x y z =⎧⎪=⎨⎪=⎩,282x y z =⎧⎪=⎨⎪=⎩,453x y z =⎧⎪=⎨⎪=⎩,624x y z =⎧⎪=⎨⎪=⎩,1010x y z =⎧⎪=⎨⎪=⎩五种方案.故答案为:五.【点睛】本题考查了三元一次方程的应用.分类讨论是解答本题的关键.13.﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2解析:﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2)列,结合表一中每个数等于其所在的行数×列式即可列出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,将其代入m=(x+1)(y+1)即可得出m 的值,将a 、b 、m 的值代入a-b+m 即可得出结论.【详解】表二截取的是其中的一列:上下两个数字的差相等,∴a-15=15-12,解得:a=18;表三截取的是两行两列的相邻的四个数字:右边一列数字的差比左边一列数字的差大1, ∴42-b-1=36-30,解得:b=35;表四截取的是两行三列的相邻的六个数字:设42为第x 行y 列,则75为第(x+1)行(y+2)列,则有()()421275xy x y ⎧⎨++⎩==, 解得:143x y ⎧⎨⎩== 或3228x y ⎧⎪⎨⎪⎩==(舍去), ∴m=(x+1)(y+1)=(14+1)×(3+1)=60.∴a+b ﹣m=18+35-60=-7.故答案为:-7【点睛】此题考查一元一次方程的应用,规律型:数字变化类,根据表一中数的排列特点通过解方程(或方程组)求出a 、b 、m 的值是解题关键.14.m >﹣【分析】利用方程组中两个式子加减可得到和x-3y用m来表示,根据等量代换可得到关于m的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x﹣y=3m+2,将两个方程相减解析:m>﹣23【分析】利用方程组中两个式子加减可得到5x y-和x-3y用m来表示,根据等量代换可得到关于m的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x﹣y=3m+2,将两个方程相减可得x﹣3y=﹣m﹣4,由题意得32040 mm+>⎧⎨--<⎩,解得:m>23 -,故答案为:m>23 -.【点睛】此题考查含参数的二元一次方程组与不等式组相结合的题目,注意先观察,通过二元一次方程的加减得到不等式组的相关式子,再进行等量代换15.26、24或22【解析】【分析】通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×5+大纪念册本数×7=142,可以根据此等量关系,列出方程求解作答.【详解】解:假设购买小纪念册解析:26、24或22【解析】【分析】通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×5+大纪念册本数×7=142,可以根据此等量关系,列出方程求解作答.【详解】解:假设购买小纪念册x本,购买大纪念册y本,则x,y为整数.则有题目可得二元一次方程:5x+7y=142,解得:x,y有4组整数解即:271xy=⎧⎨=⎩,206xy=⎧⎨=⎩,1311xy=⎧⎨=⎩,616xy=⎧⎨=⎩即有四种情况即:两种纪念册共买28、26、24或22本.故答案为28、26、24或22本.【点睛】本题考查了一次方程的实际应用,中等难度,解决此类问题的关键在于,找出题目中所给的等量关系,列出方程,求解方程.16.16【解析】【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设普通题一共有x道,其中解出a道,难题一共解出b道,依题意得:3b+2a-(x-a)=1解析:16【解析】【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设普通题一共有x道,其中解出a道,难题一共解出b道,依题意得:(2)×3-(1)得x=16,∴该次数学竞赛中一共有16道普通题.【点睛】本题考查了三元一次方程组的实际应用,中等难度,正确对方程组进行化简是解题关键. 17.【分析】从方程组的两组解入手,找到两组解之间的乘积关系为二元二次方程,倍数关系为二元一次方程,联立方程组即可.【详解】解:根据方程组的解可看出:xy=8,y=2x,∴符合要求的方程组为.解析:28 y x xy=⎧⎨=⎩【分析】从方程组的两组解入手,找到两组解之间的乘积关系为二元二次方程,倍数关系为二元一次方程,联立方程组即可.【详解】解:根据方程组的解可看出:xy=8,y=2x,∴符合要求的方程组为28 y x xy=⎧⎨=⎩.【点睛】根据未知数的解写方程组的题目通常是利用解之间的数量关系(和差关系或倍数关系等)来表示方程组的解.18.3【解析】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为:3.解析:3【解析】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得3k-3=6,计算得出k=3,故答案为:3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.19.3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x、y、z包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x、y、z包根据题解析:3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x、y、z包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x、y、z包根据题意可列方程组,100341007x y x z x y ++=⎧⎪⎨++=⎪⎩①② ②-3×①,得77020z y =+ 要使x 、y 、z 均为正整数,则3,20,77x y z ===故答案为3、20、77点睛:本题主要考查学生利用方程思想建模解决实际问题的能力.