最佳低频变压器设计方法
传输线变压器设计

传输线变压器设计设计要求传输线变压器和其他元器件一样,其设计的依据是用户提出的技术要求,然而,如果用户对传输线变压器缺乏一定的了解,那么要提出合理的技术要求是困难的.为此,在介绍设计方法之前有必要先对变压器的技术要求作一些说明.在一般情况下,电子变压器的技术要求应包含这样一些内容:输入和输出阻抗的大小,馈电方式,与讯号有关的内容(例如频率范围,功率容量,脉冲波还是连续波)负载的特点,允许的波形或幅度和相位的变化程度以及允许的失配程度等.现分述如下:输入和输出阻抗在变压器的技术要求中,如果仅仅提阻抗比的要求是不够的,必须具体指明输入阻抗和输出阻抗的大小.因为对于一定的阻抗比,例如1:4,可以是50欧姆与200欧姆之比,等等.而在传输线变压器中,所用传输线最佳特性阻抗与具体的阻抗变换有关,即与输入阻抗和输出阻抗的大小有关.对于50欧姆的1:4双线传输线变压器,传输线最佳特性阻抗为100欧姆的1:4双线传输线变压器,传输线最佳的特性阻抗为100欧姆.而对于75欧姆与300欧姆的变换,传输线最佳阻抗为150欧姆.另外,为了确定变压器磁化电感的大小,还必须知道输入阻抗或输出阻抗,国在磁化电感的大小是与输入阻抗或输阻抗成正比的.例如,有两个变压器,在其它的条件相同的情况下,一个变压器的阻抗比为12.5欧姆/50欧姆,另一个变压器的阻抗比为125欧姆/500欧姆,虽然都是1:4的阻抗变压器,然而它们所要求的磁化电感却有很大的差别,后都是前都的10倍.一个变变压器性能的好坏在很大程度上取决于所要求的磁化电感的大小,传输线特性阻抗与最佳特性阻抗之比,因此,设计变压器的大小,首先要明确阻抗变换是从多少欧姆变到多少欧姆,例如,在晶体管电路中用于级间耦合的变压器,必须知道前级的输出阻抗和后一级的输入阻抗,短波通讯中的发射机与天线之间的匹配变压器,就应当知道发射机的输出阻抗和天线(或馈线)的输入阻抗.极性变换极性变换本身可看作是广义的阻抗变换,因为它也是使两个不同的网络间匹配的一种手段.变压器极性变换一般有四种:全相变换,不平衡-不平衡变换,不平衡-平衡变换以及平衡-平衡变换.对于一定的阻抗变换,当所要求的极性变换形式不同时,刚变换电路和传输线的最佳特性阻抗就不完全相同.例如,1:4不平衡-不平衡变换,一般采用双线传输线变换电路,而1:4不平衡-平衡变换,一般采用成对双线传输线变换电路或三线传输线1:4变换电路.因此,在变压器的技术要求中除说明输入端和输出端的阻抗以外,还应指明输入和输出端的极性(即馈电方式).负载的特点当涉及不平衡-平衡变换时,在技术要求中应说明平衡端负载是否允许有实在的接地点.因为有实在接地点的变换电路可以有较大的差别.例如1:1不平衡-平衡变换,如果平衡负载中心(或平衡电源中心)允许有实在接地点,则用简单的双线传输线变压器就可以完成,否则还要附加平衡绕组或都采用三线传输线变压器电路.因此,在技术要求中指明平衡负载中心是否允许有实在接地点,这可以使变压器设计师获得更多的自由,从而有助于提高设计质量.直流的影响在电子线路中常常是交,真流混杂的,因此变压器就应注意是否有隔离直流的要求,当有直流存在进,不仅变压器变换电路形式不同,而且在设计进还应该注意因直流引起的饱和问题.在第二章曾指出,磁芯饱和的问题---磁导率随直流场变化,与工作频率的高低有关,在一般情况下,工作频率越低,磁芯饱和的问题就越严重.因此,对于低频变压器,直流的大小要特别引起注意.功率容量习惯上,如果未指明功率容量的要求都是指低功率.如果有功率容量的要求(对于短波为瓦级以上)应具体指明容量的大小.变压器的设计,特别是磁芯材料厂,尺寸的选择以及传输线材料,尺寸的选择与功率容量的大小有密切的关系.传输参数变压器的功能可以归结为能在电源和负载之间提供匹配级联.