材料力学练习册答案
昆明理工大学材料力学习题册概念答案

1.6根据均匀性假设,可认为构件的弹性常数在各点处都相同。(∨)
1.7同一截面上正应力σ与切应力τ必相互垂直。(∨)
1.8同一截面上各点的正应力σ必定大小相等,方向相同。(×)
1.9同一截面上各点的切应力τ必相互平行。(×)
1.10应变分为正应变ε和切应变γ。(∨)
2.3强度条件是针对杆的危险截面而建立的。(×)
2.4.位移是变形的量度。(×)
2.5甲、乙两杆几何尺寸相同,轴向拉力相同,材料不同,则它们的应力和变形均相同。(×)
2.6空心圆杆受轴向拉伸时,在弹性范围内,其外径与壁厚的变形关系是外径增大且壁厚也同时增大。(×)
2.7已知低碳钢的σp=200MPa,E=200GPa,现测得试件上的应变ε=0.002,则其应力能用胡克定律计算为:σ=Eε=200×103×0.002=400MPa。(×)
3.4连接件承受剪切时产生的切应力与杆承受轴向拉伸时在斜截面上产生的切应力是相同的。(×)
二、填空题
3.1图示微元体,已知右侧截面上存在与z方向成θ角的切应力τ,试根据切应力互等定理画出另外五个面上的切应力。
3.2试绘出圆轴横截面和纵截面上的扭转切应力分布图。
填题3.2填题3.1
3.3保持扭矩不变,长度不变,圆轴的直径增大一倍,则最大切应力τmax是原来的1/ 8倍,
3.10图中T为横截面上的扭矩,试画出图示各截面上的切应力分布图。
3.11由低碳钢、木材和灰铸铁三种材料制成的扭转圆轴试件,受扭后破坏现象呈现为:图(b),扭角不大即沿45º螺旋面断裂;图(c),发生非常大的扭角后沿横截面断开;图(d),表面出现纵向裂纹。据此判断试件的材料为,图(b):灰铸铁;图(c):低碳钢,
同济大学 材料力学 习题解答4(练习册P75-P82)

P81 43-3
D C A F FA l l F B FB z y
I20 a
mA = 0 Fy = 0
l
1 FB = F 3 1 FA = F 3
1 Fl 3
M图
1 Fl 3
查表 :导学篇 附录B-3 P380中 I 20a Wz = 236.9 cm3
M│max
smax =
M│max
FS1 = 10 kN 剪力方向
Sz*A = 450 cm3 FS1· Sz*A = 0.469 MPa tA = Iz· b
h S z yc A 2
tB = 0 t 分布
Sz*B = 0
P82 44-2
t y
21.15 MPa
t
负面积法 A1y1 + A2y2 yC = = 85 mm A1 + A2
1 = Fl 3
Wz
≤ [s ]
F ≤ 56.9 kN
则 [ F ]= 57 kN
P81 43-4
q
A
1 ql2 2 l B
M图
M│max
2 b= h 3 2 3 bh h z Wz = = 6 9 y b M│max ≤ [s ] smax = Wz
h
1 2 = ql 判定 2 = 80 kN· m
C FC 1.5l
1 1
h 4 D FD
P80 43-1 反力 指定截面 F
l 1.5l
形心主轴
z h
A
y
b
B
mD = 0 Fy = 0
FC = 10 kN
M1 = FC×1.5 = 15 kN· m bh3 Iz = = 8×103 cm4 12 yB = 10 cm yA = - 5 cm M1· yA sA = Iz = - 9.375 MPa M1· yB sB = Iz = 18.75 MPa
材料力学习题册参考答案