解题的技巧在于要利用题中的相等关系建立方程组,并用含一个未知数的式子表示另一个未知数,再根据实际情况得出满足题意的解.20.5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为元,并且梨的总成本为元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A解析:5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为100元,并且梨的总成本为126元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克, 根据题意,得:100223221263396 1.2a b c d a b c d ⎧+++=⎪⎪⎨⎪+++=⎪⎩, 整理得:2()(32)50()(32)35a b c d a b c d +++=⎧⎨+++=⎩, 解得:153220a b c d +=⎧⎨+=⎩, ∴3.5(64) 3.5(15202)192.5a b c d +++=⨯+⨯=,故答案为:192.5.【点睛】本题考查了二元一次方程组的应用,根据题意找到等量关系,列出方程组,解方程组时注意整体思想的应用是解决本题的关键.三、解答题21.1【分析】利用AM:AN=8:9,设通道的宽为xm ,AM=8ym ,则AN=9ym ,进而利用AD 为18m ,AB 为13m ,得出等式求出即可.【详解】设通道的宽是xm ,AM =8ym.因为AM ∶AN =8∶9,所以AN =9ym.所以22418,1813.x y x y +=⎧⎨+=⎩解得1,2.3x y =⎧⎪⎨=⎪⎩答:通道的宽是1m.故答案为1.【点睛】本题考查了二元一次方程组的应用.22.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3, 解得:m =6,n =4,则2m =12,8+n =12,所以2m =8+n ,所以A (5,3)是“爱心点”;当B (4,8)时,m ﹣1=4,22n +=8,解得:m=5,n=14,显然2m≠8+n,所以B点不是“爱心点”;(2)A、B两点的中点C在第四象限,理由如下:∵点A(a,﹣4)是“爱心点”,∴m﹣1=a,22n+=﹣4,解得:m=a+1,n=﹣10.代入2m=8+n,得2(a+1)=8﹣10,解得:a=﹣2,所以A点坐标为(﹣2,﹣4);∵点B(4,b)是“爱心点”,同理可得m=5,n=2b﹣2,代入2m=8+n,得:10=8+2b﹣2,解得:b=2.所以点B坐标为(4,2).∴A、B两点的中点C坐标为(2442,22-+-+),即(1,﹣1),在第四象限.(3)解关于x,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩,得:2x qy q⎧=-⎪⎨=⎪⎩.∵点B(x,y)是“爱心点”,∴m﹣1﹣q,22n+=2q,解得:m﹣q+1,n=4q﹣2.代入2m=8+n,得:﹣2q+2=8+4q﹣2,整理得﹣6q=4.∵p,q为有理数,若使p﹣6q结果为有理数4,则P=0,所以﹣6q=4,解得:q=﹣23.所以P=0,q=﹣23.【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.23.(1)214342kxky-⎧=⎪⎪⎨-⎪=⎪⎩;(2)k <﹣52;(3)m的值为1或2.【分析】(1)把k当成一个已知得常数,解出二元一次方程组即可;(2)将(1)中得,x y 的值代入+x y >5 ,即可求出k 的取值范围;(3)将(1)中得,x y 的值代入23m x y =-得m=7k ﹣5.由于m >0,得出7k ﹣5>0,及1k ≤得出解集517<k ≤ 进而得出m 的值为1或2 【详解】(1)2x 322x+y=1-k?y k -=-⎧⎨⎩①② ②+①,得4x =2k ﹣1, 即214k x -= ; ②﹣①,得2y =﹣4k +3 即342k y -=所以原方程组的解为214342k x k y -⎧=⎪⎪⎨-⎪=⎪⎩(2)方程组的解x 、y 满足x +y >5, 所以2134542k k --+> , 整理得﹣6k >15, 所以52k <﹣ ; (3)m =2x ﹣3y =21342342k k --⨯-⨯ =7k ﹣5由于m 为正整数,所以m >0即7k ﹣5>0,k >57 所以57<k ≤1 当k =67时,m =7k ﹣5=1; 当k =1时,m =7k ﹣5=2.答:m 的值为1或2.【点睛】 本题主要考查了二元一次方程组的解法,熟练掌握解二元一次方程组的方法是解题的关键.24.应购买小笔记本50本,大笔记本8本,钢笔4支【解析】【分析】根据题意结合奖品的价格得出5x+7y+10z=346,y=2z ,再利用共花费346元,分别得出x ,y ,z 的取值范围,进而得出z 的取值范围,分别分析得出所有的可能.【详解】解:设购买小笔记本x 本,大笔记本y 本,钢笔z 支,则有5x+7y+10z=346,y=2z .易知0<x ≤69,0<y ≤49,0<z ≤34, ∴5x+14z+10z=346,5x+24z=346,即346245z x -=. ∵x ,y ,z 均为正整数,346-24z ≥0,即0<z ≤14∴z 只能取14,9和4. ①当z 为14时,346242,228.445z x y z x y z -====++= 。

