测试技术试题 信号及其描述
传感器与测试技术第2章 信号及其描述

1
a0 T0
T0 2 x t dt
T0 2
an
2 T0
T0 2 x t
T0 2
cosn0tdt
周期
T0
信号的 角频率
正弦分量幅值
bn
2 T0
T0 2 x t
T0 2
sinn0tdt
0
2.2.2 周期信号的频域分析
傅里叶级数的三角函数展开式
x满t足狄 里a 赫0利 条件的周a期nc 信o 号s,n 可看0tbnsinn0t 作是由多个乃至n 无 1 穷多个不同频率的 简谐信号线性叠加而成
2.连续信号和离散信号
信号的幅值也可以分为连续和离散的两种,若信号的幅 值和独立变量均连续,称为模拟信号;若信号的幅值和独立 变量均离散,称为数字信号,计算机所使用的信号都是数字 信号。
综上,按照信号幅值与独立变量的连续性可分类如下所 示:
信号离 连散 续信 信号 号一 数 一 模般 字 般 拟离 信 连 信散 号 续 号信 (信 (信 信 号 号 号 号 ((独 的 独 的立 幅 立 幅变 值 变 值量 与 量 与离 独 连 独散 立 续 立)变 )变量 量均 均离 连散 续))
2.2.2 周期信号的频域分析
实例分析
双边幅频谱和相频谱分别为
cnnar2cA n tan-2nA0n1,3, 52,
实频谱和虚频谱分别为
2
n1,3,5,
n1,3,5,
R e cn 0
Im
cn
2A n
2.2.2 周期信号的频域分析
实例分析
周期方波的实、虚频谱和复频谱图
2.2.2 周期信号的频域分析
周期信号的强度描述常以峰值、峰-峰值、均 值、绝对均值、均方值和有效值来表示,它 确定测量系统的动态范围。 周期信号强度描述的几何含义如图2-7所示
1第一章 信号及其描述 工程测试

4A 1 1 x t sin 0 t sin 3 0 t sin 5 0 t 3 5 4A 1 sin n 0 t n1 n 2 n 1,3 ,5 式中 0 T0
工程测试技术与信息处理
第1 章
第一节
信号的分类与描述
1.1 信号的分类与描述
信号的分类主要是依据信号波形特征来 划分的,在介绍信号分类前,先建立信号波 形的概念。
1.1 信号的分类与描述
信号波形:被测信号信号幅度随时间的变化历程称为 信号的波形
1.1 信号的分类与描述
1.1 信号的分类与描述
(1—14a)
(1—14b)
c0 a0
(1—14c)
x(t ) c0 c n e
n 1
jn0t
cn e
n 1
jn0t
x(t )
n
cn e jn0t (n=0,±1,±2…) (1—15)
1 T2 式中 cn T x t e jn t dt T0 2
为了深入的了解信号的物理实质,将其进行分类研 究是十分有必要的,从不同角度观察信号,可分为:
1 从信号描述上分为 --确定性信号和非确定信号
2 从连续性上分为
--连续信号和离散信号 3 从信号的幅值和能量上分为 --能量信号和功率信号
1.1 信号的分类与描述
1.1.1确定性信号与随机信号
可以用明确的数学关系式描述的信号称为确定性信号。 不能用数学关系式描述的信号称为非确定性信号(随机信号)
例1-1
求下图中周期性三角波的傅里叶级数。
解:由图可得x(t)在一个周期中的表达式为:
机械工程测试技术试题及答案

A 电压
B 电荷
C 微分
D 积分
8. 在测量位移的传感器中,符合非接触测量而且不受油污等介质影响的是
D 传感器。
A 电容式
B 压电式
C 电阻式
D 电涡流式
9. 信号分析设备可分析的频率低于磁带记录仪记录信号的频率,可将磁带
B
,也可到达分析的目的。
A 重放速度放快 B 重放速度放慢 C 重放速度不变 D 多放几次
9. 〔 F 〕压电式加速度计的灵敏度越高,其工作频率越宽。
10.〔 T 〕假设系统是完全线性的,那么输入输出的相干函数一定为 1。
四、简答题〔每题 5 分,共 30 分〕
1. 周期方波的傅立叶级数展开式为
x(t)
8A
sin
0
t
1 3
sin
30t
1 5
sin
50t
试绘出该周期方波的单边幅值谱,并说明其频谱特点。
固定电阻组成电桥,供桥电压为 4V,并假定负载电阻无穷大,当应变片的应
变为 1000 时,分别求出单臂、双臂电桥的输出电压
单臂:
V u y
R 4R
u0
1 4
R R
u
0
1 4
Su
0
1 2.5 1000 106 4
4
