2017年山东省莱芜市中考数学试卷解析

合集下载

山东省莱芜市2017中考数学试卷及答案

山东省莱芜市2017中考数学试卷及答案

山东省莱芜市2017中考数学试卷及答案1(已知在Rt?ABC中,?C=90?,如果BC=2,?A=α,则AC的长为( )A(2sinα B(2cosα C(2tanα D(2cotα【考点】锐角三角函数的定义(【分析】根据锐角三角函数的定义得出cotA=,代入求出即可(【解答】解:?在Rt?ABC中,?C=90?,cotA=,BC=2,?A=α,AC=2cotα,故选D(【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt?ACB中,?ACB=90?,则sinA=,cosA=,tanA=,cotA=(2(下列抛物线中,过原点的抛物线是( )A(y=x2,1 B(y=(x+1)2 C(y=x2+x D(y=x2,x,1【考点】二次函数图象上点的坐标特征(【分析】分别求出x=0时y的值,即可判断是否过原点(【解答】解:A、y=x2,1中,当x=0时,y=,1,不过原点;B、y=(x+1)2中,当x=0时,y=1,不过原点;C、y=x2+x中,当x=0时,y=0,过原点;D、y=x2,x,1中,当x=0时,y=,1,不过原点;故选:C(【点评】本题主要考查二次函数图象上点的坐标特点,熟练掌握抛物线上特殊点的坐标及一般点的坐标的求法是解题的关键(3(小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为( )A(45米 B(40米 C(90米 D(80米【考点】相似三角形的应用(【专题】应用题(【分析】在相同时刻,物高与影长组成的直角三角形相似,利用对应边成比例可得所求的高度(【解答】解:?在相同时刻,物高与影长组成的直角三角形相似,1.5:2=教学大楼的高度:60,解得教学大楼的高度为45米(故选A(【点评】考查相似三角形的应用;用到的知识点为:在相同时刻,物高与影长的比相同(4(已知非零向量,,,下列条件中,不能判定?的是 ( )A(?,? B( C( = D( =, =【考点】*平面向量(【分析】根据向量的定义对各选项分析判断后利用排除法求解(【解答】解:A、?,?,则、都与平行,三个向量都互相平行,故本选项错误;B、表示两个向量的模的数量关系,方向不一定相同,故不一定平行,故本选项正确;C、=,说明两个向量方向相反,互相平行,故本选项错误;D、=, =,则、都与平行,三个向量都互相平行,故本选项错误;故选:B(【点评】本题考查了平面向量,主要利用了向量平行的判定,是基础题( 5(如图,在?ABCD中,点E是边BA延长线上的一点,CE交AD于点F(下列各式中,错误的是( )A( B( C( D(【考点】相似三角形的判定与性质;平行四边形的性质(【分析】根据平行四边形的性质和相似三角形的性质求解(【解答】解:?AD?BC=,故A正确;CDBE,AB=CD,CDFEBC=,故B正确;ADBC,AEFEBC=,故D正确(C错误(故选C(【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键(6(如图,已知在?ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么?AEF和?ABC的周长比为( )A(1:2 B(1:3 C(1:4 D(1:9【考点】相似三角形的判定与性质(【分析】由?AEF??ABC,可知?AEF与?ABC的周长比=AE:AB,根据cosA==,即可解决问题(【解答】解:?BE、CF分别是AC、AB边上的高,AEB=?AFC=90?,A=?A,AEBAFC,=,=,??A=?A,AEFABC,AEF与?ABC的周长比=AE:AB,cosA==,AEF与?ABC的周长比=AE:AB=1:3,故选B(【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用相似三角形的性质解决问题,属于中考常考题型(二、填空题:(本大题共12题,每题4分,满分48分)7(已知,则的值为 (【考点】比例的性质(【分析】用a表示出b,然后代入比例式进行计算即可得解(【解答】解:? =,b=a,==(故答案为:(【点评】本题考查了比例的性质,用a表示出b是解题的关键(8(计算:(,3),(+2)= (【考点】*平面向量(【分析】根据平面向量的加法计算法则和向量数乘的结合律进行计算(【解答】解::(,3),(+2)=,3,,×2)=(故答案是:(【点评】本题考查了平面向量,熟记计算法则即可解题,属于基础题型( 9(已知抛物线y=(k,1)x2+3x的开口向下,那么k的取值范围是 k,1 (【考点】二次函数的性质(【分析】由开口向下可得到关于k的不等式,可求得k的取值范围(【解答】解:y=(k,1)x2+3x的开口向下,k,1,0,解得k,1,故答案为:k,1(【点评】本题主要考查二次函数的性质,掌握二次函数的开口方向与二次项系数有关是解题的关键(10(把抛物线y=x2向右平移4个单位,所得抛物线的解析式为 y=(x,4)2 ( 【考点】二次函数图象与几何变换(【分析】直接根据“左加右减”的原则进行解答即可(【解答】解:由“左加右减”的原则可知,将y=x2向右平移4个单位,所得函数解析式为:y=(x,4)2(故答案为:y=(x,4)2(【点评】本题考查的是函数图象平移的法则,根据“上加下减,左加右减”得出是解题关键(11(已知在?ABC中,?C=90?,sinA=,BC=6,则AB的长是 8 (【考点】解直角三角形(【专题】计算题;等腰三角形与直角三角形(【分析】利用锐角三角函数定义求出所求即可(【解答】解:?在?ABC中,?C=90?,sinA=,BC=6,sinA=,即=,解得:AB=8,故答案为:8【点评】此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键(12(如图,已知AB?CD?EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF= (【考点】平行线分线段成比例(【分析】根据平行线分线段成比例定理即可得到结论(【解答】解:?AC:CE=3:5,AC:AE=3:8,ABCDEF,,BD=,DF=,故答案为:(【点评】本题考查平行线分线段成比例定理,关键是找出对应的比例线段,写出比例式,用到的知识点是平行线分线段成比例定理(13(已知点A(2,y1)、B(5,y2)在抛物线y=,x2+1上,那么y1 , y2((填“,”、“=”或“,”)【考点】二次函数图象上点的坐标特征(【分析】分别计算自变量为2、5时的函数值,然后比较函数值的大小即可( 【解答】解:当x=2时,y1=,x2+1=,3;当x=5时,y2=,x2+1=,24;,3,,24,y1,y2(故答案为:,【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式(也考查了二次函数的性质(14(已知抛物线y=ax2+bx+c过(,1,1)和(5,1)两点,那么该抛物线的对称轴是直线 x=2 (【考点】二次函数的性质(【分析】根据函数值相等的点到对称轴的距离相等可求得答案(【解答】解:抛物线y=ax2+bx+c过(,1,1)和(5,1)两点,对称轴为x==2,故答案为:x=2(【点评】本题主要考查二次函数的性质,掌握二次函数值相等的点到对称轴的距离相等是解题的关键(15(在?ABC中,AB=AC=5,BC=8,AD?BC,垂足为D,BE是?ABC 的中线,AD与BE相交于点G,那么AG的长为 2 (【考点】三角形的重心;等腰三角形的性质;勾股定理(【分析】先根据等腰三角形的性质和勾股定理求出AD,再判断点G为?ABC的重心,然后根据三角形重心的性质来求AG的长(【解答】解:?在?ABC中,AB=AC,AD?BC,AD==3,中线BE与高AD相交于点G,点G为?ABC的重心,AG=3×=2,故答案为:2【点评】本题考查了等腰三角形的性质和勾股定理以及三角形的重心的性质,判断点G为三角形的重心是解题的关键(16(在一个距离地面5米高的平台上测得一旗杆底部的俯角为30?,旗杆顶部的仰角为45?,则该旗杆的高度为 5+5 米((结果保留根号)【考点】解直角三角形的应用-仰角俯角问题(【分析】CF?AB于点F,构成两个直角三角形(运用三角函数定义分别求出AF 和BF,即可解答(【解答】解:作CF?AB于点F(根据题意可得:在?FBC中,有BF=CE=5米(在?AFC中,有AF=FC×tan30?=5米(则AB=AF+BF=5+5米故答案为:5+5(【点评】本题考查俯角、仰角的定义,要求学生能借助其关系构造直角三角形并解直角三角形([1][2]下一页。

2017年山东省莱芜市中考数学试卷-答案

2017年山东省莱芜市中考数学试卷-答案

山东省莱芜市2017年初中学业水平考试数学答案解析第Ⅰ卷=︒⨯2)1803602)180︒,设这个多边形的边数是【考点】多边形的内角与外角和及对角线条数的求法故选D.【解析】解:如图,连接DP ,BD ,作DH BC ⊥于H216AP QM t =5sin 3AD A =,∴56AP QM t =;(利用解直角三角形求出20233+16AP QM =-选项中的图象符合题意D.AB ED AC EG=,224DM=⨯=,∴CDEF是菱形,∴,∵EF EDFD EC=⨯2=-1025=-1025360︒224DM=⨯,CDEF是菱形,先计算2E C=⨯-,计算可得结论1025【考点】正五边形的性质,相似的判定和性质,勾股定理第Ⅱ卷2(2)如图:tan3131tan3118.60AB ︒=︒≈M ,在Rt GMF △中,tan19GM FM ︒,在tan 40CD ︒,设甲乙两楼之间的距离为(1)在直角三角形45EDC∠=︒,∴45FAD∠=︒,∴90AND∠=︒,即DE AF⊥5315tan 4416AF BAD x x ∠==,AH =知,90HDG ODA ∠+∠=︒,29PQ PB=;25PQ PB=;234PQ PB==210PQ PB==2∴此时不存在符合条件的P、Q【提示】(1)由对称性和(2,3)A ,(4,3)B ,可知抛物线的对称轴是:3x =,利用顶点式列方程组解出可得抛物线的表达式;(2)如图1,先利用待定系数法求直线AC 的解析式,设点(,65)D m m m -+-,则点(,27)E m m -+,根据解析式表示DE 和AE 的长,由已知的比例式列式得结论;(3)根据题意得:BPQ △为等腰直角三角形,分三种情况:①若90BPQ ∠=︒,BP PQ =,如图2,作辅助线,构建全等三角形,证明BAP QMP △≌△,可得结论;如图3,同理可得结论;②若90BQP ∠=︒,BQ PQ =,如图4,证得:BNQ QMP △≌△,则3NQ PM ==,1NG =,5BN =,从而得出结论;如图5,同理易得QNB PMQ △≌△,可得结论;③若90PBQ ∠=︒,BQ BP =,如图6,由于23AB NQ =≠=,此时不存在符合条件的P 、Q【考点】二次函数综合体。

