模电自主实验(哈工大)

合集下载

哈工大模电自主设计实验

哈工大模电自主设计实验

姓名 蒋瑞晔 班级 1104202 学号 1110420211 实验日期 6月7日 节次 5-6 教师签字 成绩模拟电子自主设计实验有源滤波器特性1.实验目的1. 掌握有源滤波电路的基本概念,了解高通滤波、低通滤波带通滤波对交流信号的影响。

2.了解滤波电路的选频特性、通频带等概念,加深对有源滤波电路的认识和理解。

3. 用Pspice 仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响。

4. 根据给定的低通和高通滤波器结构和元件,分析其工作特点及滤波效果,分析电路的频率特性。

5.分别利用低通和高通滤波器搭建带通和带阻滤波器电路,观察和分析其输出波形特点,分析电路的频率特性。

2.总体设计方案或技术路线1.一阶滤波器阻容耦合是交流放大电路中的常用隔离直流影响的手段,同时阻容大小将影响信号通过频率,不同的组合将构成低通、高通滤波,最终形成整个电路的频率特性,根据阻抗计算方法:1) 一阶高通滤波器RCj U cj R R U U R ωω111111+⨯=+⨯= ; RCf H π21=U2DC 1MOhm2)一阶低通滤波器RC j U cj R c j U U C ωωω+⨯=+⨯=111111 ; RC f L π21=U2DC 1MOhm2.二阶滤波器为了使电路滤波效果更显著将两个一阶滤波器结合形成二阶滤波器如图所示为无限增益多路反馈低通滤波器电路,它是一种非常通用的具有反相增益的滤波器,具有结构简单、特性稳定、输出阻抗低的特点。

电路的传递函数为: 0210()p K b H s s b s b =++其中: 02311b R R C C =,11231111()b C R R R =++,21p R K R =-二阶高通滤波器电路U2DC 1MOhmU2DC 1MOhmU2DC 1MOhm二阶低通滤波器二阶高通滤波器U2DC 1MOhm4.仪器设备名称、型号1)实验电路板一块2)双踪示波器一台3)双路直流稳压电源一台4)函数信号发生器一台5)数字万用表一只6)电容,电阻若干5.理论分析或仿真分析结果1)二阶低通滤波器:FFT:幅频特性:(2)二阶高通滤波器:FFT:幅频特性:6.详细实验步骤及实验结果数据记录(包括各仪器、仪表量程及内阻的记录)1.一阶滤波器2.二阶滤波器实际操作实验(1)低通滤波器:FFT:(2)高通滤波器:FFT:7.实验结论1、低通和高通滤波器对通过的信号的影响,原信号波形和谐波成分的变化低通滤波器能使频率低于某个频率的信号通过,而滤掉高于该频率的信号,并将其放大为输入信号的n倍。

哈工大数电自主设计实验

哈工大数电自主设计实验

姓名班级学号实验日期节次教师签字成绩百秒内倒计时器设计1.实验目的1. 培养分析、设计逻辑电路的基本能力。

2. 进一步熟悉常用芯片的基本使用。

3. 熟悉仿真软件Multisim 11.0的基本操作。

2.总体设计方案或技术路线倒计时系统的原理框图如下所示:a.振荡环节和分频/计数控制环节用555电路组成多谐振荡器,产生f=1Hz的信号,即秒脉冲。

计数控制环节是指减1计数器状态为00(即倒计时结束)时,使计数器停止计数。

这时只要使秒脉冲不再持续即可。

这里将判零信号与多谐振荡器输出信号通过与门连接,即可实现该功能。

b.赋初值控制、减1计数器环节和译码显示环节这里用两片双时钟加/减计数器74LS192级联即可实现该部分功能。

将计数器输出端接到LED显示管,即可以实现译码显示功能。

c.判零电路和报警控制通过集成或门将计数器各输出连接起来,只有当计数器状态为00(两片74LS90的输出端QDQCQBQA=0000,此时倒计时输出结束),或门输出结果才为0。

