数字图像处理图像增强实验报告
数字图像处理实验报告 实验一 图像增强实验

实验一图像增强实验一、实验目标:掌握图像增强的算法。
二、实验目的:1. 了解灰度变换增强和空域滤波增强的Matlab实现方法2. 掌握直方图灰度变换方法3. 掌握噪声模拟和图像滤波函数的使用方法三、实验内容:(1)图像的点操作、邻域操作算法。
(2)图像的直方图处理算法。
四、实验设备:1.PIII以上微机; 2.MATLAB6.5;五、实验步骤:(1)读入图像:用matlab函数实现图像读入(可读入Matlab中的标准测试图像)(原始图像)(2)实现图像点操作运算(如gamma校正,对数校正等)(3)实现图像的邻域处理(实现均值滤波,拉普拉斯滤波)(4)实现直方图均衡处理matlab 源程序clear all;clc;f=imread('girl_noise.jpg');figure,imshow(f),title('原始图像');[m,n]=size(f);f0= im2double(f); % 整型转换为double 类f1=f0;std_i=zeros(1,m-2);%灰线处理for i=2:m-1%灰线处理std_i(i-1)=std(f0(i,:));if(std_i(i-1)<0.1)for j=1:mf0(i,j)=(f0(i-1,j)+f0(i+1,j))/2;endendendfigure,imshow(f0),title('滤除灰线后的图像');fz=f0-f1;[r,c]=find(fz~=0);%寻找灰线噪声的位置f2=f0;change=0;count=0;for i=3:m-2%白线处理for j=1:mif(abs(f0(i,j)-f0(i-1,j))>0.2&&abs(f0(i,j)-f0(i+1,j))>0.2) count=count+1;endif(count>n*0.8)count=0;change=1;break;endendif(change==1)for k=1:mf0(i,k)=(f0(i-1,k)+f0(i+1,k))/2;endchange=0;count=0;endendfigure,imshow(f0),title('滤除白线后的图像');fz1=f2-f0;[r1,c1]=find(fz1~=0); %寻找白线噪声的位置fn = medfilt2(f0); %反射对称填充figure, imshow(fn),title('中值滤波后的图像');f0 = im2double(fn); % 整型转换为double 类g =2*f0- imfilter(f0,w4, 'replicate'); % 增强后的图像figure, imshow(g),title('高提升滤波图像(A=2)');图像处理结果六、结果分析从上面结果可以看出,带状噪声处理部分,已经基本将带状噪声去除。
图像增强原理的应用实验报告

图像增强原理的应用实验报告1. 引言图像增强是数字图像处理中的一项重要技术,通过改善图像质量,使图像在视觉上更加清晰、鲜明和易于解析。
本实验旨在探究图像增强原理的应用,并对不同的图像增强算法进行评估和比较。
2. 实验方法本实验使用Python编程语言,在Jupyter Notebook环境下进行实验,主要使用了以下几个库: - OpenCV:用于图像的读取和处理。
- NumPy:用于数组和矩阵的处理。
- Matplotlib:用于图像的显示和绘图。
实验步骤如下: 1. 导入所需的库。
2. 读取待处理的图像。
3. 实现不同的图像增强算法,包括直方图均衡化、自适应直方图均衡化等。
4. 比较不同算法的效果,包括图像的对比度、亮度和细节增强等方面。
5. 对实验结果进行分析和总结。
3. 实验结果实验中使用了一张室外风景照片作为待处理图像。
下面列出了不同图像增强算法的实验结果:3.1 直方图均衡化直方图均衡化是一种常用的图像增强算法,通过重新分布图像像素的灰度级来增强图像的对比度。
实验结果显示,直方图均衡化可以有效地增强图像的对比度,使暗部和亮部细节更加清晰。
3.2 自适应直方图均衡化自适应直方图均衡化是对传统直方图均衡化算法的改进,它根据图像局部的统计信息进行直方图均衡化,避免了全局均衡化带来的图像过度增强的问题。
实验结果表明,自适应直方图均衡化能够更好地保留图像的细节,并且对于不均匀光照的图像效果更好。
3.3 其他图像增强算法除了直方图均衡化和自适应直方图均衡化,还有许多其他图像增强算法可以应用于不同的图像处理任务,如图像去噪、边缘增强等。
这些算法的实验结果因具体应用场景而异,需要根据实际需要进行选择和评估。
4. 分析与讨论根据实验结果,可以看出不同的图像增强算法对图像的处理效果有所不同。
直方图均衡化能够提高图像的对比度,但对于光照不均匀的图像可能产生过度增强的效果。
自适应直方图均衡化通过局部统计信息进行直方图均衡化,能够更好地保留图像的细节。
图像增强实验报告

图像增强实验报告图像增强实验报告引言:图像增强是数字图像处理中的重要技术之一,它可以通过改变图像的亮度、对比度、色彩等参数,使图像更加清晰、细节更加突出。