2017中考数学题及答案

2017中考数学题及答案

2017中考数学题及答案2017年中考是许多中学生的重要转折点,其中数学科目是考试中最重要的一门科目。

今天我们将为您整理2017年中考数学题及答案,希望对您的复习有所帮助。

第一部分:选择题1.如果一个数的7倍加4得到33,那这个数是多少?A. 3B. 4C. 5D. 6答案:D. 6。

解析:设这个数为 x,则有 7x + 4 = 33,解方程可得 x = 6。

2.一个长方形的长是宽的1.5倍,若宽为6米,则长为多少米?A. 6B. 8C. 9D. 12答案:C. 9。

解析:设长为 x,则宽为 6 米,由题意可得x = 1.5 × 6 = 9。

3.一公斤苹果售价8元,现有100元,可以买多少公斤苹果?A. 10B. 11C. 12D. 13答案:C. 12。

解析:设可买的苹果数量为 x,则有 8x = 100,解方程可得 x = 12。

第二部分:填空题4.某班级有 50 名学生,其中男生占总数的 40%,那么女生的人数为 ______ 人。

答案:30。

解析:女生人数占 60%,即0.6×50=30 人。

5.一块土地面积为 60 平方米,如果将其等分为正方形,每个正方形的面积为 ______ 平方米。

答案:4。

解析:设每个正方形的边长为 x,则面积为 x^2。

根据题意可得x^2 = 60 ÷ 15 = 4,解方程可得 x = 2。

6.已知两个数的和为 72,差为 8,那么这两个数分别是 ______ 和______。

答案:40 和 32。

解析:设两个数为 x 和 y,则有 x + y = 72,x - y = 8。

解这个方程组可得 x = 40,y = 32。

第三部分:解答题7.现有 2 个水桶,第1个水桶的容量是第2个水桶容量的3倍,若第2个水桶的水满了,倒入第1个水桶后,第1个水桶正好装满。

求两个水桶的容量分别是多少?答案:第2个水桶容量为 x,第1个水桶容量为 3x。

2017山东数学中考真题,分类汇编-,几何综合大题

2017山东数学中考真题,分类汇编-,几何综合大题

2017山东数学中考真命题分类会哦变——几何综合大题一、选择题:1、(德州,11.)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()四边形AMFNA.2 B.3 C.4 D.52、(东营,10.)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的是()A.①②③④B.②③C.①②④D.①③④3、(泰安,19.)如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正确结论的个数为()A.1 B.2 C.3 D.44、(威海,10.)如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE5、(威海,12.)如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k ≠0)的图象过点C ,则该反比例函数的表达式为( ) A .y= B .y= C .y= D .y=2、填空题1、(东营,14.)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,D 为半圆上一点,AC ∥OD ,AD 与OC 交于点E ,连结CD 、BD ,给出以下三个结论:①OD 平分∠COB ;②BD=CD ;③CD 2=CECO ,其中正确结论的序号是 .2、(潍坊,18.)如图,将一张矩形纸片ABCD 的边BC 斜着向AD 边对折,使点B 落在AD 边上,记为B′,折痕为CE ,再将CD 边斜向下对折,使点D 落在B′C 边上,记为D′,折痕为CG ,B′D′=2,BE=BC .则矩形纸片ABCD 的面积为 .三、解答题:1、(菏泽,23.)正方形ABCD 的边长为cm 6,点M E 、分别是线段AD BD 、上的动点,连接AE 并延长,交边BC 于F ,过M 作AF MN ,垂足为H ,交边AB 于点N .(1)如图1,若点M 与点D 重合,求证:MN AF =;(2)如图2,若点M 从点D 出发,以s cm /1的速度沿DA 向点A 运动,同时点E 从点B 出发,以s cm /2的速度沿BD 向点D 运动,运动时间为ts . ①设ycm BF =,求y 关于t 的函数表达式; ②当AN BN 2=时,连接FN ,求FN 的长.2、(德州,23.)如图1,在矩形纸片ABCD 中,AB=3cm ,AD=5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF . (1)求证:四边形BFEP 为菱形;(2)当点E 在AD 边上移动时,折痕的端点P 、Q 也随之移动; ①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长;②若限定P 、Q 分别在边BA 、BC 上移动,求出点E 在边AD 上移动的最大距离.3、(临沂,25.(11分))数学课上,张老师出示了问题:如图1,AC ,BD 是四边形ABCD 的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC ,CD ,AC 三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB 到E ,使BE=CD ,连接AE ,证得△ABE ≌△ADC ,从而容易证明△ACE 是等边三角形,故AC=CE ,所以AC=BC+CD .小亮展示了另一种正确的思路:如图3,将△ABC 绕着点A 逆时针旋转60°,使AB 与AD 重合,从而容易证明△ACF 是等边三角形,故AC=CF ,所以AC=BC+CD . 在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明. (2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.4、(青岛,24.)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。

山东省莱芜市中考数学试卷含答案解析版

山东省莱芜市中考数学试卷含答案解析版

山东省莱芜市中考数学试卷含答案解析版TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】2018年山东省莱芜市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂写在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记0分,共36分)1.(3分)(2018?莱芜)﹣2的绝对值是()A.﹣2 B.﹣12C.12D.22.(3分)(2018?莱芜)经中国旅游研究院综合测算,今年“五一”假日期间全国接待国内游客亿人次,亿用科学记数法表示为()A.×107B.×107C.×108D.×1093.(3分)(2018?莱芜)无理数2√11﹣3在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间4.(3分)(2018?莱芜)下列图形中,既是中心对称,又是轴对称的是()A. B.C.D.5.(3分)(2018?莱芜)若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2+xx−y B.2yx2C.2y33x2D.2y2(x−y)26.(3分)(2018?莱芜)某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92 B.中位数是92 C.众数是92 D.极差是67.(3分)(2018?莱芜)已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm28.(3分)(2018?莱芜)在平面直角坐标系中,已知△ABC为等腰直角三角形,CB=CA=5,点C(0,3),点B在x轴正半轴上,点A在第三象限,且在反比例函数y=kx的图象上,则k=()A.3 B.4 C.6 D.129.(3分)(2018?莱芜)如图,AB∥CD,∠BED=61°,∠ABE的平分线与∠CDE 的平分线交于点F,则∠DFB=()A.149°B.°C.150°D.°10.(3分)(2018?莱芜)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<﹣4或x>2 B.﹣4<x<2 C.x<0或x>2 D.0<x<211.(3分)(2018?莱芜)如图,边长为2的正△ABC的边BC在直线l上,两条距离为l的平行直线a和b垂直于直线l,a和b同时向右移动(a的起始位置在B点),速度均为每秒1个单位,运动时间为t(秒),直到b到达C点停止,在a和b向右移动的过程中,记△ABC夹在a和b之间的部分的面积为s,则s关于t的函数图象大致为()A.B.C.D.12.(3分)(2018?莱芜)如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:①AE=BC②AF=CF③BF2=FG?FC④EGAE=BGAB其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共5小题,每小题4分,共20分。