将或门输出信号作为判零信号。

则倒计时结束时,秒脉冲停止,计数器不再计数。

将判零连接至非门后,将非门输出信号连接至小喇叭,这样,倒计时结束后,小喇叭发出声响,实现倒计时结束报警功能。

具体实现过程参见原理分析部分。

3.实验电路图图 1 秒脉冲产生及计数控制电路图 2赋初值、减1计数及判零报警电路图3完整电路4. 仪器设备名称、型号实验箱、子板1台双踪示波器1台数字万用表1台555定时器1片74LS90 1片74LS00 1片74LS192 2片74LS32 2片LED数码管2组(实验箱上集成)小喇叭1个(实验箱上集成)电容、电阻、导线等若干5.理论分析或仿真分析结果a.振荡环节和分频/计数控制环节用555电路组成多谐振荡器,产生f=1Hz的信号,即秒脉冲。

由555定时器构建多谐振荡器的基本原理,多谐振荡器的振荡周期为:这里采用Multisim 11.0对电路进行仿真。

哈工大电子自主设计实验-低频信号测量电路

哈工大电子自主设计实验-低频信号测量电路

电子技术电工电子技术自主设计实验xxxxxxxxx班xxxxxxxxxx低频信号频率测量显示电路设计一、实验目的1、通过设计一个低频信号计数器,应用于跑步频率测定、脉搏测定等多种用途。

2、通过对该实验的设计,学会合理利用电子元器件制作特定的数字电路,并初步掌握电子电路的设计方法。

、二、总体设计方案或技术路线(1)方案设计对于微弱的低频信号(周期往往超过1s),可将其先转化为数字脉冲信号,再采用计数的办法测量长时间(1min内)的脉冲数,最后显示的读数为频率的60倍。

因此需要以下几部分电路。

1、放大整形电路使传感器的微弱电压放大,并进行简单整形。

2、倍频电路整形后得到的脉冲信号的频率提高。

本实验中测量30s内传感器获得信号的2倍频,即可得到一分钟信号波动次数次数,已达到缩短时间的目的。

3、控制电路用555定时器定时,(Tp为30s)使经过倍频电路后的脉冲信号送到计数电路和显示电路中。

(2)技术路线1、放大整形电路放大整形电路的作用是使传感器的微弱电压放大,并进行简单整形。

一个运放和两个电阻组成放大电路。

将其中一个变为滑动变阻器级可调放大倍数。

至于不规则的信号整形较难,且本实验用函数信号发生器产生的正弦波,因此直接用一个简单的与非门进行简单整形。

放大整形电路用频率1HZ正弦波仿真2、倍频电路倍频电路作用是将整形后得到的脉冲信号的频率提高。

要在短时间内测量一分钟内的波动次数(本实验初定为30秒),需要将原信号的频率放大相应的倍数(2倍)即可。

二倍频电路2.1理论分析各点波形输入脉冲由1D输入,由时钟CLK上升沿打入D触发器1,D 触发器1输出信号Q1,Q1信号在下一个时钟的上升沿被打入下一级D触发器2,D触发器2输出信号Q2,再将Q1、Q2信号异或,即可得到脉冲宽度为一个时钟周期的倍频信号(各点信号波形下).注意时钟的频率要大于两倍的输入信号的频率。