材料力学习题册参考答案材料力学习题册参考答案(无计算题)第1章:轴向拉伸与压缩一:1(ABE )2(ABD )3(DE )4(AEB )5(C )6(CE)7(ABD )8(C )9(BD )10(ADE )11(ACE )12(D )13(CE )14(D )15(AB)16(BE )17(D )二:1对2错3错4错5对6对7错8错9错10错11错12错13对14错15错三:1:钢铸铁 2:比例极限p σ 弹性极限e σ 屈服极限s σ 强度极限b σ3.横截面 45度斜截面4. εσE =, EAFl l =5.强度,刚度,稳定性;6.轴向拉伸(或压缩);7. llb b ?μ?=8. 1MPa=106 N/m 2 =1012 N/mm 2 9. 抵抗伸缩弹性变形,加载方式 10. 正正、剪 11.极限应力 12. >5% <5% 13. 破坏s σ b σ 14.强度校核截面设计荷载设计15. 线弹性变形弹性变形 16.拉应力 45度 17.无明显屈服阶段的塑性材料力学性能参考答案:1. A 2. C 3. C 4. C 5. C 6. 5d ; 10d 7. 弹塑8. s2s 9. 0.1 10. 压缩11. b 0.4σ 12. <;< 剪切挤压答案:一:1.(C ),2.(B ),3.(A ),二:1. 2bh db 2. b(d+a) bc 3. 4a δ a 2 4. F第2章:扭转一:1.(B ) 2.(C D ) 3.(C D ) 4. (C ) 5. (A E ) 6. (A )7. (D )8. (B D ) 9.(C ) 10. (B ) 11.(D ) 12.(C )13.(B )14.(A ) 15.(A E )二:1错 2对 3对 4错 5错 6 对三:1. 垂直 2. 扭矩剪应力 3.最外缘为零4. p ττ< 抗扭刚度材料抵抗扭转变形的能力5. 不变不变增大一倍6. 1.5879τ7.实心空心圆8. 3241)(α- 9. m ax m in αττ= 10. 长边的中点中心角点 11.形成回路(剪力流)第3章:平面图形的几何性质一:1.(C ),2.(A ),3.(C ),4.(C ),5.(A ),6.(C ),7.(C ),8.(A ),9.(D )二:1). 1;无穷多;2)4)4/5(a ; 3),84p R I π=p 4z y I 16R I I ===π4)12/312bh I I z z ==;5))/(/H 6bh 6BH W 32z -= 6)12/)(2211h b bh I I I I z y z y +=+=+;7)各分部图形对同一轴静矩8)两轴交点的极惯性矩;9)距形心最近的;10)惯性主轴;11)图形对其惯性积为零三:1:64/πd 114; 2.(0 , 14.09cm )(a 22,a 62)3: 4447.9cm 4, 4:0.00686d 4 ,5: 77500 mm 4 ;6: 64640039.110 23.410C C C C y y z z I I mm I I mm ==?==?第4章:弯曲内力一:1.(A B )2.(D )3.(B )4.(A B E )5.(A B D )6.(ACE ) 7.(ABDE ) 8.(ABE )9. (D ) 10. (D ) 11.(ACBE ) 12.(D ) 13.(ABCDE )二:1错 2错 3错 4对 5错 6对 7对三:1. 以弯曲变形 2.集中力 3. KNm 2512M .max =4. m KN 2q = 向下 KN 9P = 向上5.中性轴6.荷载支撑力7. 小8. 悬臂简支外伸9. 零第5章:弯曲应力一:1(ABD)2.(C )3.(BE )4.(A )5.(C )6.(C )7.(B )8.(C )9.(BC )二:1对 2错 3错 4 对 5 错 6错 7 对三:1.满足强度要求更经济、更省料2. 变成曲面,既不伸长也不缩短3.中性轴4.形心主轴5.最大正应力6.剪力方向7.相等8.平面弯曲发生在最大弯矩处9.平面弯曲第6章:弯曲变形一:1(B ),2(B ),3(A ),4(D ),5(C ),6(A ),7(C ),8(B ),9(A )10(B ),11(A )二:1对2错3错4错5错6对7错8错9错10对11错12对三:1.(转角小量:θθtan ≈)(未考虑高阶小量对曲率的影响)2. 挠曲线采用近似微分方程导致的。
材料力学习题册答案

材料⼒学习题册答案练习1绪论及基本概念1-1 是⾮题(1)材料⼒学是研究构件承载能⼒的⼀门学科。
(是)(2)可变形固体的变形必须满⾜⼏何相容条件,即变形后的固体既不可以引起“空隙”,也不产⽣“挤⼊”现象。
(是)(3)构件在载荷作⽤下发⽣的变形,包括构件尺⼨的改变和形状的改变。
(是)(4)应⼒是内⼒分布集度。
(是)(5)材料⼒学主要研究构件弹性范围内的⼩变形问题。
(是)(6)若物体产⽣位移,则必定同时产⽣变形。
(⾮)(7)各向同性假设认为,材料沿各个⽅向具有相同的变形。
(F)(8)均匀性假设认为,材料内部各点的⼒学性质是相同的。
(是)(9)根据连续性假设,杆件截⾯上的内⼒是连续分布的,分布内⼒系的合⼒必定是⼀个⼒。
(⾮)(10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺⼨进⾏计算。
(⾮)1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设、均匀性假设、各向同性假设。
(2)⼯程中的强度,是指构件抵抗破坏的能⼒;刚度,是指构件抵抗变形的能⼒。
(3)保证构件正常或安全⼯作的基本要求包括强度,刚度,和稳定性三个⽅⾯。
(4)图⽰构件中,杆1发⽣拉伸变形,杆2发⽣压缩变形,杆3发⽣弯曲变形。
(5)认为固体在其整个⼏何空间内⽆间隙地充满了物质,这样的假设称为连续性假设。
根据这⼀假设构件的应⼒,应变和位移就可以⽤坐标的连续函数来表⽰。
(6)图⽰结构中,杆1发⽣弯曲变形,构件2发⽣剪切变形,杆件3发⽣弯曲与轴向压缩组合。
变形。
(7)解除外⼒后,能完全消失的变形称为弹性变形,不能消失⽽残余的的那部分变形称为塑性变形。
(8)根据⼩变形条件,可以认为构件的变形远⼩于其原始尺⼨。
1-3 选择题(1)材料⼒学中对构件的受⼒和变形等问题可⽤连续函数来描述;通过试件所测得的材料的⼒学性能,可⽤于构件内部的任何部位。
这是因为对可变形固体采⽤了( A )假设。
(A)连续均匀性;(B)各向同性;(C)⼩变形;(D)平⾯。
工程力学材料力学部分习题答案

