沈阳航空航天大学科技成果——木质纤维素生物质制备生物油反应物及生物油技术
《不同木质纤维素类生物质的预处理条件及酶解糖化研究》范文

《不同木质纤维素类生物质的预处理条件及酶解糖化研究》篇一一、引言随着全球能源需求的增长和环境污染问题的日益严重,可再生能源的开发和利用已成为当前研究的热点。
木质纤维素类生物质作为一种丰富的可再生资源,具有巨大的开发潜力。
然而,由于其复杂的结构和组成,木质纤维素的利用效率受到限制。
因此,对不同木质纤维素类生物质进行预处理和酶解糖化研究,对于提高生物质能源的利用效率具有重要意义。
二、不同木质纤维素类生物质的预处理条件1. 农业残余物农业残余物如秸秆、稻草等,通常采用物理、化学或物理化学联合的方法进行预处理。
物理方法主要包括磨碎、蒸汽爆破等,可以破坏纤维素的结晶结构,提高酶解效率。
化学方法则常用稀酸、稀碱等处理,可以溶解半纤维素和木质素,提高纤维素的暴露程度。
2. 林业残余物林业残余物如木屑、树枝等,其预处理方法与农业残余物类似。
但由于其纤维素含量较高,通常更倾向于采用化学法进行预处理。
同时,为了充分利用木质素资源,一些研究也采用了生物法进行预处理。
3. 能源作物能源作物如芒草、柳枝稷等,其纤维素含量高且结构相对简单。
因此,预处理方法可以更加灵活,既可以采用物理法,也可以采用化学法或生物法。
三、酶解糖化研究酶解糖化是利用酶将预处理后的木质纤维素水解为单糖的过程。
在此过程中,酶的选择、酶的用量、反应温度、反应时间等因素都会影响糖化的效率和效果。
1. 酶的选择酶的选择是酶解糖化过程中的关键因素。
常用的酶主要包括纤维素酶、半纤维素酶和木聚糖酶等。
不同种类的酶在糖化过程中的作用不同,因此需要根据预处理后的生物质特性选择合适的酶。
2. 酶的用量和反应条件酶的用量和反应条件对糖化效果有重要影响。
一般来说,酶的用量越大,糖化效果越好。
然而,过高的酶用量会增加成本,不利于实际生产。
因此,需要通过实验确定最佳的酶用量。
此外,反应温度、pH值、反应时间等也会影响糖化效果,需要通过实验进行优化。
四、结论不同木质纤维素类生物质的预处理条件和酶解糖化研究对于提高生物质能源的利用效率具有重要意义。
木质纤维生物质精炼中木质素的分离及高值化利用

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2016年第35卷第1期·294·化工进展木质纤维生物质精炼中木质素的分离及高值化利用平清伟,王春,潘梦丽,张健,石海强,牛梅红(大连工业大学,辽宁省制浆造纸重点实验室,辽宁大连 116034)摘要:木质纤维素作为最有前途的可再生资源,可替代现有的液体燃料。
因此,木质素作为木质纤维生物质细胞壁的主要成分之一,由其开发的高附加值产品将大大提高从可循环利用生物质生产能源的经济性。
本文回顾了自催化乙醇精炼技术的优势,相对于其他制浆技术不仅可以高效地从木质纤维生物质中分离出高活性的木质素,还可以获得高附加值的副产品(如糠醛、低聚糖、乙酰丙酸、甲酸、乙酸等)。
同时,抽提液可循环利用。
基于自催化乙醇精炼木质纤维生物质的特点,介绍了用自催化乙醇精炼所分离出的高活性木质素进行高值化利用的优势,以及用木质素生产高附加值产品的研究及利用,从而为木质纤维生物质中木质素在工业上大量开发利用提供了一条新的途径。
关键词:乙醇精炼;自催化;木质纤维生物质;乙醇木质素;高值化利用中图分类号:TS 79 文献标志码:A 文章编号:1000–6613(2016)01–0294–08DOI:10.16085/j.issn.1000-6613.2016.01.040Separation and high-value utilization of lignin from the lignocellulosebiomass refiningPING Qingwei,WANG Chun,P AN Mengli,ZHANG Jian,SHI Haiqiang,NIU Meihong (Dalian