第八章 《二元一次方程组》试题及参考答案

第八章 《二元一次方程组》试题及参考答案

第八章 二元一次方程组一、选择题1.方程2x ﹣3y=4,324x y+=,342x y -=,2x+3y ﹣z=5,x 2﹣y=1中,是二元一次方程的有( ) A .1个 B .2个 C .3个 D .4个2.下列方程组中,属于二元一次方程组的是( )A .53x y x z +=⎧⎨=⎩ B. C.434x y xy x y -+=⎧⎨-=⎩ D.3.已知:21x y =⎧⎨=⎩是方程kx-y=3的解,则k 的值是( )A.2B.-2C.1D.-14.方程组125x y x y +=⎧⎨-=⎩的解是( ) A .12x y =-⎧⎨=⎩ B .23x y =-⎧⎨=⎩ C .21x y =⎧⎨=⎩ D .21x y =⎧⎨=-⎩5.若12x y =⎧⎨=⎩是方程3ax y -=的解,则a 的值是( ) A .5 B .2 C .1 D .-56,可以得到用x 表示y 的式子() ABC D 二、填空题7.方程组23328y x x y =-⎧⎨+=⎩的解是8.若方程 2x 1-m + y m n +2 = 是二元一次方程,则mn = 。

9.在方程427x y -=中,如果用含有x 的式子表示y ,则10.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票x 张,乙种票y 张,由此可列出方程组:________________.参考答案1.B【解析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程. 解:2x ﹣3y=4是二元一次方程;2x+=4是分式方程;﹣3y=4是二元一次方程; 2x+3y ﹣z=5是三元一次方程;x 2﹣y=1是二元二次方程.故选B .2.D .【解析】试题分析:A 、有三个未知数,所以A 选项不正确;B 、第一个方程不是整式方程,故不是二元一次方程组;C 、未知项xy 的次数为2,故不是二元一次方程组;D 、符合二元一次方程组的定义,是二元一次方程组.故选D .考点:二元一次方程组的定义.3.A【解析】试题分析:知道了方程的解,可以把这对数值代入方程,得到一个含有未知数k 的一元一次方程,从而可以求出k 的值.考点:二元一次方程的解4.D .【解析】 试题分析:125x y x y +=⎧⎨-=⎩①②,①+②得,3x=6,x=2,把x=2代入①得,y=﹣1, ∴原方程组的解21x y =⎧⎨=-⎩. 故选D .考点:解二元一次方程组.5.A【解析】 试题分析:由题意直接把⎩⎨⎧==21y x 代入方程3=-y ax 即可得到关于a 的方程,再解出即可. 由题意得32=-a ,5=a ,故选A.考点:方程的解的定义点评:解题的关键是熟练掌握方程的解的定义:方程的解就是使方程左右两边相等的未知数的值.6.C【解析】试题分析:化简方程,左右两边同时乘以6得:2x-3y=6.化为用x表示y考点:二元一次方程点评:本题难度较低,主要考查学生对二元一次方程转化的知识点的掌握。

人教版七年级数学下册第八章《二元一次方程组》单元检测卷 (附答案)

人教版七年级数学下册第八章《二元一次方程组》单元检测卷 (附答案)
12.(黄石中考)一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表所示,现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销互动:购买三个及三个以上可一次性返现金4元,则购买盒子所需要最少费用为_______元.
型号
A
B
单个盒子容量(升)
2
3
单价(元)
5
6
三、解答题(共60分)
2.若 ,则ab=()
A.-10B.-40C.10D.40
【答案】A
【解析】
【分析】联立已知两方程求出a与b的值,即可求出ab的值.
【详解】解:联立得:
解得
∴ab=-10.
故选A.
3.若-2amb4与5an+2b2m+n可以合并成一项,则mn的值是( )
A.0B. C.1D.2
【答案】C
【解析】
【分析】根据-2amb4与5an+2b2m+n可以合并成一项,可得同类项,根据同类项的定义,可得m、n的值,根据乘方,可得答案.
18.阅读下列材料:
问题:某饭店工作人员第一次买了13只鸡、5只鸭、9只鹅共用了925元.第二次买了2只鸡、4只鸭、3只鹅共用了320元,试问第三次买了鸡、鸭、鹅各一只共需多少元?(假定三次购买鸡、鸭、鹅的单价不变)
解:设鸡、鸭、鹅的单价分别为x,y,z元.依题意,得

上述方程组可变形为 ,
设x+y+z=a,2x+z=b,上述方程组可化 : ,
13.解方程组:
(1)
(2)
14.已知 是关于x,y的二元一次方程3x=y+a的解,求a(a-1)的值.
15.已知关于x,y 方程组 与 有相同的解,求a,b的值.