2017山东莱芜中考试卷解析

2017山东莱芜中考试卷解析

2017年山东省莱芜市初中学业考试数学试题(总分120分 考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每小题都给出的四个选项中,只有一项是正确的,请把正确选项的代码涂写在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分) 1.(2017山东莱芜,1,3分)-6的倒数是( ) A .-16B .16C .-6D .6答案:A ,解析:-6的倒数是-16.2.(2017山东莱芜,2,3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为( )A .7.8×10-7B .7.8×10-8C .0.78x 10-7D .78x 10-8答案:A ,解析:0.000 000 78=7.8×10-7 3.(2017山东莱芜,3,3分)下列运算正确的是( ) A .2x 2-x 2=1 B .x 6÷x 3=x 2 C .4x ·x 4=4x 5 D .(3xy 2)2=6x 2y 4 答案:C ,解析:A 项, 2x 2-x 2=x 2,该项错误; B 项,x 6÷x 3=x 3,该项错误; C .4x ·x 4=4x 5,该项正确; D .(3xy 2)2=9x 2y 4,该项错误. 4.(2017山东莱芜,4,3分)电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x 千米/小时,应列方程为( ) A .30x -1=40x -25B .30x -1=40x +25C .30x +1=40x -25D .30x +1=40x +25答案:B ,解析:据时间方面的等量关系列方程:30x -1=40x +25.5.(2017山东莱芜,5,3分)将一个正方体沿正面相邻两条棱的中点连线截去一个三梭柱,得到一个如图所示的几何体,则该几何体的左视图是( )答案:C ,解析:该几何体的左视图是C 项中的图形. 6.(2017山东莱芜,6,3分)如图,AB 是⊙O 的直径,直线DA 与⊙O 相切于点A ,DO 交⊙O 于点C ,连接BC ,若∠ABC =21°,则∠ADC 的度数为( ) A .46° B .47° C .48° D .49°答案:C ,解析:∵直线DA 与⊙O 相切,∴∠ODA =90°. ∵∠AOD =2∠ABC =2×21°=42°,∴∠ADC =90°-∠AOD =90°-42°=48°. 7.(2017山东莱芜,7,3分)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是( ) A .12 B .13 C .14 D .15 答案:C ,解析:设多边形的边数是n ,据题意,得 (n -2)·180°=2×360°+180°. 解得n =7.7边形的对角线的条数是7(73)2⨯-=14. 8.(2017山东莱芜,8,3分)如图,在Rt △ABC 中,∠BCA =90°,∠BAC =30°,BC =2,将Rt △ABC 绕A 点顺时针旋转90°得到Rt △ADE ,则BC 扫过的面积为( ) A .π2B .(2-3)πC .2-32πD .πB(第6题图)正面(第5题图)A B C D答案:D ,解析:∵∠BCA =90°,∴222BC AC AB +=,即222AB AC BC -=. ∵整个图形的面积=△ABC 的面积+扇形BAD 的面积 =阴影部分的面积+扇形CAE 的面积+△AED 的面积, 又△ABC 的面积=△AED 的面积,∴阴影部分的面积=扇形BAD 的面积-扇形CAE 的面积= 2290()360AB AC π⋅-= 290360BCπ⋅=π.点拨 线段旋转所形成的阴影部分的面积=线段两端点分别绕旋转中心旋转所形成的扇形面积的差. 9.(2017山东莱芜,9,3分)如图,菱形ABCD 的边长为6,∠ABC =120°,M 是BC 边的一个三等分点,P 是对角线AC 上的动点,当PB +PM 的值最小时,PM 的长是( ) A .72B .273C .355D .264答案:A ,解析:法一:解析:连接BD 、DM ,DM 交AC 于点P ,则此时PB +PM 的值最小.过点D 作DF ⊥BC 于点F ,过点M 作ME ∥BD 交AC 于点E . ∵∠ABC =120°,∴∠BCD =60°.又∵DC =BC ,∴△BCD 是等边三角形.∴BF =CF =12BC =3.∴MF =CF -CM =3-2=1,DF =3BF =3 3.∴DM =(33)2+12=27.∵ME ∥BD ,∴△CEM ∽△CO B.∴ME OB =CM BC =26=13.又∵OB =OD ,∴ME OD =13.MDAB P(第9题图)∵ME ∥BD ,∴△PEM ∽△PO D.∴PM PD =ME OD =13.∴PM =14DM =14×27=72.故选A .法二:作点M 关于AC 的对称点M ′,连接BM ′交AC 于点P ,此时PB +PM 的值最小. 过点作BE ⊥CD 于E .可求CE =3,则EM ′=1. 利用勾股定理可得BM ′=利用相似三角形可得PM ′=PM =72.10.(2017山东莱芜,10,3分)如图,在四边形ABCD 中,DC ∥AB ,AD =5,CD =3,sin A =sin B =13,动点P 自A 点出发,沿着边AB 向点B 匀速运动,同时动点Q 自点A 出发,沿着边AD -DC -CB 匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P 运动t (秒)时,△APQ 的面积为S ,则S 关于t 的函数图象是( )AB C P D M′E M答案:B ,解析:法一:过点D 作DE ⊥AB 于点E ,过点C 作CF ⊥AB 于点F . ∵sin A =DE AD =13,∴DE 5=13.∴DE =53.∴CF =DE =53.∵sin A =sin B ,∴∠A =∠B.∴△ADE ≌△BCF . ∴BC =AD =5,AE =BF =52-⎝⎛⎭⎫532=103 2.∴AB =AE +EF +BF =2×1032+3=2032+3,AD +CD +BC =5+3+5=13.∵2032+3<13, ∴当点P 到达终点B 时,点Q 在线段BC 上,此时△APQ 的面积为S >0. 当8<t ≤2032+3时,点Q 在线段BC 上,此时AP =t ,AD +CD +CQ =t ,∴CQ =t -8,∴BQ =5-( t -8)=13-t .过点Q 作QG ⊥AB 于点G ,则sin B =QG BQ =13,∴QG 13-t =13.∴QG =13(13-t ).∴△APQ 的面积S =12AP ×QG =12×t ×13(13-t )=-16(t 2-13t ),其图象开口向下.又∵当点P 到达终点B 时,点Q 在线段BC 上,此时△APQ 的面积为S >0.∴由此可得答案选B .G法二:分为三段,当点Q 在AD 上运动时,S 关于t 的函数为二次函数,且S 随t 的增大而增大; 当点Q 在DC 上运动时,S 关于t 的函数为一次函数,且S 随t 的增大而增大;P(第10题图)当点Q 在AD 上运动时,S 关于t 的函数为二次函数,且S 随t 的增大而减小,注意在该段当点P 运动点B 停止时,点Q 没有到达达点B. 综上,选B.11.(2017山东莱芜,11,3分)对于实数a ,b ,定义符号min ,其意义为:当a ≥b 时,min=b :当a <b 时,min=a .例如min=-1.若关于x 的函数y =min {2x -1,-x +3},则该函数的最大值为( ) A .23B .1C .43D .53答案:D ,解析:当2x -1≥-x +3时,43x ≥,y =min {2x -1,-x +3}=-x +3,最大值为53.当2x -1<-x +3时,43x <,y =min {2x -1,-x +3}=2x -1,最大值为53. 综上,该函数的最大值为53.12.(2017山东莱芜,12,3分)如图,正五边形ABCDE 的边长为2,连结AC 、AD 、BE ,BE 分别与AC 和AD 相交于点F ,G ,连结DF ,给出下列结论:①∠FDG =18°;②FG =3-5;③(S 四边形CDEF )2=9+25;④DF 2-DG 2=7-25.其中结论正确的个数是( ) A .1 B .2 C .3 D .4答案:B ,解析:(1)∵正五边形ABCDE 的每一个内角都等于(5-2)×180°5=108°.∴∠BAC =∠BCA =(180°-108°)÷2=36°. 同理可得∠ABE =∠AEB =∠EAD =∠EDA =36°. ∴∠CBF =∠FCD =∠GDC =∠DEG =108°-36°=72°. ∴∠BFC =180°-∠BCA -∠CBF =180°-36°-72°=72°.GF(第12题图)∴∠BFC =∠CBF =72°. ∴BC =CF =2.同理可得DG =DE =2.∵BC =CF ,BC =CD ,∴CF =C D . 又∵∠FCD ==72°, ∴∠CDF =∠CFD =(180°-72°)÷2=54°. ∴∠FDG =∠GDC -∠CDF =72°-54°=18°. 由此可知①正确;(2)∵∠ABE =∠BCA =36°,∠BAF =∠CAB ,∴△BAF ∽△CA B .∴AB AC =AF AB .∴AB AF +CF =AF AB .∴2AF +2=AF2.解得AF =5-1.∴AC =AF +FC =(5-1)+2=5+1.∵△AFG ∽△ACD ,∴AF AC =FGCD .∴5-15+1=FG 2.解得FG =3-5.由此可知②正确;(3)过点A 作AM ⊥CD 于点M ,交BE 于点N .MMG∵AC =AD , AM ⊥CD ,∴CM =DM =12CD =1.∴cos ∠ACM =CM AC =15+1=5-14.∴(sin ∠ACM )2=1-( cos ∠ACM )2=1-(5-14)2. ∵CD =CF =EF =DE =2,∴四边形CDEF 是菱形.∴S 四边形CDEF =2 S △CDF=2×(12CF ×CD ×sin ∠ACM )=2×(12×2×2×sin ∠ACM )=4sin ∠ACM .∴(S 四边形CDEF )2=(4sin ∠ACM )2 =16×(sin ∠ACM )2=10+25≠9+25. 由此可知③错误;(4)过点F 作FG ⊥CD 于点G . ∵cos ∠ACM =cos ∠FCG =CG FC =5-14,∴CG 2=5-14. ∴CG =5-12.∴DG =CD -CG =2-5-12=5-52. ∴DG 2=(5-52)2=15-552.由对称性知CF=DG.∴DF 2-DG 2=DG 2-CG 2=6-25≠7-25.由此可知④错误;综上①②正确,故选B .第Ⅱ卷(非选择题 共84分)二、填空题(本大题共5小题,每小题填对得4分,共20分.请填在答题卡上) 13.(2017山东莱芜,13,4分)3012cos 45(3.14)2π-⎛⎫--︒+-+ ⎪⎝⎭=___________.答案:-7(-2)3-2×22+1+22=-8-2+1+22=-714.(2017山东莱芜,14,4分)圆锥的底面周长为23π,母线长为2,点P 是母线OA 的中点,一根细绳(无弹性)从点P 绕圆锥侧面一周回到点P .则细绳的晟短长度为___________.答案:1,解析:将圆锥的侧面展开,如图.取OA ′的中点P ′,连接PP ′,则P P ′ 即为细绳的最短路径. ∵2180O π∠⋅⋅︒=23π,∴∠O =60°.∵OP =OP ′=12×2=1,∴△OPP ′是等边三角形. ∴PP ′=1. O AA′P P ′15.(2017山东莱芜,15,4分)直线y =kx +b 与双曲线6y x=-交于A (-3,m ),B (n ,-6)两点.将直线y =kx +b 向上平移8个单位长度后,与双曲线交于D ,E 两点,则S △ADE =___________.答案:16,解析:把A (-3,m )代入6y x=-,得m =-6-3=2.∴A (-3,2).把B (n ,-6)代入6y x=-,得-6=-6n .∴n =1.∴B (1,-6).把A (-3,2)、B (1,-6)分别代入y =kx +b ,得⎩⎨⎧2=-3k +b -6=k +b .解得⎩⎨⎧k =-2b =-4. ∴y =-2x -4. 把x =0代入y =-2x -4,得y =-4.∴直线y =-2x -4与y 轴交于点(0,-4). 把点(0,-4)向上平移8个单位长度后得到的点是(0,4),∴将直线y =-2x -4向上平移8个单位长度后所得的直线是y =-2x +4.解方程组⎩⎪⎨⎪⎧y =-2x +4y =-6x ,得⎩⎨⎧x 1=3y 1=-2,⎩⎨⎧x 2=-1y 2=6.∴可以取D (-1,6)、E (3,-2).设直线AE 的解析式为y =mx +n ,则⎩⎨⎧2=-3m +n-2=3m +n .解得⎩⎪⎨⎪⎧m =-23n =0. ∴直线AE 的解析式为y =-23x ,该直线经过原点(0,0).过点D 作DC ⊥x 轴于点C ,交AE 于点F ,则C (-1,0)、F (-1,-23).∴DF =6-23=163.∴S △ADE =S △ADF + S △FDE =12DF ×CM +12DF ×CN =12DF ×(CM +CN )= 12DF ×MN =12×163×6=16.16.(2017山东莱芜,16,4分)二次函数y =ax 2+bx +c (a <0) 图象与x 轴的交点A 、B 的横坐标分别为-3,1,与y 轴交于点C ,下面四个结论: ①16a -4b +c <0; ②若P (-5,y 1)、Q (52,y 2)是函数图象上的两点,则y 1>y 2; ③a =-13c ;④若△ABC 是等腰三角形,则b .其中正确的有_______________.(请将结论正确的序号全部填上) 答案:①③,解析:①∵a <0,∴该抛物线开口向下. ∵图象与x 轴的交点A 、B 的横坐标分别为-3,1,∴当x =-3或1时,y =0且抛物线的对称轴是直线x =-1. ∴当x =-4时,y =a +b +c <0. 由此可知①正确;②点P (-5,y 1)关于对称轴的对称点是P ′(3,y 1).点是P ′(3,y 1)、Q (52,y 2)都在对称轴右侧. ∵该抛物线开口向下,对称轴是直线x =-1, ∴当x >-1时,y 随x 的增大而减小. ∵3>52,∴y 1<y 2.由此可知②错误;③∵对称轴是直线x =-1, ∴-b2a=-1.