Polytechnic University,Key Laboratory of Pulp and Paper in Liaoning Province,Dalian 116034,Liaoning,China)Abstract:As the most promising renewable resource,lignocellulose may replace the existing liquid fuel. Lignin is one of the main components of lignocellulose biomass cell walls and therefore developing high value-added products from lignin will greatly improve the economic efficiency in recycling biomass to energy. This paper reviewed the advantages of the auto-catalytic ethanol refining technology. Compared with other pulping technology,it can not only separate highly active lignin from lignocellulose biomass feedstock,but also attain high-value co-products,for instance the furfural,oligosaccharide,levulinic acid,formic acid and acetic acid,etc. Simultaneously,the extracting liquor can be recycled. In the review,based on the characteristics of auto-catalytic ethanol refining lignocellulose biomass feedstocks,we introduced the advantages of high value application of highly active lignin separated from the lignocellulose biomass via autocatalytic ethanol refining. Furthermore,the utilizations of products prepared from the lignin were reported,which provides a new way in large scale development and utilization of lignocellulose biomass lignin in industries.Key words:ethanol refining; auto-catalytic; lignocellulose biomass; ethanol-lignin; high-value utilization纤维素、半纤维素、木质素构成了丰富的可再生植物纤维资源。
生物质基航空煤油

生物质基航空煤油全文共四篇示例,供读者参考第一篇示例:生物质基航空煤油,是由生物质原料制成的一种可替代传统石油燃料的航空燃料。
近年来,生物质基航空煤油备受关注,因为它可以降低航空行业对化石能源的依赖,减少碳排放,减缓气候变化的影响。
本文将深入探讨生物质基航空煤油的制备过程、优势和未来发展前景。
一、生物质基航空煤油的制备过程生物质基航空煤油是通过生物质原料制备而成的一种航空燃料。
生物质原料可以包括秸秆、木屑、废弃农作物等可再生资源,也可以包括油料作物、藻类等生物资源。
生物质经过热解、气化、液化等一系列工艺处理,得到生物质油(bio-oil),再通过精炼、混合等工艺,得到生物质基航空煤油。
