第二章习题解答

合集下载

基础化学习题解答(第二章)

基础化学习题解答(第二章)

习题解答(第二章)一、选择题1.25℃时,0.01mol/kg的糖水的渗透压为π1,而0.01 mol/kg的尿素水溶液的渗透压π2,则___ B _。

(A)π1<π2(B)π1 =π2(C)π1>π2(D)无法确定2.应用克-克方程回答问题:当物质由固相变为气相时,平衡压力随温度降低而__ C__。

(A)不变(B)升高(C)降低(D)视不同物质升高或降低3.通常称为表面活性剂的物质,是指当其加入少量后就能__ C的物质。

(A)增加溶液的表面张力(B)改变溶液的导电能力(C)显著降低溶液的表面张力(D)使溶液表面发生负吸附4.兰格缪尔(Langmuir)等温吸附理论中最重要的基本假设是_ D___。

(A)气体为理想气体(B)多分子层吸附(C)固体表面各吸附位置上的吸附能力是不同的(D)单分子层吸附5.溶胶的基本特征之一是___D__。

(A)热力学上和动力学上皆稳定的系统(B)热力学上和动力学上皆不稳定的系统(C)热力学上稳定而动力学上不稳定的系统(D)热力学上不稳定而动力学上稳定的系统6.下列各性质中,属于溶胶的动力学性质的是___A___。

(A)布朗运动(B)电泳(C)丁达尔现象(D)流动电势7.引起溶胶聚沉的诸因素中,最重要的是___D__。

(A)温度的变化(B)溶胶浓度的变化(C)非电解质的影响(D)电解质的影响8.用KBr加入浓的AgNO3溶液中,制备得AgBr溶胶,再向其中加入下列不同的电解质,能使它在一定时间内完全聚沉所需电解质最少的是__ C _。

(A)Na2SO4(B)NaNO3 (C)K3[Fe(CN)6] (D)KCl9.等体积0.10mol/dm3 KI和0.12mol/dm3的AgNO3溶液混合制成的AgI溶胶,下列电解质中,聚沉能力最强的是___D__。

(A )Na 2SO 4 (B )MgSO 4 (C )K 3[Fe(CN)6] (D )FeCl 3二、简答题1.理想气体存在吗?真实气体的pVT 行为在何种条件下可用pV=nRT 来描述?答:事实上,理想气体不存在。

03 力学:第二章 运动和力-课堂练习及部分习题解答

03 力学:第二章 运动和力-课堂练习及部分习题解答

α α
N
沿斜面方向
mg+ma0
K K K 以地面为参照系,物体加速度 a = a′ + a0
建立如图所示坐标系,据加速度分量关系
( ma0 + mg ) sin α = ma′ a′ = ( a0 + g ) sin α
y K a0 x α K a′
ax = a′ cos α = ( a0 + g ) sin α cos α a y = a0 − ( a0 + g ) sin 2 α = a0 cos 2 α − g sin 2 α
(2) 小球将离开锥面时,支持力N=0,有
0 = mg sin θ − mω 2l sin θ cos θ ⇒ ωc = g l cos θ
练习册·第二章 运动和力·第3题
Zhang Shihui
题. 小球质量为m,在水中受的浮力为常力F。当它从静止 开始沉降时,受到水的粘滞阻力为 f = kv (k为常数)。证 明:小球在水中竖直沉降的速度v与时间t的关系为
2
O
θ
H r
l
r = l sin θ
竖直面内静止 T cos θ + N sin θ − mg = 0
学习指导·第二章 运动和力·习作题9
Zhang Shihui
2
⎧ ⎪ N = mg sin θ − mω l sin θ cos θ (1) 联立可得 ⎨ 2 2 T mg cos θ m ω l sin θ = + ⎪ ⎩
题. 已知一质量为m的质点在x轴上运动,质点只受到指 向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即f =-k/x2,k是比例常数。设质点在 x=A时的速度为零,求质点在x=A /4处的速度的大小.

《土力学》第二章习题集及详细解答.

《土力学》第二章习题集及详细解答.