2.5 103
双臂:
2分
V u y
R 2R
u0
1 2
R R
u
0
1 2
Su
0
1 2.5 1000 106 2
象,采样频率应该大于 100Hz。 5.在桥式测量电路中,根据其鼓励电压〔或工作电压或桥压或电源〕的性质,
可将其分为直流电桥与交流电桥。 6.金 属 电 阻 应 变 片 与 半 导 体 应 变 片 的 主 要 区 别 在 于 : 前 者 利 用 导体
机械工程测试技术基础知识点总结

第一章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。
这些物理量就是 信号 ,其中目前应用最广泛的是电信号.2、 信号的时域描述,以 时间t 为独立变量;而信号的频域描述,以 频率f 为独立变量。
3、 周期信号的频谱具有三个特点: 离散性 , 谐波性 , 收敛性 。
4、 非周期信号包括 准周期 信号和 瞬态非周期 信号。
5、 描述随机信号的时域特征参数有 均值 、 均方值 、 方差 。
6、 对信号的双边谱而言,实频谱(幅频谱)总是 偶 对称,虚频谱(相频谱)总是 奇对称。
(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。
( Y )2、 信号的时域描述与频域描述包含相同的信息量。
( Y )3、 非周期信号的频谱一定是连续的。
( X )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。
( X )5、 随机信号的频域描述为功率谱。
( Y )(三)简答和计算题1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms .2、 求正弦信号)sin()(0ϕω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。
3、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。
4、 求被截断的余弦函数⎩⎨⎧≥<=T t T t t t x ||0||cos )(0ω的傅立叶变换。
5、 求指数衰减振荡信号)0,0(sin )(0≥>=-t a t et x at ω的频谱. 第二章 测试装置的基本特性 (一)填空题1、 某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。
2、 试求传递函数分别为5.05.35.1+s 和2224.141n n n s s ωωω++的两个环节串联后组成的系统的总灵敏度。
测试技术-第一章 信号及其描述

2014-4-23
《测试技术》讲义
6
2014-4-23
《测试技术》讲义
7
能量信号和功率信号
在非电量测量中,常把被测信号转换为电压或电 流信号来处理。显然,电压信号加到电阻R上, 其瞬时功率 P(t ) x 2 (t ) / R 。当R=1 时, P(t ) x 2 (t ) 。瞬时功率对时间积分就是信号 在该积分时间内的能量。依此,人们不考虑信号 实际的量纲,而把信号的平方及其对时间的积分 分别称为信号的功率和能量。当 x(t ) 满足 2 x (1—4) (t )dt 时,则认为信号的能量是有限的,并称之为能量 有限信号,简称能量信号,如矩形脉冲信号、衰 减指数函数等。
2014-4-23 《测试技术》讲义 5
连续信号和离散信号
连续信号:若信号数学表示式中的独立变量取值 是连续的 (图1—3a)。 离散信号:若独立变量取离散值。图1-3b是将 连续信号等时距采样后的结果,就是离散信号。 离散信号可用离散图形表示,或用数字序列表示。 连续信号的幅值可以是连续的,也可以是离散的。 若独立变量和幅值均取连续值的信号称为模拟信 号。 若离散信号的幅值也是离散的.则称为数字信号。 数字计算机的输入、输出信号都是数字信号。
,
把周期函数x(t)展开为傅里叶级数的复指数 函数形式后,可分别以 cn 和 n 作幅 频谱图和相频谱图;也可以分别以cn的实 部或虚部与频率的关系作幅频图,并分别 称为实频谱图和虚频谱图(参阅例1—2)。 比较傅里叶级数的两种展开形式可知:复 指数函数形式的频谱为双边谱(ω从-∞到 +∞),三角函数形式的频谱为单边谱(ω从0 到+∞);两种频谱各谐波幅值在量值上有 A c c0 a0 。双边幅频谱 确定的关系, 2 , 为偶函数,双边相频谱为奇函数。