人教版七年级下册数学第八章《二元一次方程组》单元练习题含答案

人教版七年级下册数学第八章《二元一次方程组》单元练习题含答案

七年级下册数学第八章《二元一次方程组》单元练习题一、单选题 1.已知,那么x+y 的值是( )A .0B .5C .﹣1D .12.已知单项式 23x m y -- 与 2323n m nx y - 是同类项,那么m ,n 的值分别是A .31m n =⎧⎨=-⎩B .31m n =⎧⎨=⎩C .31m n =-⎧⎨=⎩D .31m n =-⎧⎨=-⎩3.某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少? 设甲的速度是x 米/秒,乙的速度是y 米/秒.则列出的方程组是( )A .30()40080()400x y y x +=⎧⎨-=⎩B .30()40080()400y x x y -=⎧⎨+=⎩C .30()40080()400x y x y +=⎧⎨-=⎩D .30()40080()400x y x y -=⎧⎨+=⎩4.《孙子算经》是中国古代重要的数学著作,其中第三卷中记载一题:今有兽,六首四足;禽,二首二足,上有七十六首,下有四十六足,问:禽、兽各几何?译文:今有一只怪兽,有6个头4只脚,一只怪鸟,有2个头2只脚,现在上面有76个头,下面有46只脚,问怪兽、怪鸟各有多少?设怪兽为x 只,怪鸟为y 只,可列方程组为( ).A .62464276x y x y +=⎧⎨+=⎩B .64762246x y x y +=⎧⎨+=⎩C .62764246x y x y +=⎧⎨+=⎩D .22766246x y x y +=⎧⎨+=⎩5.甲、乙二人同时同地出发,都以不变的速度在300米环形跑道上奔跑.若反向而行,每隔20s 相遇一次,若同向而行,则每隔300s 相遇一次,已知甲比乙跑得快,设甲每秒跑x 米,乙每秒跑y 米,则可列方程为( )A .30020x y x y +=⎧⎨-=⎩B .20300x y x y +=⎧⎨-=⎩C .2020300300300300x y x y +=⎧⎨-=⎩D .2030030030020300x y x y +=⎧⎨-=⎩6.已知|2x+y+3|+(x-y+3)2=0,则(x+y )2019等于( ) A .2019B .-1C .1D .-20197.把方程7215x y =-写成用含x 的代数式表示y 的形式,得( ) A .2517x y -=B .1527yx +=C .7152x y -=D .1572xy -=8.在一个古代文献里记录了一个“鸡免同笼”问题,翻译内容如下:在一个笼子里混装有鸡和兔子若干只,已知共有头45个,脚160个,设鸡x 只,兔子y 只,根据题意可列出方程组( )A .4524160x y x y +=⎧⎨+=⎩B .4522160x y x y +=⎧⎨+=⎩C .452160x y x y -=⎧⎨+=⎩D .4524160x y x y +=⎧⎨-=⎩9.如果│x+y -1│和2(2x+y -3)2互为相反数,那么x ,y 的值为( )A .12x y =⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .21x y =⎧⎨=-⎩D .21x y =-⎧⎨=-⎩10.如果方程x ﹣y =3与下面的方程组成的方程组的解为47x y =-⎧⎨=-⎩,那么这一个方程可以是( )A .2(x ﹣y )=6yB .3x ﹣4y =16C .1x 2y 54+=D .1x 3y 82+=二、填空题11.二元一次方程3x +2y =15共有_______组正整数解.... 12.已知24280x x y -++-=,则()2019x y -=_____________.13.已知关于x ,y 的二元一次方程组3522x y k x y k +=⎧⎨+=-⎩的解互为相反数,则k 的值是_______14.方程组26{0x y x y -=+=的解是 . 15.某商店新进一批衬衣和数对暖瓶(一对为2件),暖瓶的对数正好是衬衣件数的一半,每件衬衣的进价是40元,每对暖瓶的进价是60元(暖瓶成对出售),商店将这批物品以高出进价10%的价格售出,最后留下了17件物品未卖出,这时,商店发现卖出物品的总售价等于所有货物总进价的90%,则最初购进这批暖瓶_____对.16.已知关于 x ,y 的二元一次方程组2122x y k x y k -=+⎧⎨-=-+⎩,则 x ﹣y 的值是_____17.《九章算术》是我国东汉年间编订的一部数学经典著作,其中有一个问题是:“今有三人公车,二车空;二人公车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,若每3人坐一辆车,则有2辆空车;若每2人坐一辆车,则有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为_________.18.若7353x y x y +=⎧⎨-=-⎩,则5x ﹣3y 的值是_____.三、解答题19.(1)阅读下列材料并填空:对于二元一次方程组4354{336x y x y +=+=,我们可以将x ,y 的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x ay b== ,用数表可表示为10)01ab(.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x y x y +=+=的过程.20.如果264(1)(2)12x x A B Cx x x x x x +-=++-+-+,求A,B,C 的值.21.甲、乙两车将一批抗疫物资从A 地运往B 地,两车各自的速度都保持匀速行驶.甲出发0.5h 后乙开始出发,结果比甲早0.5h 到达B 地.甲、乙两车离A 地的路程1s ()km 、2s ()km 与甲车行驶时间行驶的时间()t h 之间的函数关系如图所示.(1)求2s ()km 与t ()h 之间的函数关系式; (2)图中a =_______;b =______;(3)若甲、乙两车之间的路程不小于20km ,则t 的取值范围是________.(直接写出答案)22.对于两个不相等的实数a 、b ,我们规定符号max{a ,b}表示a 、b 中的较大值,min{a ,b}表示a 、b 中的较小值.如:max{2,4}=4,min{2,4}=2.按照这个规定:解方程组:{}{}1max ,3min 39,3114x x y x x y ⎧-=⎪⎨⎪++=⎩23.已知关于x ,y 的方程组3+5223x y m x y m =+⎧⎨+=⎩的解满足x +y =-10,求式子m 2-2m +1的值.24.学完二元一次方程组的应用之后,老师写出了一个方程组如下:254340x y x y -=⎧⎨+=⎩,要求把这个方程组赋予实际情境. 小军说出了一个情境:学校有两个课外小组,书法组和美术组,其中书法组的人数的二倍比美术组多5人,书法组平均每人完成了4幅书法作品,美术组平均每人完成了3幅美术作品,两个小组共完成了40幅作品,问书法组和美术组各有多少人?小明通过验证后发现小军赋予的情境有问题,请找出问题在哪?25.对于实数a ,b ,定义关于“⊕”的一种运算:a ⊕b=2a+b ,例如3⊕4=2×3+4=10.若x ⊕(-y )=2,(2y)⊕x=1,求x+y 的平方根.26.开学初,小芳和小亮去学校商店购买学习用品,小芳用17元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.求每支钢笔和每本笔记本的价格.27.某班将举行“庆祝建党90周年知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息,试计算两种笔记本各买了多少本?答案1.B2.B3.A4.C5.C6.B7.C8.A9.C10.B 11.2 12.1- 13.4 14.2{2x y ==- 15.22. 16.117.()3229y x y x ⎧-=⎨+=⎩18.1119.(1) 6,10;(2)02x y =⎧⎨=⎩。

