复合函数的求导法则(导案)

合集下载

4复合函数的求导法则

4复合函数的求导法则

求w , 2w . x xz 解: 令 u x y z , v x y z , 则
w , f1 , f2
uv
wf(u,v)
w x
f11f2yz
x y zx y z
f 1 ( x y z ,x y z ) y z f 2 ( x y z ,x y z )
z
uv
t 证: 设 t 取增量△t , 则相应中间变量
t
有增量△u ,△v ,
zzuzv o ( ) ( (u)2(v)2)
u v
zzuzv o ( ) ( (u)2(v)2)
t ut vt t
令t 0, 有 u 0 , v 0 ,
u
x r
r
ux
(2)

2u x2
(( uu ))cos
rx xx
(

u x
)
sin r
r(urcos usinr)cos
r
x yx y
注意利用 已有公式
(urcos
usin)sin
z ,
z .
x y
解:
z z u z v x u x v x
eusinv y eucovs1
z
e x y [y six n y ) (co x y s )( ]u v
z z u z v y u y v y
二、设 z f ( x 2 y 2 , e xy ),(其中f具有一阶连续偏导
为 x2简w z便 起f f1 1 见1 1, y 1 引( fx 入1 2 记z x) 号yf 1 f y1x 2 f2y 2 ufz y ,f z2 [ f1f 221y 2 1f u2 2fvf2,2 xy]

2_1_3 复合函数的导数 高等数学 微积分 考研数学

2_1_3 复合函数的导数 高等数学 微积分 考研数学

th x sh x ch x
a x ex ln a
Page 4
例2. 设 y ln cos(ex ) , 求 dy . dx
解:
dy dx
1 cos(ex
)
(sin(ex )) ex
ex tan(ex )
思考: 若 f (u) 存在 , 如何求 f (ln cos(ex )) 的导数?
u0 u
y f (u)u u (当 u 0 时 0 )
故有
y f (u) u u
x
x x
(x
y 0) u
f (u)
dy dx
lim y x0 x
lxim0
f
(u) u x
பைடு நூலகம்
u x
f
(u ) g ( x)
Page 2
推广:此法则可推广到多个中间变量的情形.
例如, y f (u) , u (v) , v (x)
d f f ( ln cos(ex ) ) (ln cos(ex )) dx
这两个记号含义不同
f (u) uln cos(ex )
Page 5
例3. 设 y cot x tan 2 , 求 y.
2
x
解: y csc2 x 1 1 sec2 2 2( 1 1 )
2 22 x
x
2 x3
1 csc2 x 1 sec2 2
4x
2
x3
x
2 . 设 y f ( f ( f (x))), 其中 f (x) 可导, 求 y.
解: y f ( f ( f (x))) f ( f (x) ) f (x)
Page 6
§2.1.3 复合函数的求导法则

3复合函数的求导法则,反函数的求导法则

3复合函数的求导法则,反函数的求导法则

例5
y
1
x
3
,
求 y.
1 x
河海大学理学院《高等数学》
例7 求函 y数 ln3xx2 21(x2)的导 . 数
解 y1ln x2(1 )1ln x (2),
2
3
y1 2x2112x3(x12)
x2x13(x12)
河海大学理学院《高等数学》

dy f(u)(x) 或
dx
dy dy du dx du dx
f[(x )] f[(x ) ] (x )
河海大学理学院《高等数学》
推广 设 y f ( u )u ,( v )v ,( x ),
则复合y函 f数 {[(x)]的 } 导数为
f[g(x) ]2ln x
f[g (x )]f[g (x ) ]g (x ) 2 ln x x
g[f(x)]x12
河海大学理学院《高等数学》
例11 设 f (x) 可导,且 yf(s2ixn )f(c2o x),s

dy d cos 2 x
解 令 u c2 o x , sy f则 ( 1 u ) f( u )
dy
dy
d cos 2 x du
f(1u)f(u)
f(s2x i)n f(c2x o ) s
把 cos2 x 整体看作一个自变量
河海大学理学院《高等数学》
二、反函数的求导法则
定理2 如果函数 x(y)在某区间 I y 上
单调、可导且 (y)0,则它的反函数 yf(x)
siyn coy s0
因此,在对应区间 Ix 1 , 1 内有
arcxsi nsi1n y
1