∴b =2a .∵抛物线过点(1,0),∴a +b +c =0.把b =2a 代入上式,得a +2a +c =0.∴a =-13c . 由此可知③正确;④若△ABC 是等腰三角形,则有两种情况:AB =AC 或BA =BC ,因此c 的值有两个,b 的值也有两个.由此可知④错误.17.(2017山东莱芜,17,4分)如图,在矩形ABCD 中,BE ⊥AC 分别交AC 、AD 于点F 、E ,若AD =1,AB =CF ,则AE =___________.CE . E DB (第17题图)EDB A∵AB =CF ,AB =CD ,∴CF =CD .又∵CE =CE ,∠EFC =∠EDC =90°,∴△EFC ≌△ED C.∴DE =EF .设AB =CD =CF =a ,则AC 2=AD 2+CD 2=12+a 2=1+a 2.设AE =x ,则DE =EF =1-x .∵△ABE ∽△DAC ,∴AB AD =AE DC .∴a 1=x a. ∴x =a 2…………………………①∵△AEF ∽△ACD ,∴AE AC =EF DC .∴AE 2AC 2=EF 2DC2. ∴x 21+a 2=(1-x )2a 2.…………………………② 由①、②两式,可解得x =5-12, ∴AE =5-12.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(本题满分6分)(2017山东莱芜,18,6分) 先化简,再求值:(a +63a a -)÷(a +993a a +-),其中a 3. 思路分析:先将两括号内的式子分别通分,再将除法转化为乘法,然后约分化简,最后代入所给的值求解. 解:原式=(3)63a a a a -+-÷(3)993a a a a -++- =233a a a +-×2369a a a -++=(3)3a a a +-×23(3)a a -+ =3a a +.当a3时,原式=3aa+119(本题满分8分)(2017山东莱芜,19,8分)为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛五种.为了解学生对这五项运动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种),并将调查结果绘制成如下不完整的统计图表:根据图表中提供的信息,解答下列问题:(1)a=____________,b=_______,c=_______.(2)请将条形统计图补充完整;(3)根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑;(4)根据调查结果,某班决定从这五项(袋鼠跳、夹球跑、跳大绳、绑腿跑、拔河赛可分别记A、B、C、D、E)中任选其中两项进行训练,用画树状固或列表的方法求恰好选到学生喜欢程度最高的两项的概率.思路分析:(1)根据“袋鼠跳”的学生数和百分比可以求出被调查学生的总数,即a的值;用“绑腿跳”的百分比乘以a,即可得b的值;用“夹球跑”的学生数除以a,即可得c的值.(2)根据b的值即可将条形统计图补充完整.(3)用3000乘以“绑腿跳”的百分比,即可得到该校学生中最喜欢绑腿跑的人数.(4)用“列表法”求解即可,需注意本小题是属于“不放回”类型的.解:(1)a=300,b=60,c=10;(2)学生最喜欢的活动项目的人数条形统计图(3)3000×20%=600(名);(4)P =220=110.(树状图或列表略)20.(本题满分9分)(2017山东莱芜,20,9分)某学校教学楼(甲楼)的顶部E 和大门A 之间挂了一些彩旗.小颍测得大门A 距甲楼的距离AB 是31 m ,在A 处测得甲楼顶部E 处的仰角是31°.(1)求甲楼的高度及彩旗的长度:(精确到0.01 m )(2〉若小颖在甲楼楼底C 处测得学校后面医院楼(乙楼)楼顶G 处的仰角为40°.爬到甲楼楼顶F 处测得乙楼楼顶G 处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01 m )(cos31°≈0.86,t an31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77, tan40°≈0.84)思路分析:(1)应用∠A 的正切可以求得甲楼的高度BE ;应用∠A 的余切可以求得彩旗的长度AE ;(2)设甲乙两楼之间的距离为x m ,再利用19°角、40°角的正切列方程求解. 解:(1)在Rt △ABE 中,BE =AB ·tan31°=31×tan31°≈31×0.60=18.60.AE =cos31AB ︒=31cos31︒≈310.86≈36.05 故甲楼的高度为18.60m ,彩旗的长度为36.05m.(2)过点F 作FM ⊥GD ,交GD 于M ,在Rt △GMF 中,GM =FM tan19°,在Rt △GDC 中,GD =CD tan40°,设甲乙两楼之间的距离为x m ,FM =CD =x ,则根据题意得: 19︒40︒31︒甲乙 C D E F G A B (第20题图)x tan40°-x tan19°=18.60;解之得:x =37.20m ;乙楼的高度:GD =CD tan40°≈37.20×0.84≈31.25,故乙楼的高度为31.25m ,甲乙两楼之间的距离为37.20m.21.(本题满分9分)(2017山东莱芜,21,9分)己知△ABC 与△DEC 是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE 、DB .试判断线段AE 和DB 的数量和位置关系,并说明理由;(2)如图②所示,连接DB ,将线段DB 绕D 点顺时针旋转90°到DF ,连接AF ,试判断线段DE 和AF 的数量和位置关系,并说明理由.思路分析:(1)通过证明Rt △ACE ≌Rt △BCD 即可解决;(2)通过证明△EBD ≌△ADF 即可得解.解:(1)AE =DB ,AE ⊥DB .理由:由题意可知,CA =CB ,CE =CD ,∠ACE =∠BCD =90°,∴Rt △ACE ≌Rt △BCD .∴AE =DB .延长DB 交AE 于点M , ① C E B ② F C E B (第21题图)∵Rt△ACE≌Rt△BCD,∴∠AEC=∠BDC.又∵∠AEC+∠EAC=90°,∴∠BDC+∠EAC=90°,∴在△AMD中,∠AMD=180°-90°=90°,∴AE⊥DB.(2)DE=AF,DE⊥AF.理由:设ED与AF相交于点N,由题意可知,BE=AD.∵∠EBD=∠C+∠BDC=90°+∠BDC,∠ADF=∠BDF+∠BDC=90°+∠BDC,∴∠EBD=∠ADF,又∵DB=DF,∴△EBD≌△ADF.∴DE=AF.∠E=∠F AD,∵∠E=45°,∠EDC=45°,∴∠F AD=45°. ∴∠AND=90°.∴DE ⊥AF .22.(本题满分10分〉(2017山东莱芜,22,10分)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩毎袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)该网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10 000元购进甲、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45.已知甲种口罩毎袋的进价为22.4元,乙种口罩毎袋的进价为18元.请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?思路分析:(1)根据等量关系列方程组求解;(2)根据不等关系列不等式组求解各种符合题意的方案;分别计算所得各种方案的获利情况,可得利润最大的方案及最大利润;也可以建立二次函数模型求解.解:(1)设该网店甲种口罩每袋的售价为x 元,乙种口罩每袋的售价为y 元,根据题意得:523110x y x y -=⎧⎨+=⎩, 解这个方程组得:2520x y =⎧⎨=⎩, 故该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元.(2)设该网店购进甲种口罩m 袋,则购进乙种口罩(500-m )袋,根据题意得:4(500)522.418(500)10000m m m m ⎧>-⎪⎨⎪+-≤⎩, 解这个不等式组得:222 2<m ≤227 3,因m 是整数,故有5种进货方案,分别是: 购进甲种口罩223袋,乙种口罩277袋;购进甲种口罩224袋,乙种口罩276袋;购进甲种口罩225袋,乙种口罩275袋;购进甲种口罩226袋,乙种口罩274袋;购进甲种口罩227袋,乙种口罩273袋;设网店获利为w 元,则有w =(25-22.4)m +(20-18)(500-m )=0.6m +1000,因w 随m 的增大而增大,故当m =227时,w 最大,W 最大=0.6×227+1000=1136.2(元).故网店购进甲种口罩227袋,乙种口罩273袋时,获利最大,最大获利为1136.2元.23.(本题满分10分〉(2017山东莱芜,23,10分)已知AB 是⊙O 的直径,C 是圆上一点,∠BAC 的平分线交⊙O 于点D ,过D 作DE ⊥AC 交AC 的延长线于点E ,如图①.(1)求证:DE 是⊙O 的切线;(2)若AB=10.AC=6,求BD的长;(3)如图②,若F是OA的中点,FG⊥OA交直线DE于点G,若FG=194,tan∠BAD=34,求⊙O的半径.思路分析:(1)连接OD,证明OD⊥DE即可得解;(2)连接BC,构造直角三角形,利用勾股定理求出BC的长度,再进一步应用三角形中位线性质及勾股定理求解;(3)设FG与AD交于点H,证明△DHE是等腰三角形是解题突破口.解:(1)如图,连接OD.NEDCBAO∵OA=OD,∴∠OAD=∠ODA.又∵AD平分∠BAC,∴∠OAD=∠DAE.∴∠ODA=∠DAE. ∴OD∥AE.∴∠ODE+∠AED=180°.又∵∠AED=90°,∴∠ODE=90°.∴OD⊥DE.∴DE是⊙O的切线.(2)连接BC,交OD于点N.∵AB是直径,∴∠BCA=90°.∵OD∥AE,O是AB的中点,∴ON∥AC,且ON=12 AC,∴∠ONB=90°,且ON=3.则BN=4,ND=2,∴BD==.②(第23题图)①(3)如图,设FG 与AD 交于点H .FEH C G M DA OB根据题意,设AB =5x ,AD =4x ,BD =3x ,则AF =54x ,5315tan 4416FH AF BAD x x =⋅∠=⋅=, 52544cos 165x AF AH x BAD ===∠,HD =AD -AH =253941616x x x -=. 由(1)可知,∠HDG +∠ODA =90°,在Rt △HF A 中,∠F AH +FHA =90°,又∵∠OAD =∠ODA ,∠FHA =∠DHG ,∴∠DHG =∠HDG .∴GH =GD .过点G 作GM ⊥HD ,交HD 于点M .∴MH =MD ,∴HM =12HD =12×3916x =3932x . ∵∠F AH +∠AHF =90°,∠MHG +∠HGM =90°,∴∠F AH =∠HGM . 在Rt △HGM 中,HG =sin HM HGM ∠=393235x =6532x . ∵FH +GH =194,故有1516x +6532x =194,解之得:x =85. 故此圆的半径为52×85=4.24.(本题满分12分)(2017山东莱芜,24,12分)抛物线y =ax 2+bx +c 过A (2,3),B (4,3),C (6,-5)三点.(1)求抛物线的表达式;(2)如图①,抛物线上一点D 在线段AC 的上方,DE ⊥AB 交AC 于点E ,若潢足DE AE,求点D 的坐标.(3〉如图②,F 为抛物线顶点,过A 作直线l ⊥AB ,若点P 在直线l 上运动,点Q 在x 轴上运动,是否存在这样的点P 、Q ,使得以B 、P 、Q 为顶点的三角形与△ABF 相似.若存在,求P 、Q 的坐标,并求此时△BPQ 的面积;若不存在,请说明理由.思路分析:(1)将A (2,3),B (4,3),C (6,-5)三点的坐标分别代入y =ax 2+bx +c ,得到关于a ,b ,c 的方程组,解所得的方程组得到a ,b ,c 的值,即得抛物线的解析式;(2)根据题意,AB ∥x 轴,DE ⊥x 轴,求出直线AC 的解析式y =kx n +,设D 设点D (m ,ax 2+bx +c ),2<m <6,则点E (m ,kx n +),用含有m 的式子分别表示出AE 、DE 的长度,再求解;(3)先确定△ABF 的形状,再分不同情况分别讨论求解.解:(1)根据题意,设抛物线表达式为y =2(3)a x h -+.所以395a h a h +=⎧⎨+=-⎩﹐﹒ 解得14a h =-⎧⎨=⎩﹐﹒ 所以抛物线表达式为y =265x x -+-.(2)设直线AC 的表达式为y =kx n +,则2365k n k n +=⎧⎨+=-⎩﹐﹒ 解得27k n =-⎧⎨=⎩﹐﹒ ∴直线AC 表达式为y =-2x +7.设点D (m ,265m m -+-),2<m <6,则点E (m ,-2m +7),∴DE =2(65)(27)m m m -+---+=2812m m -+-.设直线DE 与直线AB 交于点G ,则AG =m -2,EG =3(27)m --+=2(m -2),m -2>0.(第24题图)在Rt △AEG 中,∴AE (m -2).由DEAE ,2,化简得221114m m -+=0,解得m =72或m =2(舍去).∴D (72,154). (3)根据题意得,△ABF 为等腰直角三角形,假设存在满足条件的点P 、Q ,则△BPQ 为等腰直角三角形.(i )若∠BPQ =90°,BP =PQ ,如图①,易知△BAP ≌△PMQ ,由AB =PM =2,所以P(2,2),Q (3,0),PQ ,S △BPQ =52.如图②,△BNP ≌△PMQ ,由PN =QM =2,所以P (2,-2),Q (-3,0),PQ S △BPQ =292. (ii )若∠BQP =90°,BQ =PQ ,如图③,易知△BNQ ≌△QMP ,由NQ =PM =3,所以P(2,-5),Q (-l ,0),PQ S △BPQ =17.如图④,△QNB ≌△PMQ ,由NQ =PM =3,所以p(2,-1),Q (5,0),PQ S △BPQ =5.(iii )若∠PBQ =90°,BQ =BP ,如图⑤,易知△PQB ≌△BNQ ,又AB =2,NQ =3,AB ≠NQ ,此时不存在满足条件的点P 、Q .。