2.2仿真结果输入信号1D输出信号时钟信号输入信号1DQ1Q2 输出信号3、控制电路用555定时器定时,使经过倍频电路后的脉冲信号送到计数电路和显示电路中。

哈工大模电自主设计实验——阶梯波发生电路的设计与分析

哈工大模电自主设计实验——阶梯波发生电路的设计与分析

姓名 班级 学号 实验日期 节次 教师签字 成绩阶梯波发生电路的设计与分析1.实验目的1、掌握阶梯波发生器电路的结构特点。

2、掌握阶梯波发生器电路的工作原理。

3、学习如何用Multisim 进行电路仿真。

4、学习复杂的集成运算放大器电路的设计。

2.总体设计方案或技术路线1、要设计阶梯波发生电路,首先要设计一个方波发生电路,然后通过微分电路,会得到上下均有尖脉冲的波形。

这时要只取上面的尖脉冲,就需通过限幅电路滤除下半部分的波形。

当这些脉冲经过积分运算电路时,一个尖脉冲累加为一个固定的值,在没有尖脉冲时,积分器保持输出不变。

下一个脉冲到来时又会增加同样的一个值,于是输出形成了阶梯波形。

2、改变电路元件的参数值,探究其于输出的阶梯波各项指标的关系。

3.实验电路图U1UA741CP3247651VEE-15.0VVCC 15.0VRf 100kΩR42kΩC147nFXSC1ABExt Trig++__+_R130kΩR210kΩD112VD212VC247nFR310kΩR510kΩR610kΩU2UA741CP3247651C347nFD31N4148D41N4148图1阶梯波发生电路4. 仪器设备名称、型号1、运算放大器μA741 2个2、二极管若干3、电阻,电容若干4、导线若干5、数字万用表6、可编程线性直流稳压电源7、Agilent DSO-X2002A 型示波器8、电子技术试验箱9、集成运算放大器应用子板5.理论分析或仿真分析结果1、方波发生电路设计方波发生电路由滞回比较器和RC 电路构成。

滞回比较器引入正反馈,产生振荡,使输出电压仅有高低电平两种状态,且自动相互转换。

RC 电路起延时作用和反馈作用,使电路的输出电压按一定时间间隔在高低电平之间交替变化,形成方波。

电路如图2所示,从图3所示的示波器中可读出方波的周期为4.017ms 。

U1UA741CP3247651VEE-15.0VVCC15.0VRf 100kΩR42kΩC147nFXSC1A BExt Trig++__+_R130kΩR210kΩD112VD212V图2方波发生电路图3方波波形2、微分电路设计在上图所示的方波发生电路的输出端接电阻3R 和电容2C 即可组成图4所示的微分电路,原理与运放组成的微分运算电路相同,这里不再叙述。

哈工大电工自主设计实验_2

哈工大电工自主设计实验_2

两位数密码组合逻辑电路
电工自主设计实验
(一)实验目的
1.掌握74LS04、74LS74、74LS08等元件的逻辑功能和使用方法;
2.通过实验,进一步熟悉组合逻辑电路的分析和设计方法。

(二)实验电路图
VCC
(三)仪器设备名称、型号
1.模拟数字电子技术试验箱
2.双路直流稳压电源
3.电阻、导线若干
(四)理论分析或仿真分析结果
(五)详细实验步骤及实验结果数据记录
⑵按照逻辑图连接好电路
⑶别对六个输入端施加高低电平,观察输出端小灯的情况
⑷列出真值表:
结论:逻辑表达式为:
(六)实验结论
1.应用74LS04、74LS74、74LS08等元件可以实现两位数密码的设置,在生活中具有广泛应用。

(七)对实验的改进及优化
应该在实验的基础上加上一个清零开关。

此密码器设计比较简单,输入正确的密码前,小灯保持不亮,表明输入密码错误。

但输入正确的密码后,小灯一直保持亮的状态,所以在后续的设计优化过程中考虑增加一个清零开关。

(八)本次实验的收获和体会、对电路实验室的意见或建议
通过实验我了解了74LS138、74LS00、74LS20等元件的逻辑功能和使用方法,同时,通过实验,更加熟悉了组合逻辑电路的分析和设计方法。

在进行组合逻辑电路的设计时,应首先将给定的逻辑问题抽象成逻辑函数,列出其真值表,再根据真值表写出逻辑函数式并对其进行化简变换,最终根据化简变换后的逻辑函数式画出逻辑电路图。

参考文献
[1]杨世彦.电工学电子技术.机械工业出版社.2008
[2]邹其洪.电工电子实验与计算机仿真.电子工业出版社.2008。

哈工大 模电自主设计 锯齿波发生器

哈工大 模电自主设计 锯齿波发生器

占空比可调的锯齿波发生电路学院:专业:姓名:学号:占空比可调的锯齿波发生电路一.实验目的1.掌握占空比可调的锯齿波发生电路的工作原理2.掌握占空比调节的方法二.总体设计方案1.滞回比较器在单限比较器中,输入电压在阈值电压附近的任何微小变化,R都将引起输出电压的跃变,不管这种微小变化是来源于输入信号还是外部干扰。