b2.9 题图2.9所示中段开槽的杆件,两端受轴向载荷P 的作用,试计算截面1-1和2-2上的应力。
已知:P = 140kN ,b = 200mm ,b 0 = 100mm ,t = 4mm 。
题图2.9解:(1) 计算杆的轴力kN 14021===P N N(2) 计算横截面的面积21m m 8004200=⨯=⨯=t b A202mm 4004)100200()(=⨯-=⨯-=t b b A(3) 计算正应力MPa 1758001000140111=⨯==A N σ MPa 3504001000140222=⨯==A N σ (注:本题的目的是说明在一段轴力相同的杆件内,横截面面积小的截面为该段的危险截面)2.10 横截面面积A=2cm 2的杆受轴向拉伸,力P=10kN ,求其法线与轴向成30°的与45°斜截面上的应力ασ与ατ,并问m ax τ发生在哪一个截面? 解:(1) 计算杆的轴力kN 10==P N(2) 计算横截面上的正应力MPa 501002100010=⨯⨯==A N σ(3) 计算斜截面上的应力MPa 5.37235030cos 2230=⎪⎪⎭⎫ ⎝⎛⨯==σσMPa 6.2123250)302sin(230=⨯=⨯=στ MPa 25225045cos 2245=⎪⎪⎭⎫⎝⎛⨯==σσMPa 251250)452sin(245=⨯=⨯=στ (4) m ax τ发生的截面 ∵0)2cos(==ασαταd d 取得极值 ∴0)2cos(=α 因此:22πα=, 454==πα故:m ax τ发生在其法线与轴向成45°的截面上。
(注:本题的结果告诉我们,如果拉压杆处横截面的正应力,就可以计算该处任意方向截面的正应力和剪应力。
对于拉压杆而言,最大剪应力发生在其法线与轴向成45°的截面上,最大正应力发生在横截面上,横截面上剪应力为零)2.17 题图2.17所示阶梯直杆AC ,P =10kN ,l 1=l 2=400mm ,A 1=2A 2=100mm 2,E =200GPa 。
同济大学材料力学习题解答(练习册PP等)

FS1 = FA = 40 kN
M1 = 0
特殊位置截面
FS2 = FA = 40 kN
M2 = FA×2 = 80 kN·m FS3 = FA - 3q×2 = - 20 kN M3 = FA×4 - 3q×2×1
= 100 kN·m
P73 40-1(c)
A FA
12 3 F BC
1 2FB 3
相邻截面
M2 = F×2 = 20 kN·m
C F
FS3 = FS2 = - 10 kN
M3 = M2 = 20 kN·m
P73 40-1(b)
12
33 q
A
B
C
1FFAS1 2
3
FC
A M1
FA
FS2
A FA
M2
3q FS3
A
B
M3
FA
3q
M3
C
FS3
FC
mA = 0 FC = 80 kN
Fy = 0 FA = 40 kN
G·IP p
d ≥ 4 180 × 32 Mnl = 19.8 mm
Gp2 [j]
≤ [q ]
=
1° 2m
取 d = 20 mm
P72 39-3 T0
圆轴:
T0
FC FC
FC FC
FC
FC
FC T0 FC
WP =
pd3 16
FC FC
= 196.3 cm3 tmax =
Mn
令 = 70
MPa
WP
T0 = Mn = WPtmax = 13.74 kN·m
R
zC
O R
z1
z2
Iz = IzC+Ab2
材料力学习题册答案.

80 kN 60 kN 40 kN
FN 4F
x
F FN
F
x F
F FN/kN
60
2F FN
40
x 20
F
x
a
F
FN
a
q=F/a a
4F
Fl F Fl
l 2F
2F
F x
2F FN
3
2-4、已知 q 10 kN m ,试绘出图示杆件的轴力图
5 kN
15 kN
q
5 kN
1m
1.5 m
FN/kN 15
(6)以下结论中正确的是( B ) (A)杆件某截面上的内力是该截面上应力的代数和; (B)应力是内力的集度; (C)杆件某截面上的应力是该截面上内力的平均值; (D)内力必大于应力。
(7)下列结论中是正确的是( B ) (A)若物体产生位移,则必定同时产生变形; (B)若物体各点均无位移,则该物体必定无变形; (C)若物体无变形,则必定物体内各点均无位移; (D)若物体产生变形,则必定物体内各点均有位移。
(10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。(非 )
1-2 填空题
(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设
、
各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
40 kN
55 kN 25 kN
20 kN
2-2 试求图示拉杆截面 1-1,2-2,3-3 上的轴力,并作出轴力图。
解: FN1 2F ; FN2 F ; FN3 2F 。