《土力学》第二章习题集及详细解答第2章土的物理性质及分类一填空题1.粘性土中含水量不同,可分别处于、、、、四种不同的状态。

其界限含水量依次是、、。

2.对砂土密实度的判别一般采用以下三种方法、、。

3.土的天然密度、土粒相对密度、含水量由室内试验直接测定,其测定方法分别是、、。

4. 粘性土的不同状态的分界含水量液限、塑限、缩限分别用、、测定。

5. 土的触变性是指。

6.土的灵敏度越高,其结构性越强,受扰动后土的强度降低越。

7. 作为建筑地基的土,可分为岩石、碎石土砂土、、粘性土和人工填土。

8.碎石土是指粒径大于 mm的颗粒超过总重量50%的土。

9.土的饱和度为土中被水充满的孔隙与孔隙之比。

10. 液性指数是用来衡量粘性土的状态。

二、选择题1.作为填土工程的土料,压实效果与不均匀系数C u的关系:( )(A)C u大比C u小好(B) C u小比C u大好(C) C u与压实效果无关2.有三个同一种类土样,它们的含水率都相同,但是饱和度S r不同,饱和度S r越大的土,其压缩性有何变化?( )(A)压缩性越大(B) 压缩性越小(C) 压缩性不变3.有一非饱和土样,在荷载作用下,饱和度由80%增加至95%。

试问土样的重度γ和含水率怎样改变?( )(A)γ增加,减小(B) γ不变,不变(C)γ增加,增加4.土的液限是指土进入流动状态时的含水率,下述说法哪种是对的?( )(A)天然土的含水率最大不超过液限(B) 液限一定是天然土的饱和含水率(C)天然土的含水率可以超过液限,所以液限不一定是天然土的饱和含水率5. 已知砂土的天然孔隙比为e=0.303,最大孔隙比e max=0.762,最小孔隙比e min=0.114,则该砂土处于( )状态。

(A)密实(B)中密 (C)松散(D)稍密6.已知某种土的密度ρ=1.8g/cm3,土粒相对密度ds=2.70,土的含水量w=18.0%,则每立方土体中气相体积为( )(A)0.486m3 (B)0.77m3(C)0.16m3(D)0.284m37.在土的三相比例指标中,直接通过室内试验测定的是()。

第2章 部分习题答案

第2章 部分习题答案

-7.2812510=-111.010012 然后移动小数点,使其在第1,2位之间
111.01001=1.1101001×22
e=2
于是得到: e =E – 127
S=1,E=2+127=129=1000,0001,M=1101001
最后得到32位浮点数的二进制存储格式为
1100 0000 1110 1001 0000 0000 0000 0000
第二章 习题解答
7.若浮点数 x 的IEEE754标准32位存储格式为(8FEFC000 )16, 求其浮点数的十进制值。 【解】: 将x展开成二进制:
1000 , 1111, 1110 ,1111 ,1100,0000,0000,0000 数符:1 阶码:0001,1111 尾数:110,1111,1100,0000,0000,0000 指数e=阶码-127=00011111-01111111 =(-96)10 包括隐藏位1的尾数:
符号位为01,故运算结果未溢出。 x-y=1101
.
第5页
第二章 习题解答
20. 已知x和y,分别用带求补器的原码阵列乘法器、带求补器的补码阵 列乘法器和直接补码阵列乘法器计算x×y。
(1) x=0.10111 y=-0.器
[x]原=0.10111 [y]原=1.10011 乘积的符号位为: xf⊕yf=0⊕1=1 因符号位单独考虑,算前求补器的使能控制信号为0,经算前求补
+ [y]补 1 1. 0 0 1 0 1 1 1. 1 1 1 0 0
符号位出现“11”,表示无溢出,x-y=-0.00100
.
第3页
第二章 习题解答
13. 已知[x]补=1.1011000,[y]补=1.0100110,用变形补码计算 2[x]补+1/2[y]补=?,同时指出结果是否发生溢出。