专题10 四边形-2017年中考数学试题分项版解析汇编(解析版)

专题10 四边形-2017年中考数学试题分项版解析汇编(解析版)

专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12C . 16D .18【答案】B .【解析】试题分析:设多边形的边数为n ,则有(n -2)×180°=n ×150°,解得:n =12.故选B .考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C .AC BD = D .12∠=∠【答案】C .考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20【答案】D【解析】试题分析:根据菱形的对角线互相垂直,可知OA =3,OB =4,根据勾股定理可知AB =5,所以菱形的周长为4×5=20.故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m =8a ,设CM =x ,DE =y ,则DM =2a -x ,EM =2a -y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME +∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG , ∴CG CM MG DM DE EM ==,即22CG x MG a x y a y==-- ∴CG =(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM +CG +MG =24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a -x )2+y 2=(2a -y )2整理得4ax -x 2=4ay∴CM +MG +CG =2444ax x ay a y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( )A .四边形B .五边形C .六边形D .八边形【答案】C【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n -2)·180°=720°,解得n =6,故是六边形.故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形【答案】D【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形.若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误;若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误;若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则tan BDE ∠的值是 ( )A .24B .14C .13D .23【答案】A .【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DF EB EF BF== ,因点E 是边BC 的中点且AD =BC ,所以AD AF DF EB EF BF ===2,设EF =x ,可得AF =2x ,在Rt △ABE 中,由射影定理可得BF =2x ,再由AD AF DF EB EF BF ===2可得DF =22x ,在Rt △DEF 中,tan BDE ∠=2422EF x DF x == ,故选A . 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283B .243C .323D .3238-【答案】A .【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点 423,3AF EF EL ∴==∴=,P 是F E 的中点,32PK ∴= 43DH = 1373322PP CD ∴-= 高为4 7382832S ∴=⨯=L K H故答案选A .考点:平行四边形的面积,三角函数. 10.(2017江苏苏州第7题)如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36C .54D .72【答案】B .【解析】试题分析:∠ABE =3601=3652︒⨯︒ 故答案选B . 考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题) 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE BF =,将,AEH CFG ∆∆分别沿,EH FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB 为 ( )A . 53B .2C . 52D .4 【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题)二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【答案】5.【解析】试题分析:连结AC ,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC =FG =2,AC =32,即可得AE =22,因P 为AE 的中点,可得PE =AP =2,再由正方形的性质可得GM =EM =22,FG 垂直于AC ,在Rt △PGM 中,PM =322,由勾股定理即可求得PG =5.2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD =∠ODC =180°-108°=72°,∴∠COD =36°,∴∠AOB =360°-108°-108°-36°=108°.D C3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④453OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)137A C B OB ∴= ,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODF BDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠ ,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40)17,F CF OC CFO COF ∴=<∴∠>∠ ,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似.则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1137,22FG OB FG OB ∴== D E 、 是OB 的三等分点,1373DE ∴= 1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯= 解得:1162AN OB= ,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确 113733OD OB == ,故④错误. 综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70°【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70°考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA =OC ,OB =OD =12BD =5,CD =AB =4,由sin ∠BDC =35,证出AC ⊥CD ,OC =3,AC =2OC =6,得出▱ABCD 的面积=CD •AC =24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD =32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH =EH ,设AH =x ,则DH =EH =8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x =3,即可得AH =3,EH =5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EH BE BF EF == ,即3452BF EF ==,解得BF =83 ,EF =103,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA +PE 的最小值是 .【答案】10.9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】3105. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB =BG =EF =CD =5,AD =GF =3,在Rt △BCG 中,根据勾股定理求得CG =4,再由1122BCG S BC CG BG CM =⋅=⋅ ,即可求得CM =125 ,在Rt △BCM 中,根据勾股定理求得BM =22221293()55BC CM -=-=,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE =MN =3,BM =EN =95,所以CN =MN -CM =3-125=35,在Rt △ECN 中,根据勾股定理求得EC =22223990310()()55255CN EN +=+==.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】745. 【解析】试题分析:连接AG ,设DG =x ,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC =='254974'55CC BB +∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB ,已知菱形的周长为cm 24,根据菱形的性质可得AB =6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE =33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 ,∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 . 考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(2)3. 【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.本题解析:(1)证明:∵E 为AD 中点,A D =2BC ,∴BC =ED , ∵AD ∥BC , ∴四边形ABCD 是平行四边形,∵AD =2BE , ∠ABD =90°,AE =DE ∴BE =ED , ∴四边形ABCD 是菱形.(2)∵AD ∥BC ,AC 平分∠BAD ∴∠BAC =∠DAC =∠BCA ,∴BA =BC =1, ∵AD =2BC =2,∴sin ∠ADB =12,∠ADB =30°, ∴∠DAC =30°, ∠ADC =60°.在RT △ACD 中,AD =2,CD =1,AC = 3 .考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ’的坐标为(2,1);(2)1;(3)3333(,)22--或2333(,)22- . 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得OA =3 ,OB =1,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’=OA =3,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB =2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B , ∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A ’OP ≌△AOP .∴OA ’=OA =3,由OB B A ⊥',得∠A ’BO =90°.在Rt △A ’OB 中,22''2A B OA OB =-=, ∴点A ’的坐标为(2,1). (2) 在Rt △AOB 中,OA =3 ,OB =1, ∴222AB OA OB =+= ∵当P 为AB 中点, ∴AP =BP =1,OP =12AB =1. ∴OP =OB =BP , ∴△BOP 是等边三角形 ∴∠BOP =∠BPO =60°, ∴∠OPA =180°-∠BPO =120°. 由(1)知,△A ’OP ≌△AOP ,∴∠OPA ’=∠OPA =120°,P ’A =PA =1,又OB =PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B =OP =1. (3)3333(,)22--或2333(,)22- .4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长; (Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF =324【解析】试题分析:(Ⅰ)分情况CP =CD 、PD =PC 、DP =DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由AP =2 ,从而可得CF =324. 试题解析:(Ⅰ)在矩形ABCD 中,AB =6,AD =8,∠ADC =90°,∴DC =AB =6, AC =22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP =CD 时,CP =6,∴AP =AC -CP =4 ;(2)当PD =PC 时,∠PDC =∠PCD ,∵∠PCD +∠PAD =∠PDC +∠PDA =90°,∴∠PAD =∠PDA ,∴PD =PA ,∴PA =PC ,∴AP =2AC,即AP =5;(3)当DP =DC 时,过D 作DQ ⊥AC 于Q ,则PQ =CQ ,∵S △ADC =12 AD ·DC =12AC ·DQ ,∴DQ =245AD DC AC = ,∴CQ =22185DC DQ -= ,∴PC =2CQ =365 ,∴AP =AC -PC =145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC =∠PDF =90°,即∠ADP +∠PDC =∠PDC +∠CDF ,∴∠ADP =∠CDF ,∵∠BCD =90°,OE =OD ,∴OC =12 ED ,在矩形PEFD 中,PF =DE ,∴OC =12PF ,∵OP =OF =12PF ,∴OC =OP =OF ,∴∠OCF =∠OFC ,∠OCP =∠OPC ,又∵∠OPC +∠OFC +∠PCF =180°,∴2∠OCP +2∠OCF =180°,∴∠PCF =90°,即∠PCD +∠FCD =90°,在Rt △ADC 中,∠PCD +∠PAD =90°,∴∠PAD =∠FCD ,∴△ADP ∽△CDF ,∴34CF CD AP AD == ,∵AP =2 ,∴CF =324.5. (2017广东广州第24题)如图13,矩形ABCD 的对角线AC ,BD 相交于点O ,COD ∆关于CD 的对称图形为CED ∆.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =,5BC cm =. ①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1/cm s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.【答案】(1)详见解析;(2)①2sin 3EAD ∠= ②32AP =和Q 走完全程所需时间为32s 【解析】(2)①连接OE ,直线OE 分别交AB 于点F ,交DC 于点GCOD ∆ 关于CD 的对称图形为CED ∆,OE DC DC AB ∴⊥ ,OF AB EF AD ∴⊥在矩形ABCD 中,G 为DC 的中点,且O 为AC 的中点OG ∴ 为CAD ∆ 的中位线 52OG GE ∴==同理可得:F 为AB 的中点,532OF AF ==, 22223593()22AE EF AF ∴=+=+= 32sin sin 932EAD AEFEAD AEF ∠=∠∴∠=∠==②过点P 作PM AB ⊥ 交AB 于点MQ ∴ 由O 运动到P 所需的时间为3s由①可得,23AM AP = ∴ 点O 以1.5/cm s 的速度从P 到A 所需的时间等于以 1/cm s 从M 运动到A 即:11OP PA OP MA t t t OP MA =+=+=+ Q ∴ 由O 运动到P 所需的时间就是OP +MA 和最小.如下图,当P 运动到1P ,即1PO AB 时,所用时间最短. 3t OP MA ∴=+=在11Rt APM ∆ 中,设112,3AM x APx == 2222211115(3)=(2)+()22AP AM PM x x =+∴ 解得:12x = 32AP ∴= 32AP ∴=和Q 走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。

2017山东济南中考数学真题含答案解析(供参考)

2017山东济南中考数学真题含答案解析(供参考)