人教版2018--2019学年第二学期七年数学下册第八单元《二元一次方程组》测试题及参考答案

人教版2018--2019学年第二学期七年数学下册第八单元《二元一次方程组》测试题及参考答案

人教版2018--2019学年第二学期 七年级数学下册第八单元测试题及参考答案一、选择题(每题3分,共30分)1. 已知关于x ,y 的二元一次方程组2ax by3ax -by 1⎧+=⎨=⎩的解是x 1y 1⎧=⎨=-⎩,则a -2b的值是( )A.-2B.2C.3D.-3 2.以方程组y x 1y x 1⎧=+⎨=-+⎩的解为坐标的点位于( )A.x 轴的正半轴B.x 轴的负半轴C.y 轴的正半轴D.y 轴的负半轴 3. 下列方程组是二元一次方程组的是( )A.x y 3z x 5⎧+=⎨+=⎩ B.2x y 5y 5⎧+=⎨=⎩ C.x y 3xy 2⎧+=⎨=⎩ D.22x y 11x 2x y x⎧=+⎨-=+⎩ 4. 下列四组x ,y 的值,是二元一次方程2x -y=-4的解的是( )A.x3y 2⎧=⎨=⎩ B.x2y 2⎧=⎨=⎩ C.x3y 2⎧=-⎨=-⎩ D.x6y 6⎧=⎨=⎩5. 足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数是( ) A.1或2 B.2或3 C.3或4 D.4或56. 已知关于x ,y 的二元一次方程组5x 8ya 33x y 4⎧+=+⎨-=⎩的解满足8x +7y=11,则a 的值为( )A.4B.9C.11D.25 7. 若3a 7x b y+7和-7a 2-4yb 2x是同类项,则( )A.x3y 2⎧=-⎨=⎩ B.x2y 3⎧=⎨=-⎩ C.x2y 3⎧=-⎨=⎩D.x3y 2⎧=⎨=⎩8. 根据图示提供的信息,可知一个热水瓶的价格是( )A.7元B.35元C.45元D.50元9. 某纸箱厂用如图1所示的长方形和正方形纸板(无需裁剪)做成如图2所示的竖式和横式两种无盖长方体纸盒.已知仓库里有m 张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好把库存的纸板用完,那么m +n 的值可能是( )A.2014B.2015C.2016D.201710. 若方程组2m3n 73m 5n 1⎧-=⎨+=⎩的解是m2n 1⎧=⎨=-⎩,则方程组2(x 1)3(y 2)73(x 1)5(y 2)1⎧+--=⎨+--=⎩的解是( ).............密..............封..............线. .............内..............不..............要.............答.............题..............A.x 1y 1⎧=⎨=⎩ B x 1y 1⎧=⎨=-⎩ C.x3y 1⎧=⎨=⎩ D.x3y 3⎧=⎨=-⎩二、填空题(每题3分,共18分)11. 小敏不小心将墨水減在同桌小娟的作业本上,结果二元一次方程组3x y 11x 2y -2⎧+=⎨+=⎩中第一个方程y 的系数和第二个方程x 的系数看不到了,若该方程组的正确的解是x1y 2⎧=⎨=⎩’则原来的方程组为______.12. 二元一次方程组x y 2+=2x y 3-=x +2的解是______.13. 若3x 3m+5n +9+4y 4m-2n -7=0是二元一次方程,则m n的值为______.14. 已知(3x +4y -16)2与|5x -6y -33|互为相反数,则x=______,y=______. 15. 已知关于x ,y 的二元一次方程(a -1)x +(a +2)y +5-2a=0,当a 每取一个值时就得到一个方程,而这些方程有一组公共解,这组公共解是______.16. 长方形ABCD 中放置了6个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是______cm 2.三、解答题(共52分) 17.(8分)解下列方程组:(1) x 4y 11①x 3y 31②4312⎧+=⎪⎨---=⎪⎩ (2)3x 2y 1①x 3y 7②⎧-=-⎨+=⎩18.(6分)已知二元一次方程组x y1x 2y 4⎧+=⎨+=⎩(1)解该方程组;(2)若该方程组的解是关于x ,y 的二元一次方程ax +by=2的一组解,求6b -4a 的值.19. (8分)某超市的地面需要铺设地砖,经询问得知:若请甲、乙两个工程队同时施工,8天可以完成,共需付两工程队费用8000元;若先请甲工程队单独做6天,剩下的由乙工程队单独做还需12天可以完成,共需付两工程队费用7920元.问:(1)甲、乙两工程队单独工作一天,超市应各付多少元?(2)单独请哪个工程队,超市所付费用较少?20. (8分)已知关于x,y的方程组x y3k4x y k2⎧+=-⎨-=+⎩(1)若方程组的解满足方程3x-4y=1,求k的值;(2)请你给k一个值,使方程组的解中x,y都是正整数,并直接写出该方程组的解.21. (10分)下面是按一定规律排列的方程组集合与其解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、…、方程组n.(1)直接写出A 的值和方程组1的解;(2)请依据方程组和它的解的变化规律,写出方程组n 和它的解;(3)若方程组x ny1x my 16⎧+=⎨-=⎩的解是x10y 9⎧=⎨=-⎩,求m ,n 的值,并判断该方程组是否符合(2)中的规律.22. (12分)某水果批发市场香蕉的价格如下表:李丽两次共购买香蕉50千克(第二次多于第一次),共付款264元,请问李丽第一次、第二次分别购买香蕉多少千克?参考答案1.D2.C3.B4.C5.B6.C7.C8.A9.A 10.B11.-3712.6 13.3x 4y116x 2y 2⎧+=⎨-+=-⎩14.x 5y 1⎧=-⎨=-⎩ 15.3316.x3y 1⎧=⎨=-⎩ 17.【解析】(1) 由②,得3(x -3)-4(y -3)=1, 化简,得3x -4y=-2,③ ①+③,得4x=12,解得x=3.把x=3代入③,得9-4y=-2,解得y=114.所以这个方程组的解为x 311y 4⎧=⎪⎨=⎪⎩.(2) ②×3,得3x +9y=21,③③-①,得11y=22,解得y=2.把y=2代入②,得x +6=7,解得x=1所以这个方程组的解为x1y 2⎧=⎨=⎩.18.【解析】(1)x y 1①x 2y 4②⎧+=⎨+=⎩②-①,得y=3.把y=3代入①,得x +3=1,解得x=-2.所以这个方程组的解为x2y 3⎧=-⎨=⎩.(2)把x 2y 3⎧=-⎨=⎩代入方程ax +by=2,得-2a +3b=2,所以6b -4a=2(3b -2a)=4.19. 【解析】(1)设甲工程队单独工作一天,超市应付x 元,乙工程队单独工作一天,超市应付y 元.由题意可得8(x y)80006x 12y 7920⎧+=⎨+=⎩,解得x650y 320⎧=⎨=⎩.答:甲工程队单独工作一天,超市应付680元,乙工程队单独工作一天,超市应付320元.(2)设工程总量为单位1,甲工程队的工作效率为m ,乙工程队的工作效率为n.由题意可得8(m n)16m 12n 1⎧+=⎨+=⎩,解得1m 121n 24⎧=⎪⎪⎨⎪=⎪⎩, 1÷112=12(天),1÷124=24(天), 所以甲工程队单独完成需12天,乙工程队单独完成需24天,所以单独请甲工程队需付680×12=8160(元),单独请乙工程队需付320×24=7680(元), 因为8160<7680,所以单独请乙工程队,超市所付费用较少.20. 【解析】(1)解方程组,得x2k 1y k 3⎧=-⎨=-⎩,将其代入3x -4y=1,可得3(2k -1)-4(k -3)=1,解得k=-4.(2)当k=4时,方程组的解中都是正整数,且此时方程组的解为x7y 1⎧=⎨=⎩.(答案不唯一)21.【解析】设李丽第一次购买香蕉x 千克,第二次购买香蕉y 千克.由题意,得〇<x <25,y >25.①当0<x ≤20,25<y ≤40时,由题意,得x y506x 5y 264⎧+=⎨+=⎩,解得x14y 36⎧=⎨=⎩; ②当0<x≤20,y >40时,由题意,得x y506x 4y 264⎧+=⎨+=⎩,解得x32y 18⎧=⎨=⎩与0<x≤20,y >40矛盾,不合题意,舍去;③当20<x <25时,25<y <40,此时李丽用去的钱数为5x +5y=5(x +y)=5×50=250<264,不合题意,舍去.综上,李丽第一次购买香蕉14千克,第二次购买香蕉36千克.22.【解析】A=1,方程组1的解为x1y 0⎧=⎨=⎩.(2)方程组n 为2x y 1x my n⎧+=⎨-=⎩,它的解为xny 1n⎧=⎨=-⎩.(3)由题意,得109n 1109m 16⎧-=⎨+=⎩,解得n 12m 3⎧=⎪⎨=⎪⎩.所以该方程组为x y 12x y 163⎧+=⎪⎨-=⎪⎩,它不符合(2)中的规律.。