应用多元统计分析课后习题答案高惠璇(第二章部分习题解答

应用多元统计分析课后习题答案高惠璇(第二章部分习题解答

2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
注意:由D(X)≥0,可知 (Σ1-Σ2) ≥0.
8
第二章 多元正态分布及参数的估计
2-11 已知X=(X1,X2)′的密度函数为
f
( x1 ,
x2 )
1
2
exp
1 2
(2 x12
x22
2 x1 x2
22 x1
14 x2
65)
试求X的均值和协方差阵.
解一:求边缘分布及Cov(X1,X2)=σ12
应用多元统计分析
第二章部分习题解答
第二章 多元正态分布及参数的估计
2-1 设3维随机向量X~N3(μ,2I3),已知
002,
A
0.5 0.5
1 0
00.5.5, d 12.
试求Y=AX+d的分布.
解:利用性质2,即得二维随机向量Y~N2(y,y),
其中:
2
第二章 多元正态分布及参数的估计
2-2 设X=(X1,X2)′~N2(μ,Σ),其中

物理化学 答案 第二章_习题解答

物理化学 答案 第二章_习题解答

=
(0.3 × 48.66 +
0.7 ×12) KJ·mol-1
=
23.0KJ·mol-1
B
∑ ∑ ∑ S
2-2 已知当 NaCl 溶液在 1kg 水中含物质的量为 n(单位为 mol)的 NaCl 时,体积 V 随 n 的变化关系为:
V/m3 = 1.00138×10-3 + 1.66253×10-5n/mol +1.7738×10-3(n/mol)3/2 + 1.194×10-7(n/mol)2
求当 n 为 2mol 时 H2O 和 NaCl 的偏摩尔体积为多少? 解:设水用“A”表示,NaCl 用“B”表示,由题意得:
1
⎜⎜⎝⎛
∂V ∂n B
⎟⎟⎠⎞ = 1.66253 ×10−5
+ 1.7738 ×10−3
×
3 2
1
× (n / mol) 2
+ 1.194 × 10−7
× 2(n / mol)
那么当 n=2 时,NaCl 的偏摩尔体积
VB
= 1.66253 × 10−5
+ 1.7738 × 10−3
×
3
×
2
1 2
mol·dm3 = 0.547mol·dm-3
bB
=
nB mA
=
wB M (1 − wB )
=
0.095 0.18 × (1 − 0.095)
mol·kg-1 = 0.583mol·kg-1
2-4 若将 25℃、101.325KPa 纯理想气体的状态定为气体的标准状态,则氧气的标准
熵 S1O =205.03J·K-1·mol-1,现改为 25℃、100Kpa 的纯理想气体作为气体的标准态,氧气

运筹学习题答案(第二章)

运筹学习题答案(第二章)

School of Management
运筹学教程
第二章习题解答
2.4 给出线性规划问题
min Z = 2 x1 + 3 x 2 + 5 x 3 + 6 x 4 x1 + 2 x 2 + 3 x 3 + x 4 ≥ 2 st . − 2 x1 + x 2 − x 3 + 3 x 4 ≤ − 3 x j ≥ 0 , ( j = 1, L , 4 )
page 14 30 December 2010
School of Management
运筹学教程
第二章习题解答
是原问题的可行解。 解:x1=1,x2=x3=0是原问题的可行解。原问题的对 是原问题的可行解 偶问题为: 偶问题为:
min W = 2 y1 + y 2 − y1 − 2 y 2 ≥ 1 (1) y + y ≥1 (2) 1 2 st . ( 3) y1 − y 2 ≥ 0 y1 , y 2 ≥ 0 (4)
运筹学教程
第二章习题解答
2.1 写出下列线性规划问题的对偶问题。 写出下列线性规划问题的对偶问题。
min Z = 2 x1 + 2 x 2 + 4 x 3 x1 + 3 x 2 + 4 x 3 ≥ 2 2 x + x + 3x ≤ 3 2 3 st 1 x1 + 4 x 2 + 3 x 3 = 5 x1 , x 2 , ≥ 0 , x 3 无约束
School of Management
运筹学教程
第二章习题解答
max Z = 5 x1 + 6 x2 + 3 x3 x1 + 2 x2 + 2 x3 = 5 − x + 5 x − 3 x ≥ 3 2 3 st 1 4 x1 + 7 x2 + 3 x3 ≤ 8 x1无约束 , x2 , ≥ 0, x3 ≤ 0

应用多元统计分析课后习题答案详解北大高惠璇(第二章部分习题解答)