大学数学_8_4 复合函数的求导法则

大学数学_8_4 复合函数的求导法则
z dz ( u 2 v 2 )
( u 2 v 2 ) 高阶的无穷小,得 z z u z v ( u 2 v 2 )
t 0
lim
u t v t t z du z dv ( u 2 v 2 ) u 2 v 2 lim . 2 2 u dt v dt t 0 t u v z du z dv u dt v dt 所以复合函数 z f [ (t ), (t )] 可导,具有求导公式:
设 u (t ) v (t ) .w (t ) 均 在 点 t 处 可 导 , z f (u , v, w) 在对应点(u , v, w) 处有连续的偏导数, 写出复合 函数 z f [ (t ), (t ), (t )] 的全导数公式. u t 函数的结构图是 z w t v t 由 z 经u , v, w 到 t 有三条途径,故和式中应有三项,所以全 导数为 dz z du z dv z dw . dt u dt v dt w dt dz 例 1 设 z uv , u sin t ,v cos t ,求全导数 . dt dz z du z dv 解 dt u dt v dt v cos t u ( sin t ) cos 2 t sin 2 t cos 2t
例 5 设 z arcsin u, u x 2 y 2 ,求
z z , . x y
解 函数的结构如下: x z u y 所以 z z u 1 2x 2x x u x 1 u2 1 ( x 2 y 2 )2 z dz u 1 2y 2y 2 y du y 1 u 1 ( x 2 y 2 )2
t 0
t
lim(

第四节 复合函数的求导法则

第四节  复合函数的求导法则

,
z
y
x
y zu x2 y2 zv x2 y2 ,
于是
(x

y) z x

(x

y) z y

zu

zv
即方程变为 zu zv 0.
☆ 二、多元复合函数的高阶偏导数
例 1 设z f ( x y, x2 y),其中 f C(2),求 z , z , 2z .
u
z df u , x du x
z y

df du
u . y
xy
或写为 zx f (u) ux , zy f (u) uy .
注意 f '(u) 与 fu 意义不同.
例1
设z sin u,
u
x y
可微,
求zx
,
zy.
例 2 设z f ( y ), f 可微, 证明: x z y z 0.
ux yzf1 2 xf2, uy xzf1 2 yf2, uz xyf1 2zf2.
(3) 若 w=f (u,v,) , 且 u= (x,y) 、v = (x,y)、w =(x,y),
则有: zx fuux fvvx fwwx , zy fuuy fvvy fwwy .
zx e x2 y[sin( xy) y cos( xy)] , z y e x2 y[2sin( xy) x cos( xy)] .
例 2 设 z ( x2 y2 )sin( x3 y), 求 z x 和 z y .
解 令 u x2 y2 , v sin( x 3 y) , 则 z uv ,
[法一] 按链式法则:

复合函数求导公式运算法则

复合函数求导公式运算法则

复合函数求导公式运算法则1. 基本公式:如果函数y=f(u)和u=g(x)都可导,则复合函数y=f(g(x))也可导,且导数为dy/dx=f'(u)·g'(x)。

2. 对数函数:对于自然对数函数y=ln(u),其中u是一个关于自变量x的函数,其导数为dy/dx=1/u·du/dx。

3. 幂函数:对于幂函数y=u^n,其中u是关于自变量x的函数,n是常数,则其导数为dy/dx=n·u^(n-1)·du/dx。

4. 指数函数:对于指数函数y=a^u,其中a是常数,u是关于自变量x的函数,其导数为dy/dx=a^u·ln(a)·du/dx。

5. 三角函数:对于三角函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=f'(u)·du/dx。

常见的三角函数包括正弦函数、余弦函数和正切函数等。

6. 反三角函数:对于反三角函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=1/f'(u)·du/dx。