本实验旨在探究不同图像增强方法对图像质量的影响,并比较它们的效果。
一、实验目的通过实验比较不同的图像增强方法,包括直方图均衡化、拉普拉斯算子增强、灰度变换等,对图像质量的影响,了解各种方法的优缺点,为实际应用提供参考。
二、实验步骤1. 实验准备:准备一组包含不同场景、不同光照条件下的图像样本,以及实验所需的图像处理软件。
2. 直方图均衡化:将图像的直方图进行均衡化,使得图像的像素值分布更加均匀,从而提高图像的对比度和亮度。
3. 拉普拉斯算子增强:使用拉普拉斯算子对图像进行边缘增强,突出图像的细节和纹理。
4. 灰度变换:通过调整图像的灰度级别,改变图像的亮度和对比度,使图像更加清晰明亮。
5. 实验结果分析:对比不同图像增强方法处理后的图像,分析它们在视觉效果上的差异,并根据实验结果评估各种方法的优劣。
三、实验结果与讨论在本次实验中,我们选择了一张室内拍摄的暗淡图像作为样本进行增强处理。
首先,我们对该图像进行了直方图均衡化处理。
结果显示,通过直方图均衡化,图像的亮度和对比度得到了明显的提升,细节也更加清晰可见。
然而,由于直方图均衡化是全局处理,可能会导致图像的局部细节过于突出,从而影响整体视觉效果。
接下来,我们采用了拉普拉斯算子增强方法。
通过对图像进行边缘增强,图像的纹理和细节得到了突出展示。
然而,拉普拉斯算子增强也存在一定的局限性,对于噪声较多的图像,可能会导致边缘增强过程中出现伪影和锯齿现象。
最后,我们尝试了灰度变换方法。
通过调整图像的灰度级别,我们改变了图像的亮度和对比度,使图像的细节更加突出。
与直方图均衡化相比,灰度变换方法更加灵活,可以根据实际需求对图像进行个性化的调整。
综合对比三种图像增强方法的实验结果,我们可以得出以下结论:直方图均衡化适用于对整体亮度和对比度进行提升的场景;拉普拉斯算子增强适用于突出图像的边缘和纹理;灰度变换方法可以根据实际需求对图像进行个性化调整。
数字图像处理实验二图像增强

数字图像处理实验⼆图像增强福建农林⼤学信息⼯程类实验报告系:信息与机电⼯程系专业:电⼦信息⼯程年级: 2009级姓名:庄建军学号: 092230069 实验课程:数字图像处理实验室号:_ 实验1楼607 实验设备号:F5 实验时间: 2012.6.1 指导教师签字:成绩:实验⼆图像增强⼀、实验⽬的1.掌握灰度直⽅图的概念及其计算⽅法;2.熟练掌握直⼒图均衡化和直⽅图规定化的计算过程;3.掌握平滑处理的算法和⽤途,学习使⽤均值滤波、中值滤波和拉普拉斯锐化进⾏图像增强处理的程序设计⽅法;4.了解噪声模型及对图像添加噪声的基本⽅法;5.利⽤MATLAB 程序进⾏图像增强。
⼆、实验原理图像增强是指按特定的需要突出⼀幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理⽅法。
其主要⽬的是处理后的图像对某些特定的应⽤⽐原来的图像更加有效。
图像增强技术主要有直⽅图修改处理、图像平滑化处理、图像尖锐化处理和彩⾊处理技术等。
1、直⽅图均衡化通过点运算将输⼊图像转换为在每⼀级上都有相等像素点数的输出图像。
按照图像概率密度函数PDF 的定义:1,...,2,1,0 )(-==L k n n r p k k r通过转换公式获得:1,...,2,1,0 )()(00-====∑∑==L k n n r p r T s k j kj j j r k k2、均值(中值)滤波是指在图像上,对待处理的像素给定⼀个模板,该模板包括了其周围的临近像素。
将模板中的全体像素的均值(中值)来代替原来像素值的⽅法。
3、拉普拉斯算⼦如下:--------111181111拉普拉斯算⼦⾸先将⾃⾝与周围的8个像素相减,表⽰⾃⾝与周围像素的差异,再将这个差异加上⾃⾝作为新像素的灰度。
三、实验步骤1打开计算机,启动MATLAB 程序;程序组中“work ”⽂件夹中应有待处理的图像⽂件;2调⼊待处理的数字图像,并进⾏计算机均衡化处理;3启动MATLAB 程序,对图像⽂件分别进⾏直⽅图均衡化、均值滤波、中值滤波和拉普拉斯锐化操作;添加噪声,重复上述过程观察处理结果。
实验四 图像增强

信息工程学院实验报告课程名称:数字图像处理Array实验项目名称:实验四图像增强实验时间:班级:姓名:学号:一、实验目的1.了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。
2. 掌握图像空域增强算法的基本原理。
3. 掌握图像空域增强的实际应用及MATLAB实现。
4. 掌握频域滤波的概念及方法。
5. 熟练掌握频域空间的各类滤波器。
6.掌握怎样利用傅立叶变换进行频域滤波。
7. 掌握图像频域增强增强的实际应用及MATLAB实现。