应用多元统计分析课后习题答案详解北大高惠璇(第二章部分习题解答)

P { X 2 x } P { X 1 x } ( x )
当x≥1时, P{X2x}
P{X2 1}P{1X2 1}P{1X2 x}
P{X11}P{1X11}P{1X1x}
P{X1x}(x) . 17
第二章 多元正态分布及参数的估计
当-1≤x≤1时,
P{X2 x}P{X2 1}P{1X2 x} P{X1 1}P{xX1 1} P{X1 1}P{1X1 x} P{X1 x}(x)
1lili(x) b 2
i 1 i
p
i1
1
i
yi2ห้องสมุดไป่ตู้
b2
.
21
第二章 多元正态分布及参数的估计
y1b122y2b222ypb2 p2 1
故概率密度等高面 f(x;μ,Σ)= a是一个椭球面.
(2)当p=2且
2
1
1
(ρ>0)时,
||4(12).
由 |Ip|22 22(2)242
(22)(22)0
2
1
1
(ρ>0)时,
概率密度等高面就是平面上的一个椭圆,试求该椭圆
的方程式,长轴和短轴.
证f( 明x ; (1), :任 ) 给 a>a 0 ,记a ( 0x (2)) p/ 2| 1 ( |1/x 2, 当 ) 0a b a12 0时
其 b 2 2 中 la n ( 2 ) p / [ 2 . | |1 / 2 ] 2 la n 0 ] 0 a [ ,20
所以 X(1)X(2)~Np((1)(2),2(12)); X(1)X(2) ~Np((1)(2),2(12)).
注意:由D(X)≥0,可知 (Σ1-Σ2) ≥0.
. 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《土力学》部分习题解答
习题2
2-3 如图2-16所示,在恒定的总水头差之下水自下而上透过两个土样,从土样1顶面溢出。

(1)以土样2底面c-c 为基准面,求该面的总水头和静水头;
(2)已知水流经土样2的水头损失为总水头差的30%,求b-b面的总水头和静水头;
(3)已知土样2的渗透系数为0.05cm/s ,求单位时间内土样横截面单位面积的流量;
( 4 ) 求土样1的渗透系数。

图2-16 习题2-3图(单位:cm)
解:如图2-16,本题为定水头实验,水自下而上流过两个土样,相关几何参数已知。

(1)以c-c为基准面,有:z c=0,h wc=90cm,所以:h c=90cm
(2)已知∆h bc=30%⨯∆h ac,而∆h ac由图2-16知,为30cm,所以:
∆h bc=30%⨯∆h ac=0.3⨯30=9cm
∴h b=h c-∆h bc=90-9=81cm
又∵z b=30cm ,故h wb=h b- z b=81-30=51cm
(3)已知k2=0.05cm/s,q/A=k2i2= k2⨯∆h bc/L2=0.05⨯9/30=0.015cm3/s/cm2=0.015cm/s
(4)∵i1=∆h ab/L1=(∆h ac-∆h bc)/L1=(30-9)/30=0.7,而且由连续性条件,q/A=k1i1=k2i2∴k1=k2i2/i1=0.015/0.7=0.021cm/s
注意各物理量的单位。

2-4 在习题2-3中,已知土样1和2的孔隙比分别为0.7和0.55,求水在土样中的平均渗流速度和在两个土样孔隙中的渗流速度。

解:略
2-5 如图2-17所示,在5.0m 厚的黏土层下有一砂土层厚6.0 m,其下为基岩(不透水)。

为测定该砂土的渗透系数,打一钻孔到基岩顶面并以10-2m3/s 的速率从孔中抽水。

在距抽水孔15m 和30m 处各打一观测孔穿过黏土层进入砂土层,测得孔内稳定水位分别在地面以下3.0m 和2.5m ,试求该砂土的渗透系数。

.
图2-17 习题2-5图(单位:m )
解:分析:如图2-17,砂土为透水土层,厚6m ,上覆粘土为不透水土层,厚5m ,因为粘土层不透水,所以任意位置处的过水断面的高度均为砂土层的厚度,即6m 。