机械工程测试技术基础-简答题

一、 信号及其描述1、周期信号频谱的特点:①离散性——周期信号的频谱是离散的;②谐波性——每条谱线只出现在基波频率的整数倍上,基波频率是诸分量频率的公约数;③收敛性——谐波分量的幅值按各自不同的规律收敛。
2、傅里叶变换的性质:奇偶虚实性、对称性、线性叠加性、时间尺度改变特性、时移和频移特性、卷积特性、积分和微分特性。
3、非周期信号频谱的特点:①非周期信号可分解成许多不同频率的正弦、余弦分量之和,包含了从零到无穷大的所有频率分量;②非周期信号的频谱是连续的;③非周期信号的频谱由频谱密度函数来描述,表示单位频宽上的幅值和相位;④非周期信号频域描述的数学基础是傅里叶变换。
二、测试装置的基本特性1、测量装置的静态特性是在静态测量情况下描述实际测量装置与理想时不变线性系统的接近程度。
线性度——测量装置输入、输出之间的关系与理想比例关系的偏离程度。
灵敏度——单位输入变化所引起的输出变化。
回程误差——描述测量装置同输入变化方向有关的输出特性,在整个测量范围内,最大的差值称为回程误差。
分辨力——能引起输出量发生变化的最小输入量。
零点漂移——测量装置的输出零点偏离原始零点的距离,它是可以随时间缓慢变化的量。
灵敏度漂移——由于材料性质的变化所引起的输入与输出关系的变化。
2、传递函数的特点:①()s H 与输入()t x 及系统的初始状态无关,它只表达系统的传输特性;②()s H 是对物理系统的微分描述,只反映系统传输特性而不拘泥于系统的物理结构;③对于实际的物理系统,输入()t x 和输出()t y 都具备各自的量纲;④()s H 中的分母取决于系统的结构。
3、一阶测试系统和二阶测试系统主要涉及哪些动态特性参数,动态特性参数的取值对系统性能有何影响?一般采用怎样的取值原则? 答:测试系统的动态性能指标:一阶系统的参数是时间常数τ;二阶系统的参数是固有频率n ω和阻尼比ξ。
对系统的影响:一阶系统的时间常数τ值越小,系统的工作频率范围越大,响应速度越快。
《机械工程测试技术基础》试题及答案

《机械⼯程测试技术基础》试题及答案《机械⼯程测试技术基础》课后答案章节测试题第⼀章信号及其描述(⼀)填空题1、测试的基本任务是获取有⽤的信息,⽽信息总是蕴涵在某些物理量之中,并依靠它们来传输的。
这些物理量就是信号,其中⽬前应⽤最⼴泛的是电信号。
2、信号的时域描述,以时间(t )为独⽴变量;⽽信号的频域描述,以频率(f )为独⽴变量。
3、周期信号的频谱具有三个特点(离散性,谐波性,收敛性)4、⾮周期信号包括准周期信号和⾮周期瞬态信号。
5、描述随机信号的时域特征参数有均值x µ,均⽅值2x ψ,⽅差2x σ6、对信号的双边谱⽽⾔,实频谱(幅频谱)总是 y 轴对称,虚频谱(相频谱)总是对称。
(⼆)判断对错题(⽤√或×表⽰)1、各态历经随机过程⼀定是平稳随机过程。
(√ )2、信号的时域描述与频域描述包含相同的信息量。
(√ )3、⾮周期信号的频谱⼀定是连续的。
(╳)4、⾮周期信号幅频谱与周期信号幅值谱的量纲⼀样。
(╳)5、随机信号的频域描述为功率谱。
(√ )(三)简答和计算题1、求正弦信号t x t x ωsin )(0=的绝对均值µ|x|和均⽅根值x rms 。
2、求正弦信号)sin()(0?ω+=t x t x 的均值x µ,均⽅值2x ψ,和概率密度函数p(x)。
3、求指数函数)0,0()(≥>=-t a Aet x at的频谱。
4、求被截断的余弦函数??≥<=Tt T t tt x ||0||cos )(0ω的傅⽴叶变换。
5、求指数衰减振荡信号)0,0(sin )(0≥>=-t a t et x atω的频谱。
第⼀章信号及其描述(⼀)1、信号;2、时间(t ),频率(f );3、离散性,谐波性,收敛性;4、准周期,⾮周期瞬态;5、均值x µ,均⽅值2x ψ,⽅差2x σ;6、偶,奇;(⼆)1、√;2、√;3、╳;4、╳;5、√;(三)1、π2x ,2x ;2、0,220x ,)cos(10?ωπ+t x ;3f j a A π2+、;4、()()T f c T T f c T )2(sin )2(sin 00ωπωπ-++; 5、faj f a πωπω44202220+--;第⼆章测试装置的基本特性(⼀)填空题1、某⼀阶系统的频率响应函数为121)(+=ωωj j H ,输⼊信号2sin)(tt x =,则输出信号)(t y 的频率为=ω,幅值=y ,相位=φ。