2017年山东省初中学业水平考试济南市(考试时刻:120分钟 满分:120分)第Ⅰ卷(选择题 共45分)一、选择题(本大题共15个小题,每题3分,共45分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.在实数0,2-2中,最大的是( ).A .0B .2-CD .2【答案】C2=,202>>-,应选C .2.如下图的几何体,它的左视图是( ).正面A .B .C .D .【答案】A【解析】从左侧看,有两列正方形,左侧一列有三个正方形,右边只有一个正方形,应选A .3.2017年5月5日国产大型客机C919首飞成功圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550千米,数字5550用科学记数法表示为( ).A .40.55510⨯B .35.5510⨯C .45.5510⨯D .355.510⨯【答案】B【解析】35550 5.5510=⨯.4.如图,直线a b ∥,直线l 与a ,b 别离相交于A ,B 两点,AC AB ⊥交b 于点C ,140∠=︒,那么2∠的度数是( ).12la bCBAA .40︒B .45︒C .50︒D .60︒【答案】C【解析】∵a b ∥, ∴140ABC ∠=∠=︒. 又∵90BAC ∠=︒,∴250∠=︒.5.中国古代建筑中的窗格图案有效大方,寓意吉祥.以下给出的图案中既是轴对称图形又是中心对称图形的是( ).A .B .C .D .【答案】B【解析】A 项、D 项不是中心对称图形,C 项不是轴对称图形,B 项既是轴对称图形又是中心对称图形,应选B .6.化简2a ab aba b a b +÷--的结果是( ).A .2aB .2a a b-C .a ba- D .a bb+ 【答案】D【解析】2()a ab ab a a b a b a ba b a b a b ab b ++-+÷=⋅=---.7.关于x 的方程250x x m ++=的一个根为2-,那么另一个根为( ).A .6-B .3-C .3D .6【答案】B【解析】∵2-是方程250x x m ++=的一个根, ∴4100m -+=,解得6m =,故原方程为2560x x ++=,解得12x =-,23x =-,因此方程的另一个根为3-.8.《九章算术》是中国传统数学的重要高作,方程术是它的最高成绩.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合股购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合股人数为x 人,物价为y 钱,以以下出的方程组正确的选项是( ).A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩【答案】C【解析】由“每人出8钱,会多3钱”,可得83x y -=; 由“每人出7钱,又差4钱”,可得77y x -=, ∴所列方程组为83,7 4.x y y x -=⎧⎨-=⎩9.如图,五一旅行黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口景区,游玩后任选一个出口离开,那么她选择从A 口进入,从C ,D 口离开的概率是( ).E D C B A 出口出口入口入口景区出口A .12B .13C .16D .23【答案】B【解析】画树状图如下:ED A B CCDE出口入口开始由上图可知,一共有6种不同的情形,其中从A 口进,从C ,D 口出的情形有2种,因此所求概率2163P ==.10.把直尺、三角尺和圆形螺母按如下图放置于桌面上,60CAB ∠=︒,假设量出6cm AD =,那么圆形螺母的外直径是( ).A .12cmB .24cmC.D.【答案】D【解析】如图,记螺母的圆心为O ,连接OA ,OD .∵60CAB ∠=︒,∴120DAB ∠=︒,60DAO ∠=︒.在Rt AOD △中,60DAO ∠=︒,6cm AD =,∴tan OD AD DAO =⋅∠=,∴圆形螺母的外直径2OD ==.11.将一次函数2y x =的图象向上平移2个单位后,当0y >时,x 的取值范围是( ).A .1x >-B .1x >C .2x >-D .2x >【答案】A【解析】一次函数2y x =的图象向上平移2个单位后,取得的函数解析式为22y x =+. 当0y >时,即220x +>,解得1x >-.12.如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m 的竹竿AC 斜靠在石坝旁,量出杆长1m 处的D 点离地面的高度0.6m DE =,又量的杆底与坝脚的距离3m AB =,那么石坝的坡度为( ).A .34B .3C .35D .4【答案】B【解析】如图,作CM AB ⊥于点M .在Rt ADE △中,由勾股定理得0.8AE .易知ADE ACM △∽△,∴AD AE DEAC AM CM ==, 即10.80.65AM CM==,解得4AM =,3CM =, ∴431BM AM AB =-=-=, ∴坡度3CMBM==.13.如图,正方形ABCD 的对角线AC ,BD 相交于点O,AD =E 为OC 上一点,1OE =,连接BE ,过点A 作AF BE ⊥于点F ,与BD 交于点G ,那么BF 的长为( ).FE CBAG O DAB.CD【答案】A【解析】在正方形ABCD 中,∵AD = ∴6BD =,3OB =. 在Rt BOE △中, ∵1OE =,3OB =,∴BE∵3OA OB ==,1122ABE S AE OB BE AF =⋅=⋅△,∴AE OB AF BE ⋅=∴BF =.14.二次函数2(0)y ax bx c a =++≠的图象通过点(2,0)-,0(,0)x ,012x <<,与y 轴的负半轴相交,且交点在(0,2)-的上方,以下结论:①0b >;②2a b <;③210a b --<;④20a c +<,其中正确结论的个数是( ).A .1B .2C .3D .4【答案】C【解析】∵012x <<,∴021022x -+-<<,即1022ba-<-<.依照题意,画出抛物线的大致图象如下:由图象可知,0a >, ∴0b >,①正确;∵1022ba-<-<,∴a b >,2a b >,②错误;∵图象过(2,0)-, ∴420a b c -+=,∴22ca b -=-.又∵20c -<<,∴012c<-<,∴21102ca b --=--<,∴③正确;设12x =-,那么01c x x a=, ∵012x <<, ∴0142x x -<<-,∴42ca-<<-, ∴20a c +<.④正确,应选C .15.如图1,有一正方形广场ABCD ,图形中的线段均表示直行道路,BD 表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜间小齐同窗沿广场道路散步时,影子长度随行走路程的转变而转变,设他步行的路程为(m)x 时,相应影子的长度为(m)y ,依照他步行的线路取得y 与x 之间关系的大致图象如图3,那么他行走的线路是( ).图1FE CBAG D图2A .AB E G →→→ B .A E DC →→→ C .A E B F →→→D .A B D C →→→【答案】D【解析】利用排除法解答此题.关于选项A ,在E G →时,影子的长度是减小的,与图象不符; 关于选项C ,在B F →时,影子的长度是减小的,与图象不符;比较选项B 与D ,区别在于走的是A E →仍是A B →,观看图象能够发觉,第二段的路程要比第一段的路程长, ∴排除B ,选D .第Ⅱ卷(非选择题共75分)二、填空题(本大题共6个小题,每题3分,共18分) 16.分解因式:244x x -+=__________. 【答案】2(2)x -【解析】2244(2)x x x -+=-.17.计算:0|24|--+=__________.【答案】7【解析】0|24|617--+=+=.18.在学校的歌咏竞赛中,10名选手的成绩如统计图所示,那么这10名选手成绩的众数是__________.【答案】90【解析】由统计图可知,得分为80的有2人,得分为85的有1人,得分为90的有5人,得分为95的有2人,故成绩的众数为90.19.如图,扇形纸扇完全打开后,扇形ABC 的面积为2300πcm ,120BAC ∠=︒,2BD AD =,那么BD 的长度为__________cm .【答案】20【解析】设AD x =,那么2BD x =,3AB x =.由题意知2120π(3)300π360x ⋅=, 解得10x =,故20BD =.20.如图,过点O 的直线AB 与反比例函数ky x=的图象相交于A ,B 两点,(2,1)A ,直线BC y ∥轴,与反比例函数3(0)ky x x-=<的图象交于点C ,连接AC ,那么ABC △的面积是__________.【答案】8【解析】∵点(2,1)A 在反比例函数ky x=上, ∴2k =.依照反比例的图象关于原点对称,可知(2,1)B --, ∴点C 的横坐标为2-,∵点C 在反比例函数6y x =-的图象上,∴(2,3)C -,∴1(31)(22)82ABC S =⨯+⨯+=△.21.概念:在平面直角坐标系xOy 中,把从点P 动身沿纵或横方向抵达点Q (最多拐一次弯)的途径长称为P ,Q 的“实际距离”.如图,假设(1,1)P -,(2,3)Q ,那么P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜爱的交通工具,设A ,B ,C 三个小区的坐标别离为(3,1)A ,(5,3)B -,(1,5)C --,假设点M 表示单车停放点,且知足M 到A ,B ,C 的“实际距离”相等,那么点M 的坐标为__________.【答案】(1,2)-【解析】如图,在平面直角坐标系中画出A ,B ,C 三点,易知点M 在第四象限,大致位置如下图.故所求的M 点的坐标为(1,2)-.三、解答题(本大题共7个小题,共57分.解许诺写出必要的文字说明、证明进程或演算步骤) 22.(此题总分值7分)(1)先化简,再求值:2(3)(2)(3)a a a +-++,其中3a =. (2)解不等式组352(2),1.2x x x x ++⎧⎪⎨-⎪⎩①②≥≥【注意有①②】【答案】观点析【解析】解:(1)原式2269(56)3a a a a a =++-++=+. 当3a =时,原式336=+=. (2)由①得1x -≥,由②得2x ≤, 故不等式组的解集为12x -≤≤.23.(此题总分值7分)(1)如图,在矩形ABCD 中,AD AE =,DF AE ⊥于点F ,求证:AB DF =. (2)如图,AB 是⊙O 的直径,25ACD ∠=︒,求BAD ∠的度数.1()题F ECBA D2()题【答案】观点析【解析】(1)证明:在矩形ABCD 中, ∵AD BC ∥, ∴DAF AEB ∠=∠. 在ADF △和EAB △中, ,90,,DAF AEB AFD EBA AD AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴ADF △≌EAB △, ∴AB DF =.(2)解:∵25ACD ∠=︒, ∴25ABD ∠=︒, ∵AB 是⊙O 的直径, ∴90ADB ∠=︒.在ABD △中,1801802565BAD ABD ADB ∠=︒-∠-∠=︒-︒-90︒=︒. 24.(此题总分值8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树的1.5倍,那么银杏树和玉兰树的单价各是多少? 【答案】观点析【解析】解:设银杏树的单价为x 元,那么玉兰树的单价为1.5x 元,由题意得1200090001501.5x x+=,解得120x =. 经查验,120x =是原分式方程的根,且符合实际意义, 则1.5180x =︒.答:银杏树的单价为120元,玉兰树的单价为180元. 25.(此题总分值8分)中央电视台的《朗诵者》节目激发了同窗们的念书热情,为了引导学生“多念书,读好书”,某校对八年级部份学生的课外阅读量进行了随机调查,整理调查结果发觉,学生课外阅读的本数量少的有5本,最多的有8本,并依照调查结果绘制了不完整的图表,如下所示:/本(1)统计图表中的a =__________,b =__________,c =__________. (2)请将频数散布直方图补充完整. (3)求所有被调查学生课外阅读的平均本数.(4)假设该校八年级共有1200名学生,请你估量该校八年级学生课外阅读7本及以上的人数. 【答案】观点析【解析】解:(1)10,0.28,50 (2)补全频数散布直方图如下:/本(3)1(10518614788) 6.450⨯+⨯+⨯+⨯=. 答:所有被调查学生课外阅读的平均本数为6.4本.(4)148120052850+⨯=. 答:估量该校八年级学生课外阅读7本及以上的人数为528人. 26.(此题总分值9分) 如图1,平行四边形OABC 的边OC 在y 轴的正半轴上,3OC =,(2,1)A ,反比例函数(0)ky x x=>的图象通过点B .(1)求点B 的坐标和反比例函数的关系式.(2)如图2,直线MN 别离与x 轴、y 轴的正半轴交于M ,N 两点,假设点O 和点B 关于直线MN 成轴对称,求线段ON 的长.(3)如图3,将线段OA 延长交(0)ky x x=>于点D ,过B ,D 的直线别离交x 轴,y 轴于E ,F 两点,请探讨线段ED 与BF 的数量关系,并说明理由.【答案】观点析【解析】解:(1)在平行四边形OABC中,∵3OC=,(2,1)A,∴(2,4).∵点B在反比例函数kyx=的图象上,∴248k=⨯=,故反比例函数的关系式为8yx=.(2)∵点O和点B关于直线MN成轴对称,∴直线MN是线段OB的垂直平分线,∵点(0,0)O,(2,4)B,∴OB的中点坐标为(1,2),直线OB的关系式为2y x=.设直线MN的关系式为12y x b=-+,∵直线MN过OB中点(1,2),∴1212b=-⨯+,解得52b=.∴52ON=.(3)ED BF=.理由如下:∵(2,1)A,∴直线OA的关系式为12y x=.由1,28.y xyx⎧=⎪⎪⎨⎪=⎪⎩得216x=,解得4x=±,∴(4,2)D.设直线BD的关系式为y mx n=+.则24,42,m nm n+=⎧⎨+=⎩解得1,6.mn=-⎧⎨=⎩∴直线BD的关系式为6y x=-+,易知(6,0)E,(0,6)F.∵BF=,ED=∴ED BF =. 27.(本小题总分值9分)某学习小组在学习时碰到了下面的问题:如图1,在ABC △和ADE △中,90ACB AED ∠=∠=︒,60CAB EAD ∠=∠=︒,点E ,A ,C 在同一直线上,连接BD ,F 是BD 的中点,连接EF ,CF ,试判定CEF △的形状并说明理由. 问题探讨(1)小婷同窗提出解题思路:先探讨CEF △的两条边是不是相等,如EF CF =.以下是她的证明进程:①在图1上作出证明中所描述的辅助线.②在证明的括号中填写理由(请在SAS ,ASA ,AAS ,SSS 当选择).(2)在(1)在探讨结论的基础上,请你帮忙小婷求出CEF ∠的度数,并判定CEF △的形状. 问题拓展(3)如图2,当ADE △绕点A 逆时针旋转某个角度时,连接CE ,延长DE 交BC 的延长线于点P ,其它条件不变,判定CEF △的形状并给出证明.图1D ABCE F 图2DPA BCE F【答案】观点析【解析】解:(1)如图:M NFE CBAGD②AAS(2)设AE a =,AC b =,则2AD a =,2AB b =,DE,BC . ∵DEF △≌BGF △,∴DE BG =.CE AE AC a b =+=+,)CG BG BC a b =+++.∵AC bCE a b =+,BC b CG a b==+, ∴AC BCCE CG=. 又∵90ACB ECG ∠=∠=︒,∴ACB ECG △∽△, ∴60CEG CAB ∠=∠=︒, ∴CEF △是等边三角形.(3)如图,作BN DE ∥,延长EF 交BN 于N ,连接CN ,NFE CBAPD则DEF FNB ∠=∠,又∵DF BF =,DFE BFN ∠=∠, ∴DEF △≌BNF △, ∴BN DE =,EF FN =. 设AB a =,AE b =,则BC,DE . ∵90AEP ACP ∠=∠=︒, ∴180P EAC ∠+∠=︒. ∵DP BN ∥,∴180P CBN ∠+∠=︒, ∴CBN EAC ∠=∠. 