而且为了衡量匹配的程度,由它引起的损耗大小和相位的变化,需要引入一些参数,这些参数是传输损耗(有效损耗)(分贝)式中T为传输参数.插入损耗(分贝)对比以上两式不难看出,当电源输出阻抗与负载电阻相同时,插入损耗和传输损耗的意义不同.变压器是用来做阻抗变换的,在一般情况下变比或阻抗比不等于一,此时,若仍用插入损耗来衡量变压器的损耗,那么变压器的损耗(用分贝表示)可能出现负载(既有增益).变压器是无源网络,不可能有功率增益,因此,在衡量变压器损耗时用传输损耗比较合理,而用插入损耗表示则容易产生混淆.反射损耗(回归损耗)式中电压反射系数其中Z 和Z为在网络某处分别向电源和负载端看的输入阻抗,若用电压驻波系数ρ表示,则反射损耗反射损耗、电压驻波系数和电压反射系数都是表征失配程度的参数,因为这些参数相互间都有一定的关系,故在一般技术要求中只给出其中一个就可以了。
变压器离住房多远才安全

变压器离住房多远才安全
根据《电力工程电气设计手册》规定,工业与民用配电设计手册,《建筑设计防火规范》。
GB 50053-94《10kv及以下变电所设计规范》规定。
变压器离住宅的安全距离,可以从电压、散热、噪声、辐射等几个方面考虑。
S11-500KVA变压器高压端电压为10kv等级。
如果你查政府部门规定的安全距离,对于10kV电压则会有许多个不同的数值; 1.5米(电力设施保护要求)、5米(建设工地要求)、6.5米(架空线与民房距离)等等。
从散热考虑变压器运行多年后可能出现低频噪声,现实中虽然这种噪声很低,但只要高出背景噪声约10db就可以在夜间严重影响居民休息。
变压器建站时按国家标准设计的,考虑了防护距离。
综合以上情况,如果不考虑噪声,变压器离住宅的距离保持在5~6米以上为好;在此标准距离内变压器产生的辐射不会对人体造成危害,为了心理的安全,放大5到10倍吧。
如果考虑噪声,那当然是越远越好。
按照国家标准规定,户外油浸式变压器要离任何建筑物5米以上,按照国家标准《建筑设计防火规范》GB50016-2006中表3.4.1规定,户外油浸式变压器要离民用建筑6米以上,所以露天变压器离居民房的安全距离是至少6米。
国家标准还在最近的2008年说明了户外油浸式变压器与住宅的距离宜保持在10米以上比较恰当。
规定在居民聚集的小区内,不宜再“架设”高压电设施油浸式变压器。
变压器设计

变压器的基本知识变压器几乎在所有的电子产品中都要用到,它原理简单但根据不同的使用场合(不同的用途)变压器的绕制工艺会有所不同的要求。
变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E型和C型铁心。
一、变压器的基本原理当一个正弦交流电压U1加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通ф1,它沿着铁心穿过初级线圈和次级线圈形成闭合的磁路。
在次级线圈中感应出互感电势U2,同时ф1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1方向相反而幅度相近,从而限制了I1的大小。
为了保持磁通ф1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为“空载电流”。
如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通ф2,ф2的方向与ф1相反,起了互相抵消的作用,使铁心中总的磁通量有所减少,从而使初级自感电压E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系。