大学生《机械工程测试技术基础》期末试题及答案

第一章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。
这些物理量就是 信号 ,其中目前应用最广泛的是电信号。
2、 信号的时域描述,以 时间 为独立变量;而信号的频域描述,以 频率 为独立变量。
3、 周期信号的频谱具有三个特点: 离散性 , 谐波性 , 收敛性 。
4、 非周期信号包括 准周期 信号和 瞬变周期 信号。
5、 描述随机信号的时域特征参数有 均值 、 均方值 、 方差 。
6、 对信号的双边谱而言,实频谱(幅频谱)总是 关于Y 轴 (偶) 对称,虚频谱(相频谱)总是 关于原点(奇) 对称。
(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。
( √ )2、 信号的时域描述与频域描述包含相同的信息量。
( √ )3、 非周期信号的频谱一定是连续的。
( × )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。
( × )5、 随机信号的频域描述为功率谱。
( √ )(三)简答和计算题1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。
2、 求正弦信号)sin()(0ϕω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。
3、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。
4、求被截断的余弦函数⎩⎨⎧≥<=T t T t t t x ||0||cos )(0ω的傅立叶变换。
5、求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x at ω的频谱。
第二章 测试装置的基本特性(一)填空题1、 某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。
2、 试求传递函数分别为5.05.35.1+s 和2224.141n n n s s ωωω++的两个环节串联后组成的系统的总灵敏度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 信号及其描述一、知识要点及要求(1)了解信号的分类,掌握信号的时频域描述;(2)掌握周期信号及其频谱特点,了解傅立叶级数的概念和性质; (3)掌握非周期信号及其频谱特点,了解傅立叶变换的概念和性质;(4)掌握随机信号的特点,了解随机信号的时域统计描述(与周期信号的强度描述相对照),概率密度函数描述,相关函数和功率谱。
二、重点内容及难点(一)信号的分类(二)信号的时域—频域描述信号的时域描述和频域描述之间是可以相互转换的,但它们包含相同的信息量(信号是信息的载体,信息包含在信号之中)。
(三)周期信号与离散频谱 周期信号频谱的三个特点:(1)离散性:即周期信号的频谱是离散的。
(2)谐波性:即每条谱线只出现在基频的整数倍上。
(3)收敛性:即工程中常见周期信号,其谐波幅值总的趋势是随谐波次数的增高而减小。
各频率分量的的谱线高度表示该谐波的幅值或相位角。
(四)非周期信号与连续频谱 非周期信号:(1)准周期信号:但各频率分量与基频的比值不一定都是有理数。
如)2s i n ()s i n ()(00t t t x ωω+=,频谱是离散的。
(2)瞬变非周期信号:可简称为非周期信号。
频谱密度函数;即)(f X 与n C 很相似,但n C 的量纲与信号幅值的量纲一样,而)(f X 的量纲是单位频宽上的幅值。
(五)随机信号的描述1、随机信号(又称随机过程),不能用确定的数学关系式来描述,只能用概率统计的方法来描述。
平稳随机过程,其统计特征参数不随时间而变化,是一个常值;否则,非平稳随机过程。
各态历经的随机过程,即在平稳随机过程中,任一单个样本函数的时间平均统计特征等于该过程的集合平均统计特征;否则,非各态历经的随机过程。
各态历经的随机过程必然是平稳随机过程,而平稳随机过程不一定是各态历经的随机过程。