七年级数学(下)第八章《二元一次方程组》单元测试卷附答案

七年级数学(下)第八章《二元一次方程组》单元测试卷附答案

七年级数学(下)第八章《二元一次方程组》单元测试卷(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分)1.方程2x ﹣3y=4,2x+y 3=4,2x-3y=4,2x+3y ﹣z=5,x 2﹣y=1中,是二元一次方程的有( )A .1个B .2个C .3个D .4个 2.如果a 3x b y与﹣a 2y b x+1是同类项,则( )A 、23x y =-⎧⎨=⎩ B. 23x y =⎧⎨=-⎩ C. 23x y =-⎧⎨=-⎩D. 23x y =⎧⎨=⎩3.x 与y 的值相等,则已知程方组54358x y mx y -=⎧⎨+=⎩中m 的值是( ).(A )1 (B )1- (C )1± (D )5±4.甲、乙两个车间工人人数不相等,若甲车间调10人到乙车间,则两车间人数相等;若乙车间调10人到甲车间,则甲车间的人数就是乙车间人数的2倍,求原来甲、乙两车间各有多少名工人?设原来甲车间有x 名工人,乙车间有y 名工人,列以下方程组正确的是( ) A.⎩⎨⎧-==-)10(210y x y x B.⎩⎨⎧-==-10210y x y x C.⎩⎨⎧-=++=-)10(2101010y x y x D.⎩⎨⎧-=++=-10)10(21010y x y x5.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为( )A .50180x y x y =-⎧⎨+=⎩ B .50180x y x y =+⎧⎨+=⎩ C . 5090x y x y =+⎧⎨+=⎩ D .5090x y x y =-⎧⎨+=⎩6.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( )A .3412x y x y +=⎧⎨+=⎩ B .3421x y x y +=⎧⎨=+⎩ C .3421x y x y +=⎧⎨=+⎩ D .23421x y x y +=⎧⎨=+⎩7.已知:21x y =⎧⎨=⎩是方程kx-y=3的解,则k 的值是( )A.2B.-2C.1D.-18.方程组525x y x y =+⎧⎨-=⎩的解满足方程x +y -a=0,那么a 的值是( )A .5B .-5C .3D .-39.已知x 2y 1==⎧⎨⎩是方程组ax by 5bx ay 1+=+=⎧⎨⎩的解,则a ﹣b 的值是( )A.1-B.2C.3D.4 10.下列四组数值中,为方程组⎪⎩⎪⎨⎧=--=--=++231202z y x z y x z y x 的解是( )A 、⎪⎩⎪⎨⎧-===210z y xB 、⎪⎩⎪⎨⎧===101z y xC 、⎪⎩⎪⎨⎧=-==010z y xD 、⎪⎩⎪⎨⎧=-==321z y x二、填空题(共10小题,每题3分,共30分) 11.已知x 2y 1=⎧⎨=-⎩是方程ax 5y 15+=的一个解,则a = 。