常见的反三角函数包括反正弦函数、反余弦函数和反正切函数等。

7. 双曲函数:对于双曲函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=f'(u)·du/dx。

常见的双曲函数包括双曲正弦函数、双曲余弦函数和双曲正切函数等。

8. 反双曲函数:对于反双曲函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=1/f'(u)·du/dx。

常见的反双曲函数包括反双曲正弦函数、反双曲余弦函数和反双曲正切函数等。

下面通过实际例子来说明复合函数求导公式的运算法则。

例子1:求函数y=(2x+1)^3的导数。

解:将y看作是外层函数f(u)=u^3,其中u=2x+1、根据链式法则,导数dy/dx=f'(u)·u'(x)。

复 合 函 数 的 求 导 法 则

复 合 函 数 的 求 导 法 则

练习 求下列函数的导数
y = e3x (A)1.
3x 3x 3x 解:y ′ = ( e ) ′ = e ( 3 x ) ′ = 3 e
y = cos( x 3 ) (A)2.
2 3 3 3 3 解:y ′ = (cos x ) ′ = − sin x ( x ) ′ = − 3 x sin x
(B)3. y = e 解: y ′ = e
2x ′ 1 所以 yx = yu ⋅ ux = ⋅ (−2x) = 2 u x −1


(A) 例3 求函数 y = cos 2 x 的导 数 2 解:设 y = u 则 u = cos x
因为 所以
′ ′ yu = 2u, ux = −sinx
′ ′ ′ yx = yu ⋅ ux = 2u(−sin x) = −2cosx sin x = −sin2x
′ y u = 5u 4 , u ′ = 3, x
′ x y′ = yu ⋅ u′ = 5u4 ×3 = 5(3x + 2)4 ×3 =15(3x + 2)4 所以 x
2 (B) 例2 求函数 y = ln(1 − x ) 的导数
解:设 因为
y = ln u

u = 1− x2
′ 1 ′ yu = , u x = −2 x, u
x π (B) 例5 求 y = ln tan( + ) 的导数。 的导数。 2 4
x π 解: 设 y = ln u , u = tan v, v = + 2 4

y ′ = f ′ ( u ) ⋅ φ ′( v ) ⋅ ϕ ′( x ) 得
x π ′ = (lnu)′ ⋅ (tanv)′ ⋅ ( + )′ y 2 4

3.2(求导法则 复合函数求导)1

3.2(求导法则 复合函数求导)1

f
x
2 x
x2 1
, 0 x1 , 1 x2
f
1
lim
h0
1
h
2
h
1
2
2h h2 lim
h h0
2
f
1
lim
h0
21
h
h
2
2h lim 2
h h0
f 1
f
1
2
2 , 0 x1
f
x
2
,
x1
2x , 1 x 2
f
x
2, 2x,
0 1
x1 x2
求y=loga|x|的导数.
x)
5. f ( x ) 3 x2 , 5x 5
3
f ( 0 ) ______2_5___.
6.曲线 y sin x 在 x 0 处的切线 与 x 轴 2
正向的夹角为____4_____.
三、复合函数的求导法则 derivation rule of compoun
function
定理3 若函数 u=g(x) 在点x处可导,而 y=f(u) 在
3u2 1 2v cos x 3 x sin2 x 2 1 2sin xcos x
例6 求函数 y x a2 x2 a2 arcsin x 的导数 .
2
2
a
(a 0)
解 y ( x a 2 x 2 ) (a 2 arcsin x)
2
2
a
1 a2 x2 1 x2
a2
3. 复合函数求导法则
设u=(x)在x点可导, y=f(u)在相应u点可导,则
dy dy du dx du dx
4. 反函数求导法则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当堂检测
1.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.
(1)4
x x y =
; (2)1ln 1ln x y x -=+. (3)2(251)x y x x e =-+⋅;
(4)sin cos cos sin x x x y x x x
-=+ 解: (1)''''224(4)144ln 41ln 4()4(4)(4)4
x x x x x x x x x x x x x y ⋅-⋅⋅-⋅-====, '1ln 44x
x y -=。