因此,虽然单限比较器很灵敏,但是抗干扰能力差。

滞回比较器具有滞回特性,即具有惯性,因此也就具有一定抗干扰能力。

从反相输入端输入的滞回比较器电路如图(a)所示,滞回比较器电路中引入了正反馈。

(a)电路 (b)电压传输特性从集成运放输出端的限幅电路可以看出,u0=±U Z。

集成运放反相输入端电位u N= u I,同相输入端电位根据“虚短”u N=u P,求出的u I就是阈值电压,因此得出当u I<-U T,u N<u P,因而uo=+U Z,所以u P=+U T。

u I>+U T,uo=-U Z。

当u I>+U T,u N>u P,因而uo=-U Z,所以u P=-U T。

u I<-U T,uo=+U Z。

可见,uo从+U Z跃变为-U Z和uo从-U Z跃变为+U Z的阈值电压是不同的,电压传输特性如图(b)所示。

在我们所设计的锯齿波发生器中,滞回比较器由运放U1和电阻R1,R3,R4所组成。

通过由稳压管D1,D2和限流电阻R3构成的输出限幅电路,从而输出方波波形。

其中调节电阻R2可改变锯齿波的幅值和一定范围的频率。

调节滞回比较器的稳幅输出D1,D2值,可调整方波输出幅值,可改变积分时间,从而在一定范围内改变锯齿波的频率。

2.积分电路如图所示的积分运算电路中,由于集成运放的同相输入端通过R’接地,u N=u P =0为“虚地”。

电路中电容C的电流等于流过电阻R的电流输出电压与电容上电压的关系为u o=-u c而电容上电压等于其电流的积分,故在求解t1到t2时间段的积分值时式中u o(t1)为积分起始时刻的输出电压,即积分运算的起始值,积分的终值是t2时刻的输出电压。

哈工大2012学年_模电自主设计实验报告

哈工大2012学年_模电自主设计实验报告

模拟电子技术课程大作业姓名:学号:院系:控制科学和工程系题目:音频功率放大器的设计和实现音频功率放大器的设计和实现1.实验目的设计一个实用的音频功率放大器。

在输入正弦波幅度≤5mV,负载电阻等于8Ω的条件下,音频功率放大器满足如下要求:1、最大输出不失真功率P OM≥8W。

2、功率放大器的频带宽度BW≥50Hz~15KHz。

3、在最大输出功率下非线性失真系数≤3%。

4、输入阻抗R i≥100kΩ。

5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz处有±12dB的调节范围。

2.总体设计方案该音频功率放大器可由图1所示框图实现。

前置放大级主要实现对输入信号进行放大,从而和功率放大器的输入灵敏度进行匹配。

音调控制级主要实现对输入信号的提升或衰减作用,以满足不同听众的需求。

功率放大级是此音频功率放大器的核心部分,它决定了输出功率的大小。

下面介绍各模块的实现方法。

话筒输入Vo前置放大音调控制功率放大RL图1 音频功率放大器组成框图1.前置放大器由于输入信号非常微弱且音频宽度过大,需要前置放大器有较高的输入阻抗,较低的输出阻抗,噪声小,频带宽。

为达到预期的效果,有两种选择。

一是由分立元件搭建的放大电路,二是采用合适的集成放大电路。

由于集成放大电路性能稳定,外围电路简单,便于调试,本前级放大电路选择集成放大电路实现。

2.音调调节级音调控制电路的主要功能是通过对放音频带内放大器的频率响应曲线的形状进行控制,从而达到控制放音音色的目的,以适应不同听众对音色的不同爱好。

此外还能补偿信号中所欠缺的频率分量,使音质得到改善,从而提高放音系统的放音效果。

在高保真放音电路中,一般采用的是高、低音分别可调的音调控制电路。

一个良好的音调控制电路,要求有足够的高、低音调节范围,同时有要求在高、低音从最强调到最弱的整个过程中,中音信号(一般指1kHz)不发生明显的幅值变化,以保证音量在音调控制过程中不至于有太大的变化。