新人教版第八章《二元一次方程组》单元测试题及详细答案电子教案

新人教版第八章《二元一次方程组》单元测试题及详细答案电子教案

新人教版第八章《二元一次方程组》单元测试题及详细答案.新人教版第八章《二元一次方程组》单元测试题及详细答案一、选择题1.二元一次方程27x y +=的正整数解有( )(A )1组 (B )2组 (C )3组 (D )4组2.已知下列方程组:①⎩⎨⎧-==-.12,223z y y x ②⎩⎨⎧=-=.12,2x y x ③⎩⎨⎧=+=-.5,132y x y x ④⎩⎨⎧=+=.22,3y x xy 其中属于二元一次方程组的是( ) (A )③ (B )①③ (C )②③ (D )①③④3.方程组1325x y x y +=⎧⎨+=⎩,的解是( ) (A )12x y =⎧⎨=-⎩ (B )14x y =-⎧⎨=⎩ (C )10x y =⎧⎨=⎩ (D )32x y =⎧⎨=-⎩ 4.在代数式2x mx n ++中,当1x =-时,它的值是5-;当3x =时,它的值是3,则m n ,的值为( )(A )1m =-,3n =-(B )5m =-,1n = (C )0m =,6n =- (D )9m =,15n =-5.已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ). (A )1- (B )1 (C )2 (D )36.方程组1,0,1.x y x z y z +=-⎧⎪+=⎨⎪+=⎩的解是( )(A )1,1,0;x y z =-⎧⎪=⎨⎪=⎩ (B )1,0,1.x y z =⎧⎪=⎨⎪=-⎩ (C )0,1,1.x y z =⎧⎪=⎨⎪=-⎩ (D )1,0,1.x y z =-⎧⎪=⎨⎪=⎩7.今有鸡兔若干,它们共有24个头和74只脚,则鸡兔各有()(A)鸡10兔14 (B)鸡11兔13(C)鸡12兔12 (D)鸡13兔118.某校学生乘船游览青云湖时,若每船坐12人,将有11人无船可坐;若每船坐14人,会有1人独乘1只船,则他们这次租用的船只数为().(A)5;(B)8;(C)12;(D)149.设“●、▲、■”分别表示三种不同的物体,如下图所示,前面两架天平保持平衡,如果要使第三架也平衡,那么“?”处应放“■”的个数为().(A)5 (B)4 (C)3 (D)210.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是()(A)5 (B)6 (C)7 (D)8 二、填空题11.方程组3523x yx y-=⎧⎨+=⎩,的解为______.12.若m,n满足条件3m n+=,且1m n-=,则m=______,n=______.13.若一个二元一次方程的解为21x y =⎧⎨=-⎩,,则这个方程可以是______.(只要求写出一个)14.已知2728x y x y +=⎧⎨+=⎩,,则x y -=_____. 15.已知方程组2345216x y z x y z ⎧==⎪⎨⎪-+=⎩,,若设234x y z k ===,则k = ______. 16.若关于x ,y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩,的解也是二元一次方程632=+y x 的解,则k 的值为______.17.二元一次方程组43144(2)7x y ax a y +=⎧⎪⎨++=⎪⎩,的解x 和y 相等,则a =_______. 18.如果方程组⎩⎨⎧=+=+137y x by ax 与方程组⎩⎨⎧-=+=-13y x by ax 的解相同,那么=a __________;=b __________。

人教版2019七年级数学下册第八章二元一次方程组单元综合训练题A(培优附答案)

人教版2019七年级数学下册第八章二元一次方程组单元综合训练题A(培优附答案)

24. 一辆汽车从 A地驶往 B地,前三分之一路段为普通公路,其余路段为高速公路.已 知汽车在普通公路上行驶的速度为 60km/ h,在高速公路上行驶的速度为 100km/ h.汽
车从 A地到 B地共行驶了 2.2h .请你根据以上信息,就该汽车行驶的 “路程 ”或 “时间 ”,提
出一个问题:
,并列出 方程,求出解.
上岗 , 也能独立进行电动汽车的安装。 生产开始后 , 调研部门发现 : 1 名熟练工和 2 名新工
人每月可安装 8 辆电动汽车; 2 名熟练工和 3 名新工人每月可安装 14 辆电动汽车。
( 1) 每名熟练工和新工人每月分别可以安装多少辆电动汽车? ( 2) 如果工厂招聘新工人若干名 ( 新工人人数少于 10 人 ) 和抽调的熟练工合作 , 刚好能完
18 .明代数学读本《直接算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无
争,小僧三人分一个,大小和尚各几丁?”意即:
100 个和尚分 100 个馒头,如果大和
尚一人分 3 个,小和尚 3 人分一个,正好分完.则大和尚有 __________人,小和尚有
__________ 人. 19 .现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值 金 __两.
解:

① - ②得: 2x- 2y=- 2, 解得: x- y=- 1, 故答案为: - 1 17. -3
解:把
代入方程组
,得
,解得

3a+b=-3 , 故答案为: -3. 18. 25 75 解:设大和尚有 x 人,小和尚有 y 人,
根据题意得
,解得

答:大和尚有 25 人,则小和尚有 75 人.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 二元一次方程组单元试卷
一、请细心推敲,写出正确结果(每小题3分,共27分)
1、已知方程3x+5y-3=0,用含x的代数式表示y,则y=________.
2、若xa-b-2-2ya+b=3是二元一次方程,则a=________。
3、若1x+(2x-y)2=0,则x2-y=________.
4、方程5x+7y=21有________组解.
5、甲队有x人,乙队有y人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程为______________.