在AEC △和BNC △中,∵AE AE AC BN DE BC ==CBN EAC ∠=∠. ∴ABC BNC △∽△, ∴ECA NCB ∠=∠. ∴90ECN ∠=︒, ∴EF CF =. 又∵60CEF ∠=︒, ∴CEF △为等边三角形. 28.(本小题总分值9分)如图1,矩形OABC 的极点A ,C 的坐标别离为(4,0),(0,6),直线AD 交BC 于点D .tan 2OAD ∠=,抛物线21:(0)M y ax bc a =+≠过A ,D 两点.(1)求点D 的坐标和抛物线1M 的表达式.(2)点P 是抛物线1M 对称轴上一动点,当90CPA ∠=︒时,求所有知足条件的点P 的坐标. (3)如图2,点(0,4)E ,连接AE ,将抛物线1M 的图象向下平移(0)m m >个单位取得抛物线2M . ①设点D 平移后的对应点为点D ',当点D '恰好落在直线AE 上时,求m 的值. ②当1(1)x m m >≤≤时,假设抛物线2M 与直线AE 有两个交点,求m 的取值范围.图2备用图【答案】观点析【解析】解:(1)∵OA BC ∥, ∴OAD ADB ∠=∠,∴tan tan 2ADB OAD ∠=∠=. 在Rt ABD △中,∵6AB OC ==,∴63tan 2AB DB ADB ===∠.∴1CD CB BD =-=,(1,6)D . ∵抛物线21:(0)M y ax bx a =+≠过A ,D 两点, ∴1640,6,a b a b +=⎧⎨+=⎩解得2,8.a b =-⎧⎨=⎩∴抛物线1M 的表达式为228y x x =-+.(2)∵222282(4)2(2)8y x x x x x =-+=--=--+. ∴抛物线的对称轴为2x =. 设点(2,)P y , ∵(4,0)A ,(0,6)C ,∴2224652AC =+=,2222(42)4AP y y =-+=+, 22222(6)4(6)CP y y =+-=+-.∵90CPA ∠=︒,∴222AC AP CP =+,即225244(6)y y =+++-, 整理得2640y y --=.解得13y =23y =-故1(2,3P +,2(2,3P .(2)由题意知,抛物线2M 的表达式为228y x x m =-+-, ①∵(1,6)D , ∴(1,6)D m '-,设直线AE 的表达式为y mx n =+, 则40,4,m n n +=⎧⎨=⎩解得1,4,m n =-⎧⎨=⎩ ∴直线AE 的表达式为4y x =-+. ∵点(1,6)D m '-在直线AE 上, ∴146m -+=-,解得3m =.②由①知,当抛物线通过点(1,3)时,m 的值为3; 当x m =时,设直线与抛物线交于点(,4)P m m -+, 则2428m m m m -+=-+-,解得2m =或2m =(舍去);当抛物线228y x x m =-+-与直线AE 只有一个交点时, 联立228,4,y x x m y x ⎧=-+-⎨=-+⎩消去y ,整理得32940x x m -++=, 由818(4)0m ∆=-+=,解得498m =.综上可知,所求m 的取值范围为4928m <.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.(3分)﹣6的倒数是()A.﹣ B.C.﹣6 D.6【分析】乘积是1的两数互为倒数.【解答】解:﹣6的倒数是﹣.故选:A【点评】本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键.2.(3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为()A.7.8×10﹣7B.7.8×10﹣8C.0.78×10﹣7D.78×10﹣8【分析】绝对值<1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数0.00000078用科学记数法表示为7.8×10﹣7.故选A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)下列运算正确的是()A.2x2﹣x2=1 B.x6÷x3=x2C.4x•x4=4x5D.(3xy2)2=6x2y4【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=x2,不符合题意;B、原式=x3,不符合题意;C、原式=4x5,符合题意;D、原式=9x2y4,不符合题意,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x千米/小时,应列方程为()A.﹣1=B.﹣1=C.+1= D.+1=【分析】根据电动车每小时比自行车多行驶了25千米,可用x表示出电动车的速度,再由自行车行驶30千米比电动车行驶40千米多用了1小时,可列出方程.【解答】解:设自行车的平均速度为x千米/小时,则电动车的平均速度为(x+25)千米/小时,由自行车行驶30千米比电动车行驶40千米多用了1小时,可列方程﹣1=,故选B.【点评】本题主要考查列方程解应用题,确定出题目中的等量关系是解题的关键.5.(3分)将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是()A. B.C.D.【分析】根据左视图的定义,画出左视图即可判断.【解答】解:根据左视图的定义,从左边观察得到的图形,是选项C.故选C.【点评】本题考查三视图、熟练掌握三视图的定义,是解决问题的关键.6.(3分)如图,AB是⊙O的直径,直线DA与⊙O相切于点A,DO交⊙O于点C,连接BC,若∠ABC=21°,则∠ADC的度数为()A.46°B.47°C.48°D.49°【分析】根据等边对等角可得∠B=∠BCO,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AOD=∠B+∠BCO,根据切线的性质可得∠OAD=90°,然后根据直角三角形两锐角互余求解即可.【解答】解:∵OB=OC,∴∠B=∠BCO=21°,∴∠AOD=∠B+∠BCO=21°+21°=42°,∵AB是⊙O的直径,直线DA与⊙O相切与点A,∴∠OAD=90°,∴∠ADC=90°﹣∠AOD=90°﹣42°=48°.故选C.【点评】本题考查了切线的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.7.(3分)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是()A.12 B.13 C.14 D.15【分析】多边形的内角和比外角和的2倍多180°,而多边形的外角和是360°,则内角和是900度,n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n ,就得到方程,从而求出边数,进而求出对角线的条数. 【解答】解:根据题意,得 (n ﹣2)•180=360°×2+180°, 解得:n=7.则这个多边形的边数是7, 七边形的对角线条数为=14,故选C .【点评】此题主要考查了多边形内角和定理和外角和定理,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.8.(3分)如图,在Rt △ABC 中,∠BCA=90°,∠BAC=30°,BC=2,将Rt △ABC 绕A 点顺时针旋转90°得到Rt △ADE ,则BC 扫过的面积为( )A .B .(2﹣)πC .πD .π【分析】解直角三角形得到AC ,AB ,根据旋转推出△ABC 的面积等于△ADE 的面积,根据扇形和三角形的面积公式即可得到结论.【解答】解:在Rt △ABC 中,∠BCA=90°,∠BAC=30°,BC=2, ∴AC=2,AB=4,∵将Rt △ABC 绕点A 逆时针旋转90°得到Rt △ADE ,∴△ABC 的面积等于△ADE 的面积,∠CAB=∠DAE ,AE=AC=2,AD=AB=4,∴∠CAE=∠DAB=90°,∴阴影部分的面积S=S 扇形BAD +S △ABC ﹣S 扇形CAE ﹣S △ADE =+2×2﹣﹣2×2=π.故选D .【点评】本题考查了三角形、扇形的面积,旋转的性质,勾股定理等知识点的应用,解此题的关键是把求不规则图形的面积转化成求规则图形(如三角形、扇形)的面积.9.(3分)如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A.B.C.D.【分析】如图,连接DP,BD,作DH⊥BC于H.当D、P、M共线时,P′B+P′M=DM 的值最小,利用勾股定理求出DM,再利用平行线的性质即可解决问题.【解答】解:如图,连接DP,BD,作DH⊥BC于H.∵四边形ABCD是菱形,∴AC⊥BD,B、D关于AC对称,∴PB+PM=PD+PM,∴当D、P、M共线时,P′B+P′M=DM的值最小,∵CM=BC=2,∵∠ABC=120°,∴∠DBC=∠ABD=60°,∴△DBC是等边三角形,∵BC=6,∴CM=2,HM=1,DH=3,在Rt△DMH中,DM===2,∵CM∥AD,∴===,∴P′M=DM=.故选A.【点评】本题考查轴对称﹣最短问题、菱形的性质、等边三角形的判定和性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.10.(3分)如图,在四边形ABCD中,DC∥AB,AD=5,CD=3,sinA=sinB=,动点P自A点出发,沿着边AB向点B匀速运动,同时动点Q自点A出发,沿着边AD﹣DC﹣CB匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(秒)时,△APQ的面积为s,则s关于t的函数图象是()A. B. C. D.【分析】过点Q做QM⊥AB于点M,分点Q在线段AD、DC、CB上三种情况考虑,根据三角形的面积公式找出s关于t的函数关系式,再结合四个选项即可得出结论.【解答】解:过点Q做QM⊥AB于点M.当点Q在线段AD上时,如图1所示,∵AP=AQ=t(0≤t≤5),sinA=,∴QM=t,∴s=AP•QM=t2;当点Q在线段CD上时,如图2所示,∵AP=t(5≤t≤8),QM=AD•sinA=,∴s=AP•QM=t;当点Q在线段CB上时,如图3所示,∵AP=t(8≤t≤+3(利用解直角三角形求出AB=+3),BQ=5+3+5﹣t=13﹣t,sinB=,∴QM=(13﹣t),∴s=AP•QM=﹣(t2﹣13t),∴s=﹣(t2﹣13t)的对称轴为直线x=.综上观察函数图象可知B选项中的图象符合题意.故选B.【点评】本题考查了动点问题的函数图象以及三角形的面积,分点Q在线段AD、DC、CB上三种情况找出s关于t的函数关系式是解题的关键.11.(3分)对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为()A.B.1 C.D.【分析】根据定义先列不等式:2x﹣1≥﹣x+3和2x﹣1<﹣x+3,确定其y=min{2x ﹣1,﹣x+3}对应的函数,画图象可知其最大值.【解答】解:由题意得:,解得:,当2x﹣1≥﹣x+3时,x≥,∴当x≥时,y=min{2x﹣1,﹣x+3}=﹣x+3,由图象可知:此时该函数的最大值为;当2x﹣1<﹣x+3时,x<,∴当x<时,y=min{2x﹣1,﹣x+3}=2x﹣1,由图象可知:此时该函数的最大值为;综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x=所对应的y的值,如图所示,当x=时,y=,故选D.【点评】本题考查了新定义、一元一次不等式及一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题.12.(3分)如图,正五边形ABCDE的边长为2,连结AC、AD、BE,BE分别与AC和AD相交于点F、G,连结DF,给出下列结论:①∠FDG=18°;②FG=3﹣;)2=9+2;④DF2﹣DG2=7﹣2.其中结论正确的个数是()③(S四边形CDEFA.1 B.2 C.3 D.4【分析】①先根据正五方形ABCDE的性质得:∠ABC=180°﹣=108°,由等边对等角可得:∠BAC=∠ACB=36°,再利用角相等求BC=CF=CD,得∠CDF=∠CFD==54°,可得∠FDG=18°;②证明△ABF∽△ACB,得,代入可得FG的长;③如图1,先证明四边形CDEF是平行四边形,根据平行四边形的面积公式可得:)2=EF2•DM2=4×=10+2;(S四边形CDEF=FD•EC=2④如图2,▱CDEF是菱形,先计算EC=BE=4﹣FG=1+,由S四边形CDEF×,可得FD2=10﹣2,计算可得结论.【解答】解:①∵五方形ABCDE是正五边形,∴AB=BC,∠ABC=180°﹣=108°,∴∠BAC=∠ACB=36°,∴∠ACD=108°﹣36°=72°,同理得:∠ADE=36°,∵∠BAE=108°,AB=AE,∴∠ABE=36°,∴∠CBF=108°﹣36°=72°,∴BC=FC,∵BC=CD,∴CD=CF,∴∠CDF=∠CFD==54°,∴∠FDG=∠CDE﹣∠CDF﹣∠ADE=108°﹣54°﹣36°=18°;所以①正确;②∵∠ABE=∠ACB=36°,∠BAC=∠BAF,∴△ABF∽△ACB,∴,∴AB•ED=AC•EG,∵AB=ED=2,AC=BE=BG+EF﹣FG=2AB﹣FG=4﹣FG,EG=BG﹣FG=2﹣FG,∴22=(2﹣FG)(4﹣FG),∴FG=3+>2(舍),FG=3﹣;所以②正确;③如图1,∵∠EBC=72°,∠BCD=108°,∴∠EBC+∠BCD=180°,∴EF∥CD,∵EF=CD=2,∴四边形CDEF是平行四边形,过D作DM⊥EG于M,∵DG=DE,∴EM=MG=EG=(EF﹣FG)=(2﹣3+)=,由勾股定理得:DM===,)2=EF2•DM2=4×=10+2;∴(S四边形CDEF所以③不正确;④如图2,连接EC,∵EF=ED,∴▱CDEF是菱形,∴FD⊥EC,∵EC=BE=4﹣FG=4﹣(3﹣)=1+,∴S=FD•EC=2×,四边形CDEF×FD×(1+)=,FD2=10﹣2,∴DF2﹣DG2=10﹣2﹣4=6﹣2,所以④不正确;本题正确的有两个,故选B.【点评】本题考查了相似三角形的判定和性质,勾股定理,正五边形的性质、平行四边形和菱形的判定和性质,有难度,熟练掌握正五边形的性质是解题的关键.二、填空题(本大题共5小题,每小题填对得4分,共20分,请填在答题卡上)13.(4分)(﹣)﹣3﹣2cos45°+(3.14﹣π)0+=﹣7+.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣8﹣+1+2=﹣7+,故答案为:﹣7+【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.(4分)圆锥的底面周长为,母线长为2,点P是母线OA的中点,一根细绳(无弹性)从点P绕圆锥侧面一周回到点P,则细绳的最短长度为1.【分析】连接AA′,根据弧长公式可得出圆心角的度数,可知△OAA′是等边三角形,再求出PP′即可.【解答】解:如图,连接AA′,∵底面周长为,∴弧长==,∴n=60°即∠AOA′=60°,∵OA=OA′∴△AOA′是等边三角形,∴AA′=2,∵PP′是△OAA′的中位线,∴PP′=AA′=1,故答案是:1.【点评】本题考查了圆锥的计算,平面展开﹣路径最短问题,注意“数形结合”数学思想的应用.15.(4分)直线y=kx+b与双曲线y=﹣交于A(﹣3,m),B(n,﹣6)两点,=将直线y=kx+b向上平移8个单位长度后,与双曲线交于D,E两点,则S△ADE 16.【分析】利用待定系数法求出平移后的直线的解析式,求出点D、E的坐标,再利用分割法求出三角形的面积即可.【解答】解:由题意A(﹣3,2),B(1,﹣6),∵直线y=kx+b经过点A(﹣3,2),B(1,﹣6),∴,解得,∴y=﹣2x﹣4,向上平移8个单位得到直线y=﹣2x+4,由,解得和,不妨设D(3,﹣2),E(﹣1,6),=6×8﹣×4×2﹣×6×4﹣×8×4=16,∴S△ADE故答案为16.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会利用分割法求三角形的面积.16.