当次级负载电流加大时I1增加,ф1也增加,并且ф1增加部分正好补充了被ф2所抵消的那部分磁通,以保持铁心里总磁通量不变。
如果不考虑变压器的损耗,可以认为一个理想的变压器次级负载消耗的功率也就是初级从电源取得的电功率。
变压器能根据需要通过改变次级线圈的圈数而改变次级电压,但是不能改变允许负载消耗的功率。
二、变压器的损耗当变压器的初级绕组通电后,线圈所产生的磁通在铁心流动,因为铁心本身也是导体,在垂直于磁力线的平面上就会感应电势,这个电势在铁心的断面上形成闭合回路并产生电流,好象一个旋涡所以称为“涡流”。
这个“涡流”使变压器的损耗增加,并且使变压器的铁心发热变压器的温升增加。
由“涡流”所产生的损耗我们称为“铁损”。
另外要绕制变压器需要用大量的铜线,这些铜导线存在着电阻,电流流过时这电阻会消耗一定的功率,这部分损耗往往变成热量而消耗,我们称这种损耗为“铜损”。
EI工频变压器设计的几个问题

EI 工频变压器设计的几个问题中国三江航天集团 黄永吾工频变压器在被大家称为低频变压器,以示与开关电源用高频变压器有区别。
工频变压器在过去传统的电源中大量使用,而这些电源的稳定方式又是采用线性调节的,所以那些传统的电源又被称为线性电源工频变压器的原理非常简单,理论上推导出相关计算式也不复杂,所以大家形成了看法:太简单了,就那三、四个计算公式,没什么可研究的。
设计时只要根据那些简单的公式,立马成功。
掌握了电压高了拆掉几圈,电压低了加几圈,空载电流大了,适当增加初级圈数,也觉的低工频变压器的非常简单。
我认为上面的认识既有可取之处,也有值得研究的地方。
可取之处:根据计算式或自己打样,可以很快就得出结果,解决了问题;加上有六七年以上得实际工作经验,可说是在某单位得心应手,鹤立鸡群。
值得研究的地方是:你是否了解自己设计出的产品性能?设计合理吗?设计优化过吗?经济性如何?过去电源变压器的设计由电子部牵头组织专家学者成立变压器工作组,编写典型计算免费发放各单位,作为计算依据,每个单位都有自己的变压器设计人员,由于有了参数表的存在,各厂设计出来的变压器各参数基本一致,连圈数和线径都可能一一模一样。
验收的规则也是统一到变压器总技术条件上来。
改革开放以后国营企业的变压器设计人员,除极少数外,下海的不多。
典型计算资料本不可多得,要按失密论处。
加上典型计算是原苏联的一套铁心规格与现行得EI 铁心片规格不符,无参照价值。
目前基本上是采用师傅带徒第的方式带出来一大批变压器工程人员。
与过去不同现有的工程技术人员大都是自己打样,由于工频变压器市场广泛,小单子很多。
而这些单子很多是从关系接来的。
不十分计较价格,因此理论水平一般,实际经验丰富的工程技术人员大有人在。
从设计角度来看师师傅带徒第的方式带出来一大批变压器工程人员,他门的设计风格各不相同。
A. 根据功率选铁芯规格就是个很繁杂的问题,因为涉及的因素比较多,有以下几种方法1. 采用下面的半经验公式去选取:)1(---⨯=P K A fe式中A fe --铁心有效截面积cm 2K--- 系数P —变压器输出功率 w定下A fe 后,然后进行其它的计算。
24V电源变压器设计

24V电源变压器是低频变压器. 本文介绍的方法适合50Hz一千瓦以下普通交流变压器的设计.(1) 电源变压器的铁心它一般采用硅钢片. 硅钢片越薄,功率损耗越小,效果越好.整个铁心是有许多硅钢片叠成的,每片之间要绝缘.买来的硅钢片, 表面有一层不导电的氧化膜, 有足够的绝缘能力.国产小功率变压器常用标准铁心片规格见后续文章.(2) 电源变压器的简易设计设计一个变压器,主要是根据电功率选择变压器铁心的截面积,计算初次级各线圈的圈数等.所谓铁心截面积S是指硅钢片中间舌的标准尺寸a和叠加起来的总厚度b的乘积.如果24V电源变压器的初级电压是U1,次级有n个组,各组电压分别是U21,U22,┅,U2n, 各组电流分别是I21,I22,┅,I2n,...