(2)''''221
1ln 212()(1)2()21ln 1ln 1ln (1ln )(1ln )
x x y x x x x x x -==-+==⋅=+++++ '2
2(1ln )y x x =+ (3)'2'2'(251)(251)()x x y x x e x x e =-+⋅+-+⋅
22(45)(251)(24)x x x x e x x e x x e =-⋅+-+⋅=--⋅,
'2(24)x y x x e =--⋅。

(4)''sin cos ()cos sin x x x y x x x
-=+ ''
2(sin cos )(cos sin )(sin cos )(cos sin )(cos sin )
x x x x x x x x x x x x x x x -⋅+--⋅+=+ 2
(cos cos sin )(cos sin )(sin cos )(sin sin s )(cos sin )x x x x x x x x x x x x xco x x x x -+⋅+--⋅-++=
+ 2
sin (cos sin )(sin cos )s (cos sin )x x x x x x x x xco x x x x ⋅+--⋅=+ 2
2
(cos sin )x x x x =+。

2
'
2(cos sin )x y x x x =+
2.已知曲线C :y =3 x 4-2 x 3-9 x 2+4,求曲线C 上横坐标为1的点的切线方程;
(y =-12 x +8)
§1.2.3复合函数的求导法则(导案)
教学目标 理解并掌握复合函数的求导法则.
教学重点 复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数之积.
教学难点 正确分解复合函数的复合过程,做到不漏,不重,熟练,正确.
一.创设情景
(一)基本初等函数的导数公式表
(2)推论:[]''()()cf x cf x =
(常数与函数的积的导数,等于常数乘函数的导数)
二.新课讲授
复合函数的概念 一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y
可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作()()y f g x =。

复合函数的导数 复合函数()()y f g x =的导数和函数()y f u =和()u g x =的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.
若()()y f g x =,则()()()()()y f g x f g x g x ''''==⋅⎡⎤⎣⎦
三.典例分析
例1(课本例4)求下列函数的导数:
(1)2(23)y x =+;(2)0.051x y e -+=;
(3)sin()y x πϕ=+(其中,πϕ均为常数).
解:(1)函数2(23)y x =+可以看作函数2
y u =和23u x =+的复合函数。

根据复合函数求导法则有
x u x y y u '''=⋅=2''()(23)4812u x u x +==+。

(2)函数0.051x y e
-+=可以看作函数u
y e =和0.051u x =-+的复合函数。

根据复合函数求导法则有 x u x y y u '''=⋅=''0.051()(0.051)0.0050.005u u x e x e e -+-+=-=-。

(3)函数sin()y x πϕ=+可以看作函数sin y u =和u x πϕ=+的复合函数。

根据复合函数求导法则有
x u x y y u '''=⋅=''
(sin )()s s()u x co u co x πϕπππϕ+==+。

例2求2
sin(tan )y x =的导数.
解:'2'222[sin(tan )]cos(tan )sec ()2y x x x x ==⋅⋅ 2222cos(tan )sec ()x x x =⋅
'2222cos(tan )sec ()y x x x =⋅
【点评】
求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能遗漏求导环节并及时化简计算结果.
例3求
y =的导数.
解:'y=
2
22
(2)
a
x ax
==-
-

'y=
【点评】本题练习商的导数和复合函数的导数.求导数后要予以化简整理.
例4求y=sin4x+cos 4x的导数.
【解法一】y=sin 4x+cos 4x=(sin2x+cos2x)2-2sin2cos2x=1-
2
1
sin22 x
=1-
4
1
(1-cos 4 x)=
4
3

4
1
cos 4 x.y′=-sin 4 x.
【解法二】y′=(sin4x)′+(cos4x)′=4 sin3x(sin x)′+4 cos3x (cos x)′=4 sin3x cos x+4 cos3x (-sin x)=4 sin x cos x (sin2x-cos2x)
=-2 sin 2 x cos 2 x=-sin 4 x
【点评】
解法一是先化简变形,简化求导数运算,要注意变形准确.解法二是利用复合函数求导数,应注意不漏步.
四.回顾总结
五.教后反思:。

相关文档
最新文档