哈工大电路自主设计实验

哈工大电路自主设计实验

所以,有:
������������ = ������ =
������ (
1 ������������
) ������
������ = ������ + ������������������
������ 2 + (������������)2
������������������������ = |������������ | ������������������������ = = |������|
90Hz
204mW
202mW
200mW 30Hz ((V(C1:2) - V(C1:1)) * I(R1))
60Hz 90Hz cos(P(V(C1:2)- V(C1:1))- P(I(R1))) *(V(C1:2) - V(C1:1)) * I(R1) Frequency
������ = 0.5������������时的视在功率、有功功率、功率因数
2、实验数据 (1)实验数据记录表 1.
实验电路图 1 C/μF 视在功率/VA 有功功率/W 无功功率/Var 功率因数 体现性质 R2 0.6 0.6 0 1 阻性 所有负载 1.3 1.3 0 1 阻性 L1 1.6 0.3 1.5 0.19 感性 实验电路图 2 所有负载 2.2 1.6 1.4 0.73 感性 C1 1.0 0 1.0 0 容性 实验电路图 3 所有负载 2.1 0.7 2.1 0.33 容性
90Hz ((V(C1:2) - V(C1:1)) * I(R1))
������ = 0.7������������ 时的视在功率、有功功率、功率因数
1.2
0.8
0.4
0 30Hz 60Hz cos(P(V(C1:2)- V(C1:1))- P(I(R1))) *(V(C1:2) - V(C1:1)) * I(R1)/((V(C1:2) - V(C1:1)) * I(R1)) Frequency
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名:班级:学号:
实验日期:节次: 教师签字: 成绩:
实验项目名称:信号处理——有源滤波器
1.实验目的和要求
1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤
波器及其特性。

2、学会测量有源滤波器的幅频特性。

2.主要仪器设备
1、双踪示波器
2、频率计
3、交流毫伏表
4、信号发生器
3.实验原理
1) 低通滤波器
低通滤波器是指低频信号能通过而高频信号不能通过的滤波器,用一级RC 网络组成的称为一阶RC 有源低通滤波器,如图1所示:
图1 基本的有源低通滤波器
为了改善滤波效果,在图1(a)的基础上再加一级RC 网络,为了克服在截止频率附近的通频带范围内幅度下降过多的缺点,通常采用将第一级电容C 的接地端改接到输出端的方式,如图2所示,即为一个典型的二阶有源低通滤波器。

图2 二阶低通滤波器
这种有源滤波器的幅频率特性为
020201)(
1)
()3(1ωω
ωωμ
μμQ j A SCR SCR A A U U A i +-=+-+== (1)
式中:
11R R A f
+
=μ为二阶低通滤波器的通带增益;
RC 1
0=
ω为截止频率,它是二阶低通滤波器通带与阻带的界限频率。

μ
A Q -=
31为品质因数,它的大小影响低通滤波器在截止频率处幅频特性的
形状。

注:式中S 代表ωj 2) 高通滤波器
只要将低通滤波电路中起滤波作用的电阻、电容互换,即可变成有源高通滤波器,
如图3所示。

其频率响应和低通滤波器是“镜象”关系。

图3 高通滤波器
这种高通滤波器的幅频特性为
(2)
式中A μ,0ω,Q 的意义与前同。

3) 带通滤波器
这种滤波电路的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号都被阻断。

典型的带通滤波器可以从二阶低通滤波电路中将其中一级改成高通而成。

如图4所示,它的输入输出关系为
0202
22
01)(
1)()
()3(1)(ωωωωωωμμμQ j A SCR SCR A A SCR U U A i +-=+-+==
20
000
010)
(1)
)(1)(
1(ωωωωωS S B S
RC R R U U A f
i +++
== (3)
中心角频率 )1
1(13
220R R C R +=
ω (4) 频带宽 )2
1(13
12R R R R R C B f -+=
(5) 选择性B
f Q 0
=
(6)
图4 典型二阶带通滤波器
这种电路的优点是改变Rf 和R1的比例就可改变频带宽而不影响中心频率。