计算步骤如下:第一步,计算次级的功率P2.次级功率等于次级各组功率的和,也就是P2 =U21*I21+U22*I22+┅+U2n*I2n.第二步, 计算变压器的功率P.算出P2后.考虑到变压器的效率是η,那么初级功率P1=P2/η,η一般在0.8~0.9之间.变压器的功率等于初,次级功率之和的一半,也就是P=(P1+P2)/2第三步, 查铁心截面积S.根据变压器功率,由式(2.1)计算出铁心截面积S,并且从国产小功率变压器常用的标准铁心片规格表中选择铁心片规格和叠厚.第四步, 确定每伏圈数N.根据铁心截面积S和铁心的磁通密度B,由式(2.2)得到初级线圈的每伏圈数N.铁心的B值可以这样选取: 质量优良的硅钢片,取11000高斯;一般硅钢片,取10000高斯;铁片,取7000高斯.考到导线电阻的压降, 次级线圈每伏圈数N'应该比N增加5%~10%,也就是N'在1.05N~1.1N之间选取.第五步,初次级线圈的计算.初级线圈N1=N*U1.次级线圈N21=N'*U21,N22=N'*U22 ┅,N2 =N'*U2n.第六步, 查导线直径.根据各线圈的电流大小和选定的电流密度,由式(2.3)可以得到各组线圈的导线直径.一般24V电源变压器的电流密度可以选用3安/毫米2第七步, 校核. 根据计算结果,算出线圈每层圈数和层数,再算出线圈的大小,看看窗口是否放得下.如果放不下,可以加大一号铁心,如果太空,可以减小一号铁心.采用国家标准GEI铁心,而且舌宽a和叠厚b的比在1:1~1:1.7之间, 线圈是放得下的.各参数的计算公式如下:ln(S)=0.498*ln(P)+0.22 ┅(2.1)ln(N)=-0.494*ln(P)-0.317*ln(B)+6.439┅(2.2)ln(D)=0.503*ln(I)-0.221┅(2.3)变量说明:P: 变压器的功率. 单位: 瓦(W)B: 硅钢片的工作磁通密度. 单位: 高斯(Gs)S: 铁心的截面积. 单位: 平方厘米(cm2)N: 线圈的每伏圈数. 单位: 圈每伏(N/V)I: 使用电流. 单位: 安(A)D: 导线直径. 单位: 毫米(mm)(二)GEI铁心规格铁心片铁心规格尺寸(mm) 中间舌片净截面积(cm2)型号a*b c H h L 铁心片厚0.2mm 铁心片厚0.3mm──────────────────────────────GEI10 10*12.5 6.5 31 18 36 1.06 1.1410*15 1.28 1.3710*17.5 1.49 1.5910*20 1.70 1.82──────────────────────────────GEI12 10*15 8 38 22 44 1.53 1.6412*18 1.84 1.9712*21 2.14 2.2812*24 2.45 2.62──────────────────────────────GEI14 14*18 9 43 25 50 2.14 2.2914*21 2.50 2.6814*24 2.86 3.0614*28 3.33 3.57──────────────────────────────GEI16 16*20 10 48 28 56 2.72 2.9116*24 3.26 3.4916*28 3.81 4.0816*32 4.35 4.66──────────────────────────────铁心片铁心规格尺寸(mm) 中间舌片净截面积(cm2)型号a*b c H h L A d h1 铁心片厚0.2mm 铁心片厚0.3mm─────────────────────────────────────GEIB19 19*24 12 