生物质基航空煤油的制备过程主要包括生物质的处理、催化裂解、气化液化、精炼和混合等环节。
在生物质的处理过程中,生物质原料经过初步处理,去除杂质、降低含水率后,进入催化裂解反应器。
在催化裂解反应器内,生物质原料在催化剂的作用下发生裂解反应,生成液体和气体等产物,其中的液体称为生物质油。
生物质油经过气化、液化等处理后,得到纯净的生物质基航空煤油。
生物质基航空煤油具有与传统航空煤油相似的化学组成和燃烧性能,可直接用于航空发动机,是一种可持续的、环保的航空燃料。
2. 可持续性:生物质基航空煤油的生产过程中使用生物质原料,这些原料可以通过种植、养殖等方式再生产,不会造成资源枯竭和环境破坏。
生物质基航空煤油是一种可持续的、长期的能源替代品。
4. 技术成熟度高:生物质基航空煤油的生产技术已经相对成熟,可以规模化生产,成本逐渐下降。
随着技术的进步和政府的支持,生物质基航空煤油的发展前景广阔。
随着气候变化的加剧和能源安全的需求,生物质基航空煤油的市场前景广阔。
越来越多的航空公司和政府开始重视生物质基航空煤油的发展,投入资源推动相关产业链的建设。
未来,随着技术的不断创新和成熟,生物质基航空煤油的生产成本将逐渐下降,市场竞争力将不断增强。
木质纤维素生物质预处理技术的研究进展

2.1 物理法
2.1.1 机械粉碎 利用削片、粉碎或研磨把木质纤维素
生物质变成 10~30 mm 的切片或 0.2~2 mm 甚至更为细
小的颗粒,以提高比表面积可及性,降低纤维素结晶度
和聚合度,从而提高酶解转化率 。 [4] 机械粉碎的优点
是经处理的纤维素粉颗粒没有膨润性,体积小,原料的
水溶性组分增加,可提高基质浓度,纤维素的水解率也
蒸汽爆破技术分为添加化学试剂和不添加化学试 剂 2 种。Ballesteros 等[14]对不同颗粒大小的禾本农业 废弃物基质通过汽爆处理后的酶解效果研究表明:基 质颗粒较大时(8~12 mm),处理后酶解效果较好,基质 较小时采用汽爆处理后酶解效果反而不理想。 Mielenz 等 研 [15] 究了用蒸汽爆破杨木时加入 NaOH,随 碱浓度的增加,木质素脱除率升高,最高可达 90%。 Linde 等[16]在蒸汽爆破处理前用 0.2% H2SO4 预浸处理 麦秆,分别在 190℃、200℃和 210℃条件下处理 2 min、 5 min 和 10 min。 结 果 表 明 ,在 190℃ 温 度 下 处 理 10 min,葡萄糖和木糖的得率最高。蒸汽爆破预处理 技术因其节能、无污染、酶解效率高和应用范围广,适 用于处理植物纤维原料的简单高效的处理方式,可用 于硬木、软木和农业废弃物等各种植物生物质。 2.2.2 SO2 蒸汽爆破 SO2 蒸汽爆破是在蒸汽爆破预处 理过程中添加 SO2 气体,旨在提高纤维素和半纤维素 的转化率和酶水解效率。Öhgren 等[17]研究了用 SO2爆 破法处理玉米秸秆,处理条件为 190°C,5 min,3% SO2 (按原料干重计算),处理后的玉米秸秆在酶解过程中 除了采用纤维素酶外,还添加了半纤维素酶,葡萄糖得 率 达 到 了 接 近 理 论 转 化 率 的 酶 解 效 率 ,木 糖 得 率 达 70%~74%。 2.2.3 氨纤维爆裂 氨纤维爆裂是指将木质纤维素生物 质置于高温高压状态的液态氨中,保持一定时间,然后
【国家自然科学基金】_木质纤维素生物质_基金支持热词逐年推荐_【万方软件创新助手】_20140731

推荐指数 8 7 5 4 4 4 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2014年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
2008年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