4) 带阻滤波器
如图5所示,这种电路的性能和带通滤波器相反,即在规定的频带内,信号不能通过(或受到很大衰减),而在其余频率范围,信号则能顺利通过。

常用于抗干扰设备中。

图5 二阶带阻滤波器
这种电路的输入、输出关系为
2
20
0)(
)
2(21])(
1[ωωωμμS
S
A A S
U U A i +-++== (7)
5) 式中:,1;01
RC
R R A f =
=ωμ由式中可见,μA 愈接近2,A
愈大,即起到阻断范围变窄的作用。

4.原始数据记录
1、 二阶低通滤波器
实验电路如图2正确连接电路图,打开直流开关,取Ui =1V (峰峰值)的正弦波,改变其频率(接近理论上的截止频率338Hz 附近改变),并维持Ui=1V (峰峰值)不变,用示波器监视输出波形,用频率计测量输入频率,用毫伏表测量输出电压U0,记入表1。

表1
输入方波,调节频率(接近理论上的截止频率338Hz 附近调节),取Ui =1V (峰峰值),观察输出波形,越接近截止频率得到的正弦波越好,频率远小于截止频率时波形几乎不变仍为方波。

有兴趣的同学以下滤波器也可用方波作为输入,因为方波频谱分量丰富,可以用示波器更好的观察滤波器的效果。

2、 二阶高通滤波器
实验电路如图13-3正确连接电路图,打开直流开关,取Ui =1V (峰峰值)的正弦波,改变其频率(接近理论上的高通截止频率 1.6K 附近改变),并维持Ui=1V (峰峰值)不变,用示波器监视输出波形,用频率计测量输入频率,用毫伏表测量输出电压U0,记入表2。

表2
3、带通滤波器
实验电路如图4正确连接电路图,打开直流开关,取Ui =1V(峰峰值)的正弦波,改变其频率(接近中心频率为1023Hz附近改变),并维持Ui=1V(峰峰值)不变,用示波器监视输出波形,用频率计测量输入频率,用毫伏表测量输出电压U0,自拟表格记录之。

理论值中心频率为1023Hz,上限频率为1074Hz,下限频率为974Hz。

1)实测电路的中心频率f0
2)以实测中心频率为中心,测出电路的幅频特性。

4、带阻滤波器
实验电路选定为如图5所示的双T型RC网络,打开直流开关,取Ui =1V(峰峰值)的正弦波,改变其频率(接近中心频率为2.34KHz附近改变),并维持Ui=1V (峰峰值)不变,用示波器监视输出波形,用频率计测量输入频率,用毫伏表测量输出电压U0,自拟表格记录之。

理论值中心频率为2.34KHz。

1)实测电路的中心频率。

2)测出电路的幅频特性。

两个波形的相位差是
2
5.原始图形
Hz
Hz
Hz
Hz
6. 本次实验的收获和体会、对电路实验室的意见或建议
第一次面对着如此复杂的电路,有些迷茫,有些失措,甚至想过放弃。

在调节电路的时候遇到了不少问题,如在做第一个实验“晶体管共射极单管放大器”的输入信号时,不是调不出正弦波,就是调不出矩形波。

郁闷呀!最后还是通过努力做出来了。

总之,在紧张而又闷热的一天时光中,我学会了一些知识,学会了一些技能,学会了如何面对困难挫折,如何培养了自己的毅力,坚持不懈的做好生活中的每一件事情。

7. 参考文献
[1] 王明. 电路实验教程. 北京:机械工业出版社,2013:25-42.
[2] 李孟. 电工电子研讨会论文集:A 集. 北京:中国科学出版社,2010:45-49. [3] 刘颖. 电路实验研究. 哈尔滨:哈尔滨工业大学,2009:8-13.。

相关文档
最新文档