57 33 67 55 4 6 3.88 4.1519*28 .5 .5 4.52 4.8419*32 5.17 5.5319*38 6.14 6.57─────────────────────────────────────GEIB22 22*28 14 67 39 78 64 5 7 5.25 5.6222*33 6.17 6.6122*38 7.11 7.6122*44 8.23 8.81─────────────────────────────────────GEIB26 26*33 17 81 47 94 77 5 8.5 7.29 7.8126*39 8.62 9.2326*45 9.95 10.626*52 11.5 12.3─────────────────────────────────────GEIB30 30*38 19 91 53 106 87 6 9.5 9.69 10.430*45 11.5 12.330*52 13.3 14.230*60 15.3 16.4─────────────────────────────────────GEIB35 35*44 22 105 61 123 101 6 11 13.1 14.035*52 .5 .5 15.1 16.635*60 17.9 19.135*70 20.8 22.3─────────────────────────────────────GEIB40 40*50 26 124 72 144 118 6 13 17.0 18.240*60 .5 .5 20.4 21.840*70 23.8 25.540*80 27.2 29.1─────────────────────────────────────(三)变压器的铁心与绕组为减小交变磁通在铁心中所引起的涡流损耗,铁心一般用厚为0.35-0.5mm的硅钢片叠装而成;并且在硅钢片两面涂以绝缘漆.信号变压器还采用坡莫合金作铁心.硅钢片有热轧和冷轧两种.热轧硅钢片的工作磁通密度一般取0.9-1.2T,钢片常冲成"III"形,叠装成铁心.绕组套在中间的铁心柱上. 冷轧硅钢片的导磁性能比热轧好,它的工作磁通密度允许达到1.8T,所以铁心体积可以缩小.它的导磁有方向性, 顺着辗轧方向的导磁性能好,故通常将冷轧硅钢片卷成环形铁心,然后切成两半C形, 将绕组分别套在铁心柱上以后, 再将两半铁心粘成整体.变压器的绕组由原边绕组和副边绕组组成.原边绕组接输入电压,副边绕组接负载.原边绕组只有一个,副边绕组为一个或多个.原副边绕组套装在同一铁心柱上.套在两个铁心柱上的原边绕组或副边绕组可分别相互串联或并联.附:变压器原副边绕组要套在同一铁心柱的原因把原副边绕组套在同一铁心柱上时,由于原副边绕组紧挨在一起(间隙实际上很小,它等于原副边绕组之间绝缘纸的厚度)部分漏磁通在空气中的路径大受限制,因此漏磁通小.而边绕组没有套在原边绕组上时,漏磁通在空气中可以自由经过,无空间限制,因此在同样的磁势下漏磁通就大.将原副边绕组套在一起的合理之处即在于漏抗压降小,对变压器运行有利.因为变压器副边电压是随副边电流变化而变化的,减小原副边的漏阻抗就可以减小电压变化.为了使变压器副边电压比较稳定,总是设法减小变压器的漏抗.如果把变压器的原副边绕组分开放置, 则漏抗将大大增加,以致负载变动时副边电压变化很大, 这样的变压器就不能满足使用上的要求.24V电源变压器简易设计(四)变压器的铭牌与使用使用变压器首先要弄清并严格遵守制造厂提供的铭牌数据,以避免因使用不当而不能充分利用,甚至损坏.变压器铭牌上的主要额定数据有:1.额定电压U1和U2原边额定电压U1是指原边绕组上应加的电源电压(或输入电压),副边额定输出电压U2通常是指原边加U1时副边绕组的开路电压.