科研热词 连续水解反应器 稀酸水解 热解 木质纤维素生物质 高温液态水 超低酸水解 能源偿还 纤维素分解菌 纤维素乙醇 纤维素 稻壳 生物质能 生物质 活化能 气化 木质纤维素类生物质 木质素 木薯渣 复合系 反应器 双外推法 产业化 mc1
科研热词 木质纤维素 生物质 热解 小麦秸秆 好氧分解 复合系 动力学 高斯多峰拟合 预处理效果 预处理 钌 酶解 超声处理 评价 蒸汽爆破 羟甲基糠醛 纳米纤丝 纤维素 纤维二糖 纤维乙醇 紫外光谱 糠醛 糖得率 碳纳米管 碳循环 生物质提取液 生物制氢 燃料乙醇 煤油霉菌 热重 流程模拟 水解效率 水解反应 水热反应 植物基生物质 极限低水用量策略 机理 木质纤维素生物转化 木质纤维素生物质 木聚糖酶 持水率 抑制物 形态特征 工业纤维素酶 富钾 多样性 复合酶 商陆 咪唑基离子液体 同步糖化与发酵 发酵 协同酶解
2012年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
生物质催化转化制航空煤油关键技术及工业示范

生物质催化转化制航空煤油关键技术及工业示范
生物质催化转化制航空煤油是指利用生物质作为原料,通过催化转化技术将其转化为航空煤油的过程。
生物质催化转化制航空煤油的关键技术包括生物质预处理、催化转化反应、产品分离和催化剂回收等。
1. 生物质预处理:生物质通常需要进行预处理,以去除杂质、降低含水量和颗粒大小。
常用的预处理方法包括切碎和磨碎、水热处理、气固分离和干燥等。
2. 催化转化反应:生物质经过预处理后,可以与催化剂在适当的反应条件下进行催化转化反应。
常用的催化转化反应方法包括热解、催化裂解和气相催化转化等。
热解是将生物质在高温下分解为合成气和大分子化合物,而催化裂解和气相催化转化则是将合成气通过催化剂转化为液体烃类产品。
3. 产品分离:催化转化反应生成的产物通常包含多种组分,需要进行分离和提纯。
常用的分离方法包括蒸馏、溶剂萃取、结晶和吸附等。
4. 催化剂回收:催化剂通常是昂贵的,因此回收和再利用催化剂是非常重要的。
常用的催化剂回收方法包括物理方法、化学方法和生物方法等。
物理方法包括过滤、离心、扩散和干燥等;化学方法包括溶解、沉淀和吸附等;生物方法则是利用微生物对催化剂进行降解和转化。
工业示范是将上述关键技术应用于实际工业生产中的一种展示
和验证。
在生物质催化转化制航空煤油的工业示范中,通常会建立一个小型的生产装置,模拟真实的生产环境和工艺流程。
通过这些工业示范,可以验证关键技术的可行性、可靠性和经济性,并为进一步的工业化推广提供参考和依据。
生物质热解制备生物油品质实验报告

生物质热解制备生物油品质实验报告一、实验背景随着全球能源需求的不断增长以及对环境保护的日益重视,寻找可再生和清洁能源已成为当务之急。
生物质作为一种丰富的可再生资源,其热解转化为生物油的技术受到了广泛关注。
通过热解过程,可以将生物质转化为具有潜在能源价值的生物油,但生物油的品质对于其实际应用至关重要。
本实验旨在研究生物质热解制备生物油的品质特性。
二、实验目的1、分析不同生物质原料在热解过程中产生的生物油的化学成分和物理性质。
2、评估热解条件(如温度、反应时间、升温速率等)对生物油品质的影响。
3、确定优化的热解工艺参数,以提高生物油的品质和产量。
三、实验材料与设备1、生物质原料选取了常见的生物质材料,如木屑、秸秆和稻壳。
对原料进行预处理,包括干燥、粉碎和筛分,以确保其粒度均匀。
2、实验设备热解反应炉:采用固定床式热解炉,能够精确控制温度和反应时间。
冷凝器:用于冷却热解产生的气体,使其凝结为液体生物油。
气体收集装置:收集热解过程中产生的不可冷凝气体。
分析仪器:气相色谱质谱联用仪(GCMS)、傅里叶变换红外光谱仪(FTIR)、元素分析仪、粘度计、密度计等。
四、实验方法1、热解实验将预处理后的生物质原料装入热解反应炉中,按照设定的热解条件进行实验。
控制温度在 400-600℃之间,反应时间为 30-90 分钟,升温速率为5-15℃/min。
2、生物油收集与处理热解产生的气体经过冷凝器冷却后,收集得到生物油。