二、实验步骤及结果分析1. 基于幂次变换的图像增强程序代码:clear all;close all;I{1}=double(imread('fig534b.tif'));I{1}=I{1}/255;figure,subplot(2,4,1);imshow(I{1},[]);hold onI{2}=double(imread('room.tif'));I{2}=I{2}/255;subplot(2,4,5);imshow(I{2},[]);hold onfor m=1:2Index=0;for lemta=[0.5 5]Index=Index+1;F{m}{Index}=I{m}.^lemta;subplot(2,4,(m-1)*4+Index+1),imshow(F{m}{Index},[])endend执行结果:图1 幂次变换增强结果实验结果分析:由实验结果可知,当r<1时,黑色区域被扩展,变的清晰;当r>1时,黑色区域被压缩,变的几乎不可见。
2.直方图规定化处理程序代码:clear allclcclose all%0.读图像I=double(imread('lena.tiff'));subplot(2,4,1);imshow(I,[]);title('原图')N=32;Hist_image=hist(I(:),N);Hist_image=Hist_image/sum(Hist_image);Hist_image_cumulation=cumsum(Hist_image);%累计直方图subplot(245);stem(0:N-1,Hist_image);title('原直方图');%1.设计目标直方图Index=0:N-1;%正态分布直方图Hist{1}=exp(-(Index-N/2).^2/N);Hist{1}=Hist{1}/sum(Hist{1});Hist_cumulation{1}=cumsum(Hist{1});subplot(242);stem([0:N-1],Hist{1});title('规定化直方图1');%倒三角形状直方图Hist{2}=abs(2*N-1-2*Index);Hist{2}=Hist{2}/sum(Hist{2});Hist_cumulation{2}=cumsum(Hist{2});subplot(246);stem(0:N-1,Hist{2});title('规定化直方图2');%2. 规定化处理Project{1}=zeros(N);Project{2}=zeros(N);Hist_result{1}=zeros(N);Hist_result{2}=zeros(N);for m=1:2Image=I;%SML处理(SML,Single Mapping Law单映射规则for k=1:NTemp=abs(Hist_image_cumulation(k)-Hist_cumulation{m});[Temp1,Project{m}(k)]=min(Temp);end%2.2 变换后直方图for k=1:NTemp=find(Project{m}==k);if isempty(Temp)Hist_result{m}(k)=0;elseHist_result{m}(k)=sum(Hist_image(T emp));endendsubplot(2,4,(m-1)*4+3);stem(0:N-1,Hist_result{m}); title(['变换后的直方图',num2str(m)]);%2.3结果图Step=256/N;for K=1:NIndex=find(I>=Step*(k-1)&I<Step*k) ;Image(Index)=Project{m}(k);endsubplot(2,4,(m-1)*4+4),imshow(Imag e,[]);title(['变换后的结果图',num2str(m)]);end执行结果:原图规定化直方图2变换后的直方图1变换后的结果图1变换后的直方图2变换后的结果图2图2 直方图规定化实验结果分析:由实验结果可知,采用直方图规定化技术后,原图的直方图逼近规定化的直方图,从而有相应的变换后的结果图1和变换后的结果图2。
实验3 图像增强数字图像处理实验

实验三、图像增强一、实验目的1掌握灰度直方图的概念及其计算方法;2熟练掌握直力图均衡化和直方图规定化的计算过程;3熟练掌握空域滤波中常用的平滑和锐化滤波器;4掌握色彩直方图的概念和计算方法5利用MATLAB程序进行图像增强。
二、实验原理图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。
其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。
图像增强技术主要有直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。
本实验以直方图均衡化增强图像对比度的方法为主要内容,其他方法同学们可以在课后自行联系。
直方图是多种空间城处理技术的基础。
直方图操作能有效地用于图像增强。
除了提供有用的图像统计资料外,直方图固有的信息在其他图像处理应用中也是非常有用的,如图像压缩与分割。
直方图在软件中易于计算,也适用于商用硬件设备,因此,它们成为了实时图像处理的一个流行工具。
直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。