使用时原边电压不允许超过额定值(一般规定电压额定值允许变化±5%).考虑有载运行时变压器有内阻抗压降,所以副边额定输出电压U2应较负载所需的额定电压高5-10%.对于负载是固定的24V电源变压器, 副边额定电压U2有时是指负载下的输出电压.附:输入电压不能超过额定电压的原因变压器中主磁通和激磁电流的关系称为铁心的磁化曲线,它是一条具有饱和特性的非线性曲线.当主磁通小于额定电压时对应的主磁通时, 磁化曲线近似为线形;超过此值后,主磁通就逐渐趋向饱和.此时,如果再增加磁通, 即增加U1,则电流就会急剧增加,这样变压器就会因过热而马上烧毁.因此,在使用变压器时,必须注意变压器的额定电压和电源电压要一致.2.额定电流I1和I2额定电流是指变压器按规定的工作时间(长时连续工作或短时工作或间歇断续工作)运行时原副边绕组允许通过的最大电流,是根据绝缘材料允许的温度定下来的.由于铜耗,电流会发热.电流越大,发热越厉害,温度就越高.在额定电流下,材料老化比较慢.但如果实际的电流大大超过额定值,变压器发热就很厉害,绝缘迅速老化,变压器的寿命就要大大缩短.3.额定容量S额定容量是视在功率,是指变压器副边额定电压和额定电流的乘积.它不是变压器运行时允许输出的最大有功功率,后者和负载的功率因数有关.所以输出功率在数值上比额定容量小.4.额定频率使用变压器时,还要注意它对24V电源频率的要求.因为在变压器中,在设计变压器时,是根据给定的电源电压等级及频率来确定匝数及磁通最大值的. 如果乱用频率, 就有可能变压器损坏.例如一台设计用50Hz,220V电源的变压器,若用25Hz,220V电源,则磁通将要增加一倍,由于磁路饱和,激磁电流剧增,变压器马上烧毁.所以在降频使用时,电源电压必须与频率成正比地下降.另外,在维持磁通不变的条件下,也不能用到400Hz,1600V的电源上.此时虽不存在磁路的饱和问题,但是升频使用时耐压和铁耗却变成了主要矛盾.因为铁耗与频率成1.5-2次方的关系.频率增大时, 铁耗增加很多. 由于这个原因, 一般对于铁心采用0.35mm厚的热轧硅钢片的变压器,50Hz时的磁通密度可达0.9-1T,而400Hz时的磁通密度只能取到0.4T.此外变压器用的绝缘材料的耐压等级是一定的,低压变压器允许的工作电压不超过300-500V. 所以在升频使用时,24V电源电压不能与频率成正比的增加, 而只能适当地增加.。
变压器房低频隔音方案

变压器房低频隔音方案
为了提高变压器房的低频隔音效果,可以采取以下方案:
1.隔音材料的选择:选择密度大、吸音性能好的隔音材料,如岩棉、
玻璃棉等。
这些材料具有很好的吸音效果,能够减少低频噪音的传播。
2.隔音结构的设计:在变压器房墙体上采用双层结构,内外墙之间用
隔音材料填充。
加入隔断墙,可以有效隔绝低频噪音的传播,提高隔音效果。
3.密封处理:对变压器房的门窗、通风口等进行密封处理,减少低频
噪音的泄漏。
选择密封性能好的门窗,加装密封条,以及在通风口处增加
隔音突出部,都可以有效降低低频噪音的传播。
4.吸音设计:在变压器房的内部安装吸音板,将其布置在噪声源附近
和声波传播路径上,可以有效地吸收低频噪音。
同时可以选择具有吸音功
能的天花板和地板材料,进一步增加吸音效果。
5.声学绝缘设计:在变压器房的地板上采用橡胶隔离层,可以减少低
频噪音的传播。
在变压器底座上采用橡胶隔音垫,可以减少振动噪音的产生。
6.降噪设备的安装:在变压器房内安装降噪设备,如降噪器、隔音罩等。
这些设备可以对低频噪音进行有效的抑制,进一步提高隔音效果。
7.合理布置变压器房内设备:合理布置变压器房内的设备,减少振动
和噪音的产生。
避免将噪声源与敏感区域靠近,可以减少低频噪音的传播。
8.定期检查和维护:定期检查和维护隔音设施,确保其正常运行。