题目又给出了r 1=15m ,r 2=30m ,h 1=8m ,h 2=8.5m 。

由达西定律(2-6),dr
dh
r k dr dh r k kAi q ππ126
2=⋅⋅==,可改写为: )(12ln ,12121
2h h k r r q dh k r dr
q -=⋅=ππ积分后得到: 带入已知条件,得到:
cm/s 103.68m/s 1068.315
30
ln )85.8(1201.0ln )(122
-41212⨯=⨯=-=-=-ππr r h h q k
本题的要点在于对过水断面的理解。

另外,注意ln 是自然对数,lg 是常用对数。

2-6 如图2-18,其中土层渗透系数为5.0×10-
2 m 3/s ,其下为不透水层。

在该土层内打一半径为
0.12m 的钻孔至不透水层,并从孔内抽水。

已知抽水前地下水位在不透水层以上10.0m ,测得抽水后孔内水位降低了2.0m ,抽水的影响半径为70.0m ,试问: (1) 单位时间的抽水量是多少?
(2) 若抽水孔水位仍降低2.0 ,但要求扩大影响半径,应加大还是减小抽水速率?
不透水层
图2-18 习题2-6图(单位:m )
解:分析:本题只给出了一个抽水孔,但给出了影响半径和水位的降低幅度,所以仍然可以求解。

另外,由于地下水位就在透水土层内,所以可以直接应用公式(2-18)。

(1)改写公式(2-18),得到:
s /m 1088.8)
12.0/70ln()810(105)/ln()(3322412212
2--⨯=-⨯=-=ππr r h h k q
(2)由上式看出,当k 、r 1、h 1、h 2均为定值时,q 与r 2成负相关,所以欲扩大影响半径,应该降低抽水速率。

注意:本题中,影响半径相当于r 2,井孔的半径相当于r 1。

2-7 在图2-19的装置中,土样的孔隙比为0.7,颗粒比重为2.65,求渗流的水力梯度达临界值时的总水头差和渗透力。

图2-19 习题2-7图(单位:cm )
解:由公式(2-24),有
L h L h i w
w
w
cr γγγγγγ'=
⇒'=⇒
'=
∆∆ 由题给条件,算得:
3w
s kN/m 70.97
.0110
1065.21=+-⨯=
+-=
'e
γγγ
所以得到:
cm 26.242510
70.9w =⨯='=
L h γγ∆ 由公式(2-22),得渗透力:
γγγ'==⨯===3w
w kN/m 70.925
26
.2410L h i j ∆ 2-8 在图2-16中,水在两个土样内渗流的水头损失与习题2-3相同,土样的孔隙比见习题2-4,又知土样1和2的颗粒比重(相对密度)分别为2.7和2.65,如果增大总水头差,问当其增至多大时哪个土样的水力梯度首先达到临界值?此时作用于两个土样的渗透力个为多少?
解:略
2-9 试验装置如图2-20所示,土样横截面积为30cm 2,测得10min 内透过土样渗入其下容器的水重0.018N ,求土样的渗透系数及其所受的渗透力。

图2-20 习题2-9图(单位:cm )
解:分析:本题可看成为定水头渗透试验,关键是确定水头损失。

以土样下表面为基准面,则上表面的总水头为:
cm 1008020=+=上h
下表面直接与空气接触,故压力水头为零,又因势水头也为零,故总水头为:
cm 000=+=下h
所以渗流流经土样产生的水头损失为100cm ,由此得水力梯度为:
520
100===
L h i ∆ 渗流速度为: cm/s 101m/s 10110
3060101010018.04-64
3
⨯=⨯=⨯⨯⨯⨯⨯==---tA W v w w γ cm/s 1025
10154--⨯=⨯==∴
i v k
30N
kN 03.02.0103050kN/m
505104
==⨯⨯⨯===⨯==-jV J i j w γ
注意:1.∆h 的计算;2.单位的换算与统一。

2-10 某场地土层如图2-21所示,其中黏性土的的饱和容重为20.0 kN/m 3 ;砂土层含承压水,其水头高出该层顶面7.5m 。

今在黏性土层内挖一深6.0m 的基坑,为使坑底土不致因渗流而破坏,问坑内的水深h 不得小于多少?
不透水层
图2-21 习题2-10图(单位:m )
解:略。

相关文档
最新文档