直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。
灰度直方图是图像预处理中涉及最广泛的基本概念之一。
图像的直方图事实上就是图像的亮度分布的概率密度函数,是一幅图像的所有象素集合的最基本的统计规律。
直方图反映了图像的明暗分布规律,可以通过图像变换进行直方图调整,获得较好的视觉效果。
直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。
下面给出直方图均衡化增强图像对比度的MA TLAB程序:I=imread(‘原图像名.gif); % 读入原图像J=histeq(I); %对原图像进行直方图均衡化处理Imshow(I); %显示原图像Title(‘原图像’); %给原图像加标题名Figure;imshow(J); %对原图像进行屏幕控制;显示直方图均衡化后的图像Title(‘直方图均衡化后的图像’) ; %给直方图均衡化后的图像加标题名Figure; subplot(1,2,1) ;%对直方图均衡化后的图像进行屏幕控制;作一幅子图作为并排两幅图的第1幅图Imhist(I,64); %将原图像直方图显示为64级灰度Title(‘原图像直方图’) ; %给原图像直方图加标题名Subplot(1,2,2); %作第2幅子图Imhist(J,64) ; %将均衡化后图像的直方图显示为64级灰度Title(‘均衡变换后的直方图’) ; %给均衡化后图像直方图加标题名处理后的图像直方图分布更均匀了,图像在每个灰度级上都有像素点。
数字图像处理 实验 直方图均衡化实现图像增强

XXXXXXXX大学(数字图形处理)实验报告实验名称直方图均衡化实现图像增强实验时间年月日专业姓名学号预习操作座位号教师签名总评一、实验目的:掌握直方图均衡化的原理。
掌握直方图均衡化实现图像增强的实现方法。
二、实验原理:直方图是统计像数统计图,如设一张灰度图或一个通道,值0~255。
直方图如果按。
255个区分的话。
统计出来的就是,值为。
0的有几个像数,值为1的有机个像数,这样的一张表。
那么均衡化的意思就是。
这样表要均衡。
不直不于。
0有上万个像数,1只有1 个。
正常,直方图本身可以用小于255个区。
比如10个,那么这样相对图中的点就有一个映射,这时值0-9统计落在第一个区,值为10-19落第二个区。
这样的结果就会出来,10个区,10个统计数区。
这时。
你均衡就是让10区的统计数据都不会差很多。
表现出来的就是一张图上的颜色分布相对均衡。
总的来说直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。
三、实验内容:利用直方图均衡化实现图像增强。
在资源编辑器中,在主菜单下添加一名为“直方图均衡化”的菜单步骤如前面实验。
实验代码如下:if(m_DibHead->biBitCount!=8){MessageBox("当前版本仅支持256色位图的操作!","系统提示!",MB_ICONINFORMA TION|MB_OK);return;}zftjh(m_Image,m_DibHead->biWidth,m_DibHead->biHeight);Invalidate();其中函数zftjh的实现代码如下:zftjh(unsigned char *lpDib,long lWidth,long lHeight){unsigned char *lpsrc;long lresult(0);long i,j;unsigned char bMap[256];long lCount[256];for(i=0;i<256;i++)lCount[i]=0;for(i=0;i<lHeight;i++)for(j=0;j<lWidth;j++){lpsrc=lpDib+i*lWidth+j;lCount[*lpsrc]++;}for(i=0;i<256;i++){lresult=0;for(j=0;j<=i;j++)lresult+=lCount[j];bMap[i]=(lresult*255)/lHeight/lWidth;}for(i=0;i<lHeight;i++)for(j=0;j<lWidth;j++){lpsrc=lpDib+i*lWidth+j;*lpsrc=bMap[*lpsrc];}}原图为下图的左边部分,均值化以后的图为右边的部分:。
图像增强—空域滤波实验报告

图像增强—空域滤波实验报告篇一:5.图像增强—空域滤波 - 数字图像处理实验报告计算机与信息工程学院验证性实验报告一、实验目的进一步了解MatLab软件/语言,学会使用MatLab对图像作滤波处理,使学生有机会掌握滤波算法,体会滤波效果。
了解几种不同滤波方式的使用和使用的场合,培养处理实际图像的能力,并为课堂教学提供配套的实践机会。
二、实验要求(1)学生应当完成对于给定图像+噪声,使用平均滤波器、中值滤波器对不同强度的高斯噪声和椒盐噪声,进行滤波处理;能够正确地评价处理的结果;能够从理论上作出合理的解释。