对
于有损坏或老化的隔音材料,及时更换和修补,保持隔音效果的稳定性。
在实施上述方案的同时,还需根据实际情况进行必要的调试和优化,以确保变压器房的低频隔音效果达到设计要求。
低频变压器设计公式

C:\Documents
and Settings\Administrator\桌面\矽刚片速查表.pdf
二次线径修正∮20.38742525 3.140.35126042
∮2=
0.702520715
H
有效磁截面积
常数需要电感量
CM
气隙长度CM 磁芯气隙
96.1
58
3364
1.256
608
0.0001
0.066782925
常数线径根数开根号
线径绞线化成单股线
1.1550.420.924一定长度的电阻
电阻率铜线长度圆周率乘以直径铜线的确定507
0.0175
500
3.1414
2
0.14824103
骨架周长
系数长宽圈数系数密度面积乘2用量铜线用量
1618
1.1 1.10.0089 1.42 1.0252088
直径系数圈数系数密度面积用量铜线用量5 3.1411.5 1.10.00890.5020.888034453铜线面积
直径系数除2用量0.8
3.14
2
4
0.5024
长宽乘以2圈数系数用量长方形胶带长
8827 1.1246.4
直径系数系数用量
高频设计资料
圈数注:欲减小空载电流,需加大激磁电感:方法有两种1、更换高磁导的铁芯材质,2:加大初级圈数,同时加大次级线圈圈数。
圆形胶带和长14 3.146 1.1290.136带磁芯电感系数空心线包电感系数圈数的平方磁路长截面积磁芯
初如磁导率0.001021E+090.00000392461.7697233171.8329926μ。
工频变压器

工频一般指市电的频率,在我国是50Hz,其他国家也有60Hz的。
而可以改变这个频率交流电的电压的变压器,就是叫工频变压器了。
工频变压器被大家称为低频变压器,以示与开关电源用高频变压器有区别,工频变压器在过去传统的电源中大量使用,而这些电源的稳定方式又是采用线性调节的,所以那些传统的电源又被称为线性电源。
工频变压器的原理非常简单,理论上推导出相关计算式也不复杂,所以大家形成了看法:太简单了,就那三、四个计算公式,没什么可研究的.设计时只要根据那些简单的公式,立马成功。
我认为上面的认识既有可取之处,也有值得研究的地方.可取之处:根据计算式,可以很快就计算出结果,解决了问题;值得研究的地方是:你是否了解自己设计出的产品性能?设计合理吗?设计优化过吗?经济性如何?举个例子吧,根据功率选铁芯规格就是个很繁杂的问题,因为涉及的因素比较多.有些书推荐采用下面的半经验公式去选取:S = K·Sqrt(P) (1)定下S后,然后进行其它的计算.这确实是一种实用的方法,但也要认识到,这也是一种简化了的设计方法,大多数情况下存在着浪费.这种设计方法对业余爱好者来说用不着讨论(只是偶尔设计一个变压器自己用),但对企业来说,值得讨论,产品中大批量采用这种设计时,体现的是降低了经济效益。
工频变压器的设计选材从节约能源及原材料的角度,可采取以下建议:1、减少铜的用量,有两个方面可以实现,一是减少线径这就意味着铜阻增大,铜损损耗就会增大。
二是减少圈数,就会使空载电流增大,同样空载损耗就会加大,如果变压器长时间的处于通电待机状态,电力资源的浪费是非常大的。
每年我国因为家用电器的长期处于待机通电状态造成的电力浪费以数十亿元计。
2、变压器设计时应使铜损和铁损相等,这样变压器的损耗最低,工作最稳定,如果一个变压器设计完后,由于为节省铜线,而采取小号的线径和减少圈数的方法,使得铁心窗口还有很多的空间余量,这样就说明铁心的尺寸选择的过大,造成了铁心的浪费,由于铁心的规格大,绕线的平均周长也大,同样会造成铜线的用量增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最佳低频变压器设计方法