6、若12yx是方程12)1(2ynxmx的解,则(m+n)2008的值是__________.
7、二元一次方程x+3y=7的非负整数解是__________.
8、解方程组454357yxyx用_____________法解较简便.

9、若4a-3b=0,则bba_________.
二、请发挥你的判别能力耐心地思考,再作出正确的选择(每小题3分,共15分)
10、下列方程组中,是二元一次方程组的是( ).

A、53262zyyx B、1221yxyx C、34yyx D、34xyyx

11、已知nmnmyx53与-9x7my1+n的和是单项式,则m,n的值分别是( ).
A、m=-1,n=-7 B、m=3,n=1
C、m=1029,n=56 D、m=45,n=-2
12、解二元一次方程组的基本思想是( ).
A、代入法 B、加减法
C、消元,化二元为一元 D、由一个未知数的值求另一个未知数的值

13、72yx是方程ax-3y=2的一个解,则a为( ).

A、8; B、223; C、-223; D、-219
14、已知x、y满足方程组7282yxyx,则x+y的值是( ).
A、3 B、5 C、7 D、9
三、请展示你的聪明才智进行合乎逻辑的推理和计算(共8分)
15、(20分)解下列方程组

(1)82302yxyx (2)33352yxyx

(3)52243yxyx (4)543cbcaba
16、(8分)在y=kx+b中,当x=1时,y=2;当x=-1时,y=4;当x=2时,y值为多少?
17、(8分)满足方程组532153yxkyx的x、y值之和为2,求k的值。
18、(10分)根据下列条件求方程2x+y=5的解。
(1)x的值与y的值相等;
(2)x的值与y的值互为相反数;
(3)y的值是x的3倍。

19、(8分)如果一个角的邻补角等于这个角的3倍,求这个角。

20、(8分)一个三位数,个位,百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位,十位上的数字的和大2,个位,十位,
百位上的数字的和是14,求这个三位数。

21、(16分)某山区有23名中,小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元,某
校学生积极捐款,初中各年级学生捐款数额与用其恰好资助受捐助贫困中学生和小学生人数的部分情况如下表:

捐款数额(元)
捐助贫困中学生人数(名) 捐助贫困小学生人数
(名)

初一年级 4000 2 4
初二年级 4200 3 3
初三年级 7400
(1)求a、b的值;
(2)初三年级学生的捐款解决了其余贫困中、小学生学习的费用,请求出初三年级学生可捐助的贫困中、小学生人数各是多少?

8、 甲乙两人以不变的速度在环形路上跑步,相向而行每隔两分钟相遇一次;同向而行,每隔6分相遇一次,已知甲比乙跑的快,求甲乙
每分钟跑多少圈?

9、某旅馆的客房有三人间和两人间两种,三人间每人每天30元,两人间每人每天40元,一个60人的旅游团到该旅馆住宿,租住了若干
客房,且每个客房正好住满,一天共花去住宿费2100元,两种客房各租住了多少间?

10. 某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包
的单价的4倍少8元.
(1)求该同学看中的随身听和书包的单价各多少元?
(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品8折销售,超市B全场购满100元返购物券30元(不足100元不返券,
购物券全场通用)但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以
选择,在哪一家购买更省钱?

11、某学校现有校舍20000平方米,计划拆除部分旧校舍,新建新校舍,且新建校舍的面积比拆除的面积的4倍多2000平方米,如果要使
建设后校舍总面积比现有校舍的面积增加40%,问要拆除多少旧校舍?新建多少新校舍?

12、某加工厂有工人60名,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,多
少人生产螺母,能使生产出的螺栓和螺母刚好配套 ?

13、革命老区某芒果种植基地,去年结余为500万元,估计今年可结余980万元,并且今年的收入比去年高15%,支出比去年低10%,求今年的
收入与支出各是多少万元 ?

14、“迎春杯”数学竞赛共有10道题,小明得了77分,并且每道题都做了,但他觉得分数与他的自我评估有点小差距,已知每道题10分,
不做扣10分,若做对一部分可得3分,现在请你帮他估算一下,小明的实际得分情况如何 ?

15、 有一个两位数,十位上的数比个位上的数小1,十位上的数与个位上的数的和是这个两位数的1/5,求这个两位数 ?



参考答案:
一.1.533x;2. 2; 3. 3; 4.无数;5.10)10(21yx;6. 1;7. 07,14,21yxyxyx

8.加减; 9.47。
二.10.C; 11.B; 12.C; 13.B;14.B.

三.15.12)1(yx;18)2(yx 12)3(yx 321)4(cba
16.;1,3kb 当x=2时,y值为1.
17.;7k

18. 3535)1(yx 55)2(yx 31)3(yx
19. 45;
20. 275;
21.(1)600,800ba
(2)初三年级学生可捐助的贫困中、小学生人数分别为4人和7人。:9、租三人间10间,两人间15间.

10、(2)在超市A购买随身听与书包各一件需花费现金:解得xy92360
452×80%=361.6元
因为361.6<400,所以可以选择超市A购买.在超市B可先花费现金360元购买随身听,再利用得到的90元返券加上2元现金购买书
包,总计共花费现金360+2=362元,因为362<400,所以也可以在超市B购买,又因为362>361.6,所以在超市A购买更省钱

11、.yxxy420002000020000140%)(

解得
xy2000
10000

相关文档
最新文档