(2)利用MATLAB软件实现空域滤波的程序:I=imread('electric.tif');J = imnoise(I,'gauss',0.02); %添加高斯噪声 J = imnoise(I,'salt & pepper',0.02); %添加椒盐噪声ave1=fspecial('average',3); %产生3×3的均值模版ave2=fspecial('average',5); %产生5×5的均值模版 K = filter2(ave1,J)/255; %均值滤波3×3 L = filter2(ave2,J)/255; %均值滤波5×5 M = medfilt2(J,[3 3]);%中值滤波3×3模板 N = medfilt2(J,[4 4]); %中值滤波4×4模板 imshow(I);figure,imshow(J); figure,imshow(K); figure,imshow(L); figure,imshow(M); figure,imshow(N);三、实验设备与软件(1) IBM-PC计算机系统(2) MatLab软件/语言包括图像处理工具箱(Image Processing Toolbox) (3) 实验所需要的图片四、实验内容与步骤a) 调入并显示原始图像Sample2-1.jpg 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
班级:08108班
姓名:王胤鑫 09号学号:08210224
一、实验内容
给出噪声图像Girl_noise.jpg,请选择合适的图像增强算法,给出你认为最优的增强后的图像。
可以使用Matlab - Image Processing Toolbox 中的处理函数。
原始图像如下:
二、算法分析
对于给出的图像中有灰色的噪声,因此首先处理灰色的线条,根据其方差的大小来判断其所在行。
对于两条白色的噪声,根据与前后两行的对比来判断其所在位置。
程序中设定灰色线条处理的均方差门限为0.1,白线处理的标准为与前后两行的差值超过0.2(转换为double型)。
滤除噪声之后再通过中值滤波、拉普拉斯图像增强等方式对图像进行处理。
三、matlab 源程序
clear all;clc;
f=imread('girl_noise.jpg');
figure,imshow(f),title('原始图像');
[m,n]=size(f);
f0= im2double(f); % 整型转换为 double 类
f1=f0;
std_i=zeros(1,m-2);
%灰线处理
for i=2:m-1
%灰线处理
std_i(i-1)=std(f0(i,:));
if(std_i(i-1)<0.1)
for j=1:m
f0(i,j)=(f0(i-1,j)+f0(i+1,j))/2;
end
end
end
figure,imshow(f0),title('滤除灰线后的图像');
fz=f0-f1;
[r,c]=find(fz~=0);%寻找灰线噪声的位置
f2=f0;
change=0;
count=0;
for i=3:m-2
%白线处理
for j=1:m
if(abs(f0(i,j)-f0(i-1,j))>0.2&&abs(f0(i,j)-f0(i+1,j))>0.2)
count=count+1;
end
if(count>n*0.8)
count=0;
change=1;
break;
end
end
if(change==1)
for k=1:m
f0(i,k)=(f0(i-1,k)+f0(i+1,k))/2;
end
change=0;
count=0;
end
end
figure,imshow(f0),title('滤除白线后的图像');
fz1=f2-f0;
[r1,c1]=find(fz1~=0); %寻找白线噪声的位置
fn = medfilt2(f0); %反射对称填充
figure, imshow(fn),title('中值滤波后的图像');
f0 = im2double(fn); % 整型转换为 double 类
g =2*f0- imfilter(f0,w4, 'replicate'); % 增强后的图像
figure, imshow(g),title('高提升滤波图像(A=2)');
四、图像处理结果
五、结果分析
从上面结果可以看出,带状噪声处理部分,已经基本将带状噪声去除。
并且通过程序找出了灰色噪声所在行为192,白色噪声所在行为179,182.
程序中的判断条件为白色噪声和前后两行的像素值相差超过一定的范围(double类型0.2),并且此类点在一行中所在的比例超过80%,与给出的原始图像对应。
有程序结果可知,处理过程中仅仅对噪声所在行做了修正,除此之外并且未引入任何其他人为噪声。
而对于处理之后的图像存在的椒盐噪声,经过中值滤波器已经基本可以将椒盐噪声处理的比较好。
另外,程序中也做了A=2的高提升滤波,增强了原始信息,有图可以看出,除了细节增强意外,原始信息更加丰富,因此比之前的图像明亮许多。
(注:可编辑下载,若有不当之处,请指正,谢谢!)。