工程上所遇到的很多随机信号都具有各态历经性,即可以用时间平均来代替集合平均。
2、时域统计特征参数(1)均值⎰∞→=TT x dt t x T)(1lim μ,表示信号的常值分量。
(2)均方值(平均功率)⎰∞→=TT xdt t x T 022)(1lim ψ,表示信号的强度。
均方根值(有效值)2x rms x ψ= (3)方差()⎰-=∞→Tx T xdt t x T22)(1lim μσ,表示信号的波动分量。
均方差(标准差)2x x σσ= 三者之间的关系:222x x x μσψ+=3、概率密度函数:提供了信号幅值分布的信息,不同的信号有不同的概率密度函数图形, 因此可以用来识别信号的性质。
4、相关函数与功率谱密度函数(具体见第五章)对于各态历经的平稳随机信号,均值、均方值、方差为常数,概率密度函数、相关函数和 功率谱为确定函数,且可用有限长时间T 内的平均值作估计。
对于确定性信号(周期信号和非周期信号),这几个统计值的概念完全适用。
周期信号只需在一个周期T 0内求平均即可; 非周期信号可用有限长时间T 内的平均值作估计。
三、习题解答习题1-1 求周期方波的傅里叶级数(复指数函数形式),画出ω-n c 和ωϕ-n 图,并与表1-1对比。
解:傅里叶级数的复指数形式的表达式为:()() ,2,1,00±±==∑+∞-∞=n ec t x n tjn nω式中:()()()()()()⎪⎩⎪⎨⎧±±±=±±±=-=--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--=⎥⎦⎤⎢⎣⎡+-==+----+----⎰⎰⎰ ,6,4,2,0;0,5,3,1;2cos 1111200200022002200000000000n n n A j n n Aj ejn A e jn A T dt e A dt e A T dt e t x T c Tt jn T t jn T T t jn t jn T T tjn n πππωωωωωωω所以 ()()∑+∞-∞=±±±=⎪⎭⎫⎝⎛-=n tjn n e n A j t x ,5,3,1;20ωπ幅值频谱:()()⎪⎩⎪⎨⎧±±±=±±±==+= ,6,4,2,0;0,5,3,1;222n n n AC C C nInR n π相位频谱:()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧±±±=---==-=⎪⎪⎪⎪⎭⎫ ⎝⎛-== ,6,4,2,0;0,5,3,1;2,5,3,1;202n n n n A a r c t g C C a r c t g nRnIn πππϕ习题1-2 求正弦信号()t x t x ωsin 0=的绝对均值x u 和均方根值rms x 。
解:()⎰⎰⎰====0000000002sin sin 11T T T xxdt t T x dt t x T dt t x T πωωμ式中:ωπ20=T()()2sin 110020020x dt t x T dt t x T x T T rms ===⎰⎰ω习题1-3 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。
解:幅值谱:2224)(f a A f x π+=; 相位谱:()⎪⎭⎫ ⎝⎛-=a f arctg f πϕ2单边指数衰减信号频谱图A /aπ/2-π/2222)2(020224)2(2)()()(f a f j a A f j a A dte A dt e Ae dte t x dt et x f x t f j a ft j at ft j ftj πππππππ+-=+=====⎰⎰⎰⎰∞+-∞--∞-∞∞--习题1-4 求符号函数和单位阶跃函数的频谱。
解:(1)符号函数的频谱:10()sgn()10t x t t t +>⎧==⎨-<⎩t =0处可不予定义,或规定sgn(0)=0。
该信号不满足绝对可积条件,不能直接求解,但傅里叶变换存在。
可以借助于双边指数衰减信号与符号函数相乘,这样便满足傅里叶变换的条件。
先求此乘积信号x 1(t)的频谱,然后取极限得出符号函数x (t )的频谱。