对生物油进行过滤,去除其中的固体杂质。
3、品质分析使用 GCMS 分析生物油中的有机成分,确定其主要化合物种类和含量。
通过 FTIR 分析生物油中的官能团结构。
利用元素分析仪测定生物油中的碳、氢、氧、氮等元素含量。
使用粘度计和密度计测量生物油的粘度和密度。
五、实验结果与讨论1、化学成分分析不同生物质原料热解得到的生物油化学成分存在差异。
木屑热解生物油中主要含有酚类、醛类和酮类化合物;秸秆热解生物油中含有较多的酸类和酯类化合物;稻壳热解生物油中则以醇类和呋喃类化合物为主。
生物柴油制备工艺技术进展

生物柴油制备工艺技术进展来源:中国化工信息周刊中国化工信息中心教授级高级工程师朱曾惠近年来,生物质制柴油(Biodiesel)引起了广泛的关注。
2006年9月在德国德累斯顿召开的第一届IUPAC绿色——可连续化学国际会议上发表的一篇报告综合评判了当前生物柴油工业生产工艺进展,本文特摘录以飨读者。
一、第一代生物柴油生产工艺早在1983年,就有人提出应用植物油的甲基酯生产生物柴油。
1992年法国石油研究所(IFP)设计建立了第一套工业装置。
甲基酯是由植物油通过酯交换,将三甘油酯加甲醇转换成脂肪酸甲酯(FAME),反应式如下:该反应为催化反应,为提高转换率,甲醇需要过量。
常用的工业生物柴油工艺采纳均相催化,以NaOH或甲醇钠为催化剂。
从反应器出来的双相物料进入静置器中分离。
富酯相必须进行中和、清洗,以清除少量的催化剂(按要求,Na+K的含量要低于5ppm)。
酯交换后的余外催化剂在甘油相中以乙醇酸钠、甲醇钠和钠皂形式显现,需进行回收。
中和时加入盐酸进行,最终甘油纯度一样为80%~95%。
催化反应副产物钠皂可溶于甘油相中,要在中和后进行沉降作为脂肪酸分离,反应造成的缺失达生物柴油生成量的1%。
FAME收率(重量%)取决于原料质量和催化剂的种类,一样在98.5%~99.4%。
中小型企业可采纳间歇式工业化装置,假如产能大于10万t/a,则用连续式较为经济。
Ballestra、Connemann CD,以及鲁奇公司的PSI装置都采纳了连续工艺,这些工艺由2~3台反应釜串连,每一步催化反应后,甘油都要通过分离去除。
由于产品酯要符合冷性能和稳固性等相关指标,因此对原料植物油的选择有专门大的限制。
迄今为此,只有食用植物油符合要求,因此存在与食品争原料的问题。
此外,该工艺产生大量的副产物粗甘油。
二、第一代生产工艺改进1. 采纳非均相催化解决副产品甘油纯化问题最简便的途径是采纳非均相催化。
IFP 差不多开发出此工艺并于2006年在法国南部建成第一套工业装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沈阳航空航天大学科技成果——木质纤维素生物质制备生
物油反应物及生物油技术
成果简介水热液化制备生物油,所采用的生物质原料包括木质纤维素类生物质(包括农作物秸秆、林木废弃物等)、动植物油脂、藻类、动物粪便等,其中又以木质纤维素类生物质的使用最为广泛。
对单一组分的水热液化实验结果显示,木质素主要生成酚类、芳香族化合物及残炭等,因此直接利用木质纤维素类生物质水热液化制备生物油时,得到的生物油化学组分极其复杂,且含量分散,严重影响了水热液化生物油的应用价值。
针对水热液化制备生物油的缺点,提出一种利用供氢溶剂高效水热液化制备生物油的方法,但是该方法使用的供氢溶剂在二次循环利用时仍需要加氢处理,增加了水热液化制备生物油的成本。
提出一种脱木质素预处理生物质液化制备生物油的方法,该方法利用物理、化学或生物手段对生物质进行脱木质素处理,再利用剩余的固体物质进行水热液化反应,生物油的产率得到提高。
但是该方法在脱除木质素的同时也将部分半纤维素和纤维素脱出,所以在生物质的整体利用上存在不足,且脱除木质素产生的废液等环境危害较大。
虽然木质素的减少降低了反应温度,但是由木质素分解产生的单酚类、芳烃等是极具价值的生物油组分,木质素仍是生物质水热液化制备生物油不容省略的组分之一。
取得成果已获得国家发明专利授权
合作方式合作开发。