人教版七年级下学期期中测试数学试卷
人教版数学七年级下册《期中测试卷》(含答案)

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.2.如图是某同学在体育课上跳远后留下的脚印,那么他的跳远成绩可以用图中哪条线段的长度表示()A. 线段AMB. 线段BNC. 线段CND. 无法确定3.如图,已知:∠1=∠2,那么下列结论正确的是( )A. ∠C=∠DB. AB∥CDC. AD∥BCD. ∠3=∠44.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C 20° D. 15°5.在实数﹣23838﹣0.518,3π,37-|2,无理数的个数为( )A. 1B. 2C. 3D. 46.30( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间7.下列从左到右的变形中,正确的是( ) A. 81=9± B. 3.60.6-=- C. 21010-=-() D. 3355-=- 8.若点P 是第三象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A. (﹣4,-3)B. (4,﹣3)C. (﹣3,-4)D. (3,﹣4)9.既是方程1x y -=,又是方程25x y +=解是( )A. 12x y =-⎧⎨=⎩B. 21x y =⎧⎨=-⎩C. 12x y =⎧⎨=⎩D. 21x y =⎧⎨=⎩ 10.(数学文化)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长为尺,绳子长为尺,根据题意可列方程组为( )A. 4.512x y y x +=⎧⎪⎨+=⎪⎩B. 4.512x y y x =+⎧⎪⎨+=⎪⎩C. 4.512x y x y =+⎧⎪⎨=+⎪⎩D. 4.512x y y x +=⎧⎪⎨=-⎪⎩二.填空题(共10小题)11.图是对顶角量角器,用它测量角度的原理是___________.12.如图所示,OA ⊥OC 于点O ,∠1=∠2,则∠BOD 的度数是_____.32-的相反数是__________.14.16的算术平方根是____,﹣8的立方根是____.15.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +=_____.16.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.17.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于点______.18.若|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,则3x +4y =_____.19.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm ,则每一个小长方形的面积为_____.20.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P 的坐标是_______.三.解答题(共6小题)21.计算(1238(5)-﹣32|;(2381+27-22.解方程组(1)5293411x y x y +=⎧⎨+=⎩; (2)2431y x x y =-⎧⎨+=⎩. 23.如图,直角坐标系中,△ABC 的顶点都在网格点上,其中,C 点坐标为(1,2).(1)写出点A 、B 的坐标:A ( , )、B ( , );(2)求△ABC 的面积;(3)将△ABC 先向左平移2个单位长度,再向上平移1个单位长度,得到△A ′B ′C ′,画出△A ′B ′C ′,写出A′、B′、C′三个点坐标.24.完成下面证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,( )又∵∠A=∠1,(已知)∴AC∥,( )∴∠2=,( )∴∠C=∠E(等量代换)25.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.26.已知射线AB∥射线CD,P为一动点,AE平分∠PAB,CE平分∠PCD,且AE与CE相交于点E.(1)在图1中,当点P运动到线段AC上时,∠APC=180°.①直接写出∠AEC度数;②求证:∠AEC=∠EAB+∠ECD;(2)当点P运动到图2的位置时,猜想∠AEC与∠APC之间的关系,并加以说明;(3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC与∠APC之间的关系,并加以证明.答案与解析一.选择题(共10小题)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.[答案]D[解析][详解]解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.2.如图是某同学在体育课上跳远后留下的脚印,那么他的跳远成绩可以用图中哪条线段的长度表示()A. 线段AMB. 线段BNC. 线段CND. 无法确定[答案]B[解析]点到直线的距离,所以他的跳远成绩是BN,故选B.3.如图,已知:∠1=∠2,那么下列结论正确是( )A. ∠C=∠DB. AB∥CDC. AD∥BCD. ∠3=∠4[答案]B[解析][分析]∠1和∠2是直线AB、CD被直线DB所截的内错角,若∠1=∠2,则AB∥CD.[详解]解:∵∠1=∠2,∴AB ∥CD .(内错角相等,两直线平行)故选B .[点睛]正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C. 20°D. 15°[答案]B[解析] 根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,5.在实数﹣23838﹣0.518,3π,37-|2,无理数的个数为( ) A. 1B. 2C. 3D. 4 [答案]D[解析][分析]根据无理数的定义,可得到无理数的个数.