热轧硅钢片选铁心型号和叠厚:比如E I型的,中部舌宽,叠厚每伏匝数:N0=4、510^5/BmQ0=4、510^5/(11000Q0) Bm:磁通密度极大值,10000~12000Gs一次匝数:N1=N0U1二次匝数:N2=N0U
21、0
61、06为补偿负载时的电压下降一次导线截面积:
S1=I1/δ=P1/U1δ,δ:电流密度,可选2~3A/mm^2二次导线截面积:S2=I2/δ=P2/U2δ舌口32MM,厚34MM,E宽96MM,问功率,初级220,多少匝,线粗多少,次级51V 双组的,最大功率使用要多粗的线,告口是指<EI型变压器铁芯截面积是指E片中间那一横(插入变压器骨架中间方口里的)的宽度即铁芯舌宽与插入变压器骨架方口里所有E片的总厚度即叠厚的乘积最简单的就是指变压器骨架中间方口的面积,变压器铁芯截面积是指线圈所套着的部分:舌宽叠厚=截面积,单位:C㎡>,第一种方法:计算方法:(1)变压器矽钢片截面:3、2CM*3、4CM*0、9=9、792CM^2(2)根据矽钢片截面计算变压器功率:P=S/K^2=(9、79/1、25)^2=
61、34瓦(取60瓦)(3)根据截面计算线圈每伏几匝:
W=4、5*10^5/BmS=4、5*10^5/(10000*9、79)=4、6匝/伏(4)初级线圈匝数:220*4、6=1012匝(5)初级线圈电流:
60W/220V=0、273A(6)初级线圈线径:d=0、715根号0、273=0、
37(MM)(7)次级线圈匝数:2*(51*4、6*1、03)=2*242(匝)(1、03是降压系素,双级51V=2*242匝)(8)次级线圈电流:60W/(2*51V)=0、59A(9)次级线径:d=0、715根号0、59=0、55(MM)第二种方法:计算方法:E形铁芯以中间舌为计算舌宽的。
计算公式:输出功率:P2=UI考虑到变压器的损耗,初级功率:P1=P2/η(其中η=0、7~0、9,一般功率大的取大值)每伏匝数计算公式:N(每伏匝数)=4、510(的5次方)/BS(B=硅钢片导磁率,一般在8000~12000高斯,好的硅钢片选大值,反之取小值。
S=铁芯舌的面积,单位是平方CM)如硅钢片质量一般可选取10000高斯,那么可简化为:N=45/S计算次级绕组圈数时,考虑变压器漏感和导线铜损,须增加5% 绕组余量。
初级不用加余量。
由电流求线径:I=P/U (I=A,P=W,U=V)以线径每平方
MM≈2、5~2、6A选取。
第三种方法:计算方法首先要说明的是变压器的截面积是线圈所套住位置的截面积、如果你的铁心面积(线圈所套住位置)为32*34=1088mm2=
10、88cm2 我没有时间给你计算、你自己算、呵呵!给你个参考,希望对你有帮助:小型变压器的简易计算:1,求每伏匝数每伏匝数=55/铁心截面例如,你的铁心截面=3、5╳1、6=5、6平方厘米故,每伏匝数=55/5、6=9、8匝2,求线圈匝数初级线圈
n1=220╳9、8=2156匝次级线圈n2=8╳9、8╳1、05=
82、32 可取为82匝次级线圈匝数计算中的1、05是考虑有负荷时的压降3,求导线直径你未说明你要求输出多少伏的电流是
多少安?这里我假定为8V、电流为2安。
变压器的输出容量
=8╳2=16伏安变压器的输入容量=变压器的输出容量/0、8=20伏安初级线圈电流I1=20/220=0、09安导线直径 d=0、8√I初级线圈导线直径 d1=0、8√I1=0、8√0、09=0、24毫米次级线圈导线直径 d2=0、8√I2=0、8√2=1、13毫米要注意层间电压绝缘,引出端绝缘问题。