(4分)二次函数y=ax2+bx+c(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有①③(请将结论正确的序号全部填上)【分析】①根据抛物线开口方向和与x轴的两交点可知:当x=﹣4时,y<0,即16a﹣4b+c<0;②根据图象与x轴的交点A、B的横坐标分别为﹣3,1确定对称轴是:x=﹣1,可得:(﹣4.5,y3)与Q(,y2)是对称点,所以y1<y2;③根据对称轴和x=1时,y=0可得结论;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,先计算c的值,再联立方程组可得结论.【解答】解:①∵a<0,∴抛物线开口向下,∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴当x=﹣4时,y<0,即16a﹣4b+c<0;故①正确;②∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴抛物线的对称轴是:x=﹣1,∵P(﹣5,y1),Q(,y2),﹣1﹣(﹣5)=4,﹣(﹣1)=3.5,由对称性得:(﹣4.5,y3)与Q(,y2)是对称点,∴则y1<y2;故②不正确;③∵﹣=﹣1,∴b=2a,当x=1时,y=0,即a+b+c=0,3a+c=0,a=﹣c;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵BO=1,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;同理当AB=AC=4时,∵AO=3,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;同理当AC=BC时,在△AOC中,AC2=9+c2,在△BOC中BC2=c2+1,∵AC=BC,∴1+c2=c2+9,此方程无实数解.经解方程组可知有两个b值满足条件.故⑤错误.综上所述,正确的结论是①③.故答案是:①③.【点评】本题考查了等腰三角形的判定、方程组的解、抛物线与坐标轴的交点、二次函数y=ax2+bx+c的图象与系数的关系:当a<0,抛物线开口向下;抛物线的对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c),与x轴的交点为(x1,0)、(x2,0).17.(4分)如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE=.【分析】利用互余先判断出∠ABE=FCB,进而得出△ABE≌△FCB,即可得出BF=AE,BE=BC=1,再判断出∠BAF=∠AEB,进而得出△ABE∽△FBA,即可得出AE=AB2,最后用勾股定理即可得出结论.【解答】解:∵四边形ABCD是矩形,∴BC=AD=1,∠BAF=∠ABC=90°,∴∠ABE+∠CBF=90°,∵BE⊥AC,∴∠BFC=90°,∴∠BCF+∠CBF=90°,∴∠ABE=∠FCB,在△ABE和△FCB中,,∴△ABE≌△FCB,∴BF=AE,BE=BC=1,∵BE⊥AC,∴∠BAF+∠ABF=90°,∵∠ABF+∠AEB=90°,∴∠BAF=∠AEB,∵∠BAE=∠AFB,∴△ABE∽△FBA,∴,∴,∴AE=AB2,在Rt△ABE中,BE=1,根据勾股定理得,AB2+AE2=BE2=1,∴AE+AE2=1,∵AE>0,∴AE=.【点评】此题主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解本题的关键是判断出AE=AB2.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(6分)先化简,再求值:(a+)÷(a+),其中a=﹣3.【分析】先将原分式化简成,再代入a的值,即可求出结论.【解答】解:原式=÷,=×,=×,=.当a=﹣3时,原式====1﹣.【点评】本题考查了分式的化简求值,将原分式化简成是解题的关键.19.(8分)为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛五种,为了解学生对这五项运动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种),并将调查结果绘制成如图不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名)百分比(%)袋鼠跳4515夹球跑30c跳大绳7525绑腿跑b20拔河赛9030根据图表中提供的信息,解答下列问题:(1)a=300,b=60,c=10.(2)请将条形统计图补充完整;(3)根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑;(4)根据调查结果,某班决定从这五项(袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛可分别记为A、B、C、D、E)中任选其中两项进行训练,用画树状图或列表的方法求恰好选到学生喜欢程度最高的两项的概率.【分析】(1)根据学生数和相应的百分比,即可得到a的值,根据总人数乘以百分比,即可得到b的值,根据学生数除以总人数,可得百分比,即可得出c的值;(2)根据b的值,即可将条形统计图补充完整;(3)根据最喜欢绑腿跑的百分比乘以该校学生数,即可得到结果;(4)根据树状图或列表的结果中,选到“C”和“E”的占2种,即可得出恰好选到学生喜欢程度最高的两项的概率.【解答】解:(1)由题可得,a=45÷15%=300,b=300×20%=60,c=×100=10,故答案为:300,60,10;(2)如图:(3)3000×20%=600(名);(4)树状图为:共20种情况,其中选到“C”和“E”的有2种,∴恰好选到“C”和“E”的概率是=.【点评】此题考查了列表法与树状图法,扇形统计图,以及条形统计图的应用,熟练掌握运算法则是解本题的关键.20.(9分)某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31m,在A处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度及彩旗的长度;(精确到0.01m)(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m)(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)【分析】(1)在直角三角形ABE中,利用锐角三角函数定义求出AE与BE的长即可;(2)过点F作FM⊥GD,交GD于M,在直角三角形GMF中,利用锐角三角函数定义表示出GM与GD,设甲乙两楼之间的距离为xm,根据题意列出方程,求出方程的解即可得到结果.【解答】解:(1)在Rt△ABE中,BE=AB•tan31°=31•tan31°≈18.60,AE==≈36.05,则甲楼的高度为18.60m,彩旗的长度为36.05m;(2)过点F作FM⊥GD,交GD于M,在Rt△GMF中,GM=FM•tan19°,在Rt△GDC中,DG=CD•tan40°,设甲乙两楼之间的距离为xm,FM=CD=x,根据题意得:xtan40°﹣xtan19°=18.60,解得:x=37.20,则乙楼的高度为31.25m,甲乙两楼之间的距离为37.20m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握直角三角形的性质是解本题的关键.21.(9分)已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.【分析】(1)根据等腰直角三角形的性质、全等三角形的判定定理证明Rt△BCD ≌Rt△ACE,根据全等三角形的性质解答;(2)证明△EBD≌△ADF,根据全等三角形的性质证明即可.【解答】解:(1)AE=DB,AE⊥DB,证明:∵△ABC与△DEC是等腰直角三角形,∴AC=BC,EC=DC,在Rt△BCD和Rt△ACE中,,∴Rt△BCD≌Rt△ACE,∴AE=BD,∠AEC=∠BDC,∵∠BCD=90°,∴∠DHE=90°,∴AE⊥DB;(2)DE=AF,DE⊥AF,证明:设DE与AF交于N,由题意得,BE=AD,∵∠EBD=∠C+∠BDC=90°+∠BDC,∠ADF=∠BDF+∠BDC=90°+∠BDC,∴∠EBD=∠ADF,在△EBD和△ADF中,,∴△EBD≌△ADF,∴DE=AF,∠E=∠FAD,∵∠E=45°,∠EDC=45°,∴∠FAD=45°,∴∠AND=90°,即DE⊥AF.【点评】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.22.(10分)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)该网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进甲、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?【分析】(1)分别根据甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元,得出等式组成方程求出即可;(2)根据网店决定用不超过10000元购进价、乙两种口罩共500袋,甲种口罩的数量大于乙种口罩的,得出不等式求出后,根据m的取值,得到5种方案,设网店获利w元,则有w=(25﹣22.4)m+(20﹣18)(500﹣m)=0.6m+1000,故当m=227时,w最大,求出即可.【解答】解:(1)设该网店甲种口罩每袋的售价为x元,乙种口罩每袋的售价为y元,根据题意得:,解这个方程组得:,故该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)设该网店购进甲种口罩m袋,购进乙种口罩(500﹣m)袋,根据题意得,解这个不等式组得:222,2<m≤227.3,因m为整数,故有5种进货方案,分别是:购进甲种口罩223袋,乙种口罩277袋;购进甲种口罩224袋,乙种口罩276袋;购进甲种口罩225袋,乙种口罩275袋;购进甲种口罩226袋,乙种口罩274袋;购进甲种口罩227袋,乙种口罩273袋;设网店获利w元,则有w=(25﹣22.4)m+(20﹣18)(500﹣m)=0.6m+1000,故当m=227时,w最大,w最大=0.6×227+1000=1136.2(元),故该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.【点评】本题考查了列二元一次方程组解实际问题的运用及二元一次方程组的解法,列一元一次不等式解实际问题的运用及解法,在解答过程中寻找能够反映整个题意的等量关系是解答本题的关键.23.(10分)已知AB是⊙O的直径,C是圆上一点,∠BAC的平分线交⊙O于点D,过D作DE⊥AC交AC的延长线于点E,如图①.(1)求证:DE是⊙O的切线;(2)若AB=10,AC=6,求BD的长;(3)如图②,若F是OA中点,FG⊥OA交直线DE于点G,若FG=,tan∠BAD=,求⊙O的半径.【分析】(1)欲证明DE是⊙O的切线,只要证明OD⊥DE;(2)首先证明OD⊥BC,在Rt△BDN中,利用勾股定理计算即可;(3)如图②中,设FG与AD交于点H,根据题意,设AB=5x,AD=4x,则AF=x,想办法用x表示线段FH、GH,根据FH+GH=,列出方程即可解决问题;【解答】(1)证明:如图①中,连接OD.∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAE,∴∠ODA=∠DAE,∴OD∥AE,∴∠ODE+∠AED=180°,∵∠AED=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)如图①中,连接BC,交OD于点N,∵AB是直径,∴∠BCA=90°,∵OD∥AE,O是AB的中点,∴ON∥AC,且ON=AC,∴∠ONB=90°,且ON=3,则BN=4,ND=2,∴BD==2.(3)如图②中,设FG与AD交于点H,根据题意,设AB=5x,AD=4x,则AF=x,FH=AF•tan∠BAD=x•=x,AH===x,HD=AD﹣AH=4x﹣x=,由(1)可知,∠HDG+∠ODA=90°,在Rt△HFA中,∠FAH+∠FHA=90°,∵∠OAD=∠ODA,∠FHA=∠DHG,∴∠DHG=∠HDG,∴GH=GD,过点G作GM⊥HD,交HD于点M,∴MH=MD,∴HM=HD=×x=x,∵∠FAH+∠AHF=90°,∠MHG+∠HGM=90°,∴∠FAH=∠HGM,在Rt△HGM中,HG===x,∵FH+GH=,∴x+x=,解得x=,∴此圆的半径为×=4.【点评】本题考查圆综合题、切线的判定、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.24.(12分)抛物线y=ax2+bx+c过A(2,3),B(4,3),C(6,﹣5)三点.(1)求抛物线的表达式;(2)如图①,抛物线上一点D在线段AC的上方,DE⊥AB交AC于点E,若满足=,求点D的坐标;(3)如图②,F为抛物线顶点,过A作直线l⊥AB,若点P在直线l上运动,点Q在x轴上运动,是否存在这样的点P、Q,使得以B、P、Q为顶点的三角形与△ABF相似,若存在,求P、Q的坐标,并求此时△BPQ的面积;若不存在,请说明理由.【分析】(1)由对称性和A(2,3),B(4,3),可知抛物线的对称轴是:x=3,利用顶点式列方程组解出可得抛物线的表达式;(2)如图1,先利用待定系数法求直线AC的解析式,设点D(m,﹣m+6m﹣5),则点E(m,﹣2m+7),根据解析式表示DE和AE的长,由已知的比例式列式得结论;(3)根据题意得:△BPQ为等腰直角三角形,分三种情况:①若∠BPQ=90°,BP=PQ,如图2,作辅助线,构建全等三角形,证明△BAP≌△QMP,可得结论;如图3,同理可得结论;②若∠BQP=90°,BQ=PQ,如图4,证得:△BNQ≌△QMP,则NQ=PM=3,NG=1,BN=5,从而得出结论;如图5,同理易得△QNB≌△PMQ,可得结论;③若∠PBQ=90°,BQ=BP,如图6,由于AB=2≠NQ=3,此时不存在符合条件的P、Q.【解答】解:(1)根据题意,设抛物线表达式为y=a(x﹣3)2+h.把B(4,3),C(6,﹣5)代入得:,解得:,故抛物线的表达式为:y=﹣(x﹣3)2+4=﹣x2+6x﹣5;(2)设直线AC的表达式为y=kx+n,则:,解得:k=﹣2,n=7,∴直线AC的表达式为y=﹣2x+7,设点D(m,﹣m2+6m﹣5),2<m<6,则点E(m,﹣2m+7),∴DE=(﹣m2+6m﹣5)﹣(﹣2m+7)=﹣m2+8m﹣12,设直线DE与直线AB交于点G,∵AG⊥EG,∴AG=m﹣2,EG=3﹣(﹣2m+7)=2(m﹣2),m﹣2>0,在Rt△AEG中,∴AE=(m﹣2),由,得=,化简得,2m2﹣11m+14=0,解得:m1=,m2=2(舍去),则D(,).(3)根据题意得:△ABF为等腰直角三角形,假设存在满足条件的点P、Q,则△BPQ为等腰直角三角形,分三种情况:①若∠BPQ=90°,BP=PQ,如图2,过P作MN∥x轴,过Q作QM⊥MN于M,过B作BN⊥MN于N,易证得:△BAP≌△QMP,∴AB=QM=2,PM=AP=3+2=5,∴P(2,﹣2),Q(﹣3,0),在Rt△QMP中,PM=5,QM=2,由勾股定理得:PQ==,=PQ•PB=;∴S△BPQ如图3,易证得:△BAP≌△PMQ,∴AB=PM=2,AP=MQ=3﹣2=1,∴P(2,2),Q(3,0),在Rt△QMP中,PM=2,QM=1,由勾股定理得:PQ=,∴S=PQ•PB=;△BPQ②若∠BQP=90°,BQ=PQ,如图4,易得:△BNQ≌△QMP,∴NQ=PM=3,NG=PM﹣AG=3﹣2=1,∴BN=MQ=4+1=5,∴P(2,﹣5),Q(﹣1,0)∴PQ==,=PQ•PB==17;∴S△BPQ如图5,易得△QNB≌△PMQ,∴NQ=PM=3,∴P(2,﹣1),Q(5,0),∴PQ=,=PQ•PB==5,∴S△BPQ③若∠PBQ=90°,BQ=BP,如图6,过Q作QN⊥AB,交AB的延长线于N,易得:△PAB≌△BNQ,∵AB=2,NQ=3,AB≠NQ∴此时不存在符合条件的P、Q.【点评】本题是二次函数的综合题,考查了二次函数的对称性、利用待定系数法求解析式、三角形全等的性质和判定、等腰直角三角形的性质和判定,采用了分类讨论的思想,并利用数形结合;第二问熟练掌握利用解析式表示点的坐标和线段的长是关键,第三问有难度,准确画也图形是关键,注意不要丢解.。

相关文档
最新文档