()()⎩⎨⎧<>->>==--0,0,0,0,sgn 1t a e t a e t et x atat ta 10()sgn()lim ()a x t t x t →==022211224()()(2)j f t at j f t at j f t fX f x t e dt e e dt e e dt ja f ∞∞-----∞-∞==-+=-+⎰⎰⎰πππππ []101()sgn()lim ()a X f t X f jf→===-πF 1()X f fπ=2()02f f f πϕπ⎧<⎪⎪=⎨⎪->⎪⎩图1-25 题1-4图a)符号函数b)阶跃函数(2)单位阶跃函数的频谱:10()00t u t t >⎧=⎨<⎩ 在跳变点t =0处函数值未定义,或规定u (0)=1/2。
阶跃信号不满足绝对可积条件,但却存在傅里叶变换。
由于不满足绝对可积条件,不能直接求其傅里叶变换,可采用如下方法求解。
11()sgn()22u t t =+ [][]1111111()()sgn()()()22222U f u t t f j f j f f ⎛⎫⎡⎤⎡⎤==+=+-=- ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦δδππF F F()U f =结果表明,单位阶跃信号u (t )的频谱在f =0处存在一个冲激分量,这是因为u (t )含有直流分量,在预料之中。
同时,由于u (t )不是纯直流信号,在t =0处有跳变,因此在频谱中还包含其它频率分量。
习题1-5 求被截断的余弦函数t 0cos ω的傅立叶的变换⎩⎨⎧≥<=Tt T t t t x 0cos )(0ω单位阶跃信号频谱f|U (f )|(1/2)1()sgn()at x t e t -=符号函数tx 1(t ) 01-1符号函数频谱解:(1)第一种解法:[][]()()()(){}T f f c T f f c T f f f f T f f f f T dtt f f t f f dtft t f td ft j ft t f dte t xf x TTT TT ft j 0000000000022sin 2sin )(2)(2sin )(2)(2sin )(2cos )(2cos 2cos 2cos 2sin 2cos 2cos )()(-++=--+++=-++==-==⎰⎰⎰⎰--∞∞--ππππππππππππππ可见被截断余弦函数的频谱等于将矩形脉冲的频谱一分为二,各向左右移动f 0,同时谱线高度减小一半。
也说明,单一频率的简谐信号由于截断导致频谱变得无限宽。
题1-5图(2)第二种解法:被截断的余弦函数可以看成为:余弦函数与矩形窗函数()t w 的乘积,即:()()()()()()t w e e t w e e t w t t x t f j t f j t j t j ⋅+=⋅+=⋅=--00002202121cos ππωωω 根据卷积定理,其傅里叶变换为:()()()[]()()()()(){}T f f c T f f c T fT c T f f f f f X 00002sin 2sin 2sin 221-++=*-++=πππδδ 习题1-6 求指数衰减振荡信号()()0,0sin 0>>=-t a t e t x at ω的频谱。
解:其傅里叶变换为:()()()()()()⎪⎪⎭⎫ ⎝⎛-+-++=-⋅===⎰⎰⎰∞---∞--∞∞--0002220202212122sin 00f f j a f f j a j dt e e e j e dt et edt et x f X ft j t f j t f j at ftj atftj ππωπππππ习题1-7 设有一时间函数)(t f 及其频谱如图1-27所示,现在乘以余弦型振荡)(c o s 00m t ωωω>,在这个关系中,函数)(t f 叫做调制信号,余弦型振荡t 0cos ω叫做载波。
试求调幅信号t t f 0cos )(ω的傅立叶变换,示意画出调幅信号及其频谱。
又问:若m ωω<0时将会出现什么情况?图1-27 题1-7图解:(1)令()()()()t j t j e t f e t f t t f t x 002121cos 0ωωω+==- (2)根据傅里叶变换的频移性质,有:()()()002121ωωωωω-++=F F X 频谱示意图如下:(3)当m ωω<0时,由图可见,()0ωω+F ,()0ωω-F 出现混叠现象,不能通过滤波的方法提取出原信号)(t f 的频谱。