[详解]﹣23是分数,8=2238=2是有理数,﹣0.518是有理数;3π是无理数;37-|2是无理数 83π,37-|,2是无理数 故选:D[点睛]本题考查了无理数的定义,无限不循环小数叫做无理数.无理数是实数中不能精确地表示为两个整数之比的数,2等开不尽方的数都是无理数.6.30( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间 [答案]C[解析][分析]<<5<<6,即可解出.[详解]<<∴5<<6,故选C.[点睛]此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.7.下列从左到右的变形中,正确的是( )A. 9±B. 0.6=-C. 10=-D. =[答案]D[解析]选项A ,原式=9;选项B ,原式 ;选项C ,原式=10;选项D ,原式=故选D. 8.若点P 是第三象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A. (﹣4,-3)B. (4,﹣3)C. (﹣3,-4)D. (3,﹣4)[答案]C[解析]因点P 在第三象限,可得P 点的横坐标为负,纵坐标为负,又因到x 轴的距离是4,所以纵坐标为-4,再由到y 轴的距离是3,可得横坐标为-3,即可得P(-3,-4),故选C.9.既是方程1x y -=,又是方程25x y +=的解是( ) A. 12x y =-⎧⎨=⎩ B. 21x y =⎧⎨=-⎩ C. 12x y =⎧⎨=⎩ D. 21x y =⎧⎨=⎩ [答案]D[解析]两方程的解相同,可联立两个方程,形成一个二元一次方程组,解方程组即可求得.解:根据题意,得:()()11252x y x y ⎧-=⎪⎨+=⎪⎩,①+②,得:3x=6,解得:x=2,x=2代入②,得:4+y=5,解得:y=1,∴21x y =⎧⎨=⎩,故选D.10.(数学文化)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长为尺,绳子长为尺,根据题意可列方程组为()A.4.512x yyx+=⎧⎪⎨+=⎪⎩B.4.512x yyx=+⎧⎪⎨+=⎪⎩C.4.512x yxy=+⎧⎪⎨=+⎪⎩D.4.512x yyx+=⎧⎪⎨=-⎪⎩[答案]A [解析][详解]4.512x yyx+=⎧⎪⎨+=⎪⎩二.填空题(共10小题)11.图是对顶角量角器,用它测量角度的原理是___________.[答案]对顶角相等[解析]试题分析:由题意得,扇形零件的圆心角与其两边的反向延长线组的角是对顶角.因为对顶角相等,所以利用图中的量角器可以量出这个扇形零件的圆心角的度数.故答案为对顶角相等.考点:对顶角、邻补角.12.如图所示,OA⊥OC于点O,∠1=∠2,则∠BOD的度数是_____.[答案]90°.[解析][分析]根据垂直求出∠AOC =90°,根据∠1=∠2求出∠BOD =∠AOC ,即可得出答案.[详解]∵OA ⊥OC ,∴∠AOC =90°,∵∠1=∠2,∴∠BOD =∠2+∠BOC =∠1+∠BOC =∠AOC =90°,故答案为:90°.[点睛]此题考查垂直定义和角的计算,能求出∠BOD=∠AOC 是解题的关键.-的相反数是__________.[答案[解析][分析]根据只有符号不同的两个数叫做互为相反数进行解答.[详解[点睛]此题考查相反数,解题关键在于掌握其定义.14.16的算术平方根是____,﹣8的立方根是____.[答案]4,-2[解析]试题分析:164=,-82=-.考点:1.算术平方根;2. 立方根.15.已知,a 、b 互为倒数,c 、d 互为相反数,求1=_____.[答案]0.[解析][分析]根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.[详解]∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴31ab c d -+++=﹣1+0+1=0.故答案为:0.[点睛]此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.16.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.[答案]2.[解析][分析]根据x 轴上的点的纵坐标等于0列式计算即可得解.[详解]∵点P (m +3,m ﹣2)x 轴上,∴m ﹣2=0,解得m =2.故答案为:2.[点睛]此题考查点的坐标,熟记x 轴上的点的纵坐标等于0是解题的关键.17.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于点______.[答案](3,3)[解析][分析]根据已知两点的坐标建立坐标系,然后确定其它点的坐标.[详解]由图示知;“将”为(0,0)而“马”位于“将”上第三个格,右第三个格中,所以,“马”为(3,3)故答案:(3,3).18.若|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,则3x +4y =_____.[答案]11.[解析][分析]利用相反数的性质及非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可确定出所求.[详解]∵|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,∴|x +y ﹣3|+(2x +3y ﹣8)2=0,∴=323=8x yx y+⎧⎨+⎩①②,①×3﹣②得:x=1,把x=1代入①得:y=2,则3x+4y=3+8=11.故答案为:11.[点睛]此题考查解二元一次方程组,非负数的性质,熟练掌握方程组的解法是解题的关键.19.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm,则每一个小长方形的面积为_____.[答案]27cm2.[解析][分析]设小长方形的长为xcm,宽为ycm,观察大长方形,由大长方形的对边相等及大长方形的宽为12cm,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入xy中即可求出结论.[详解]解:设小长方形的长为xcm,宽为ycm,依题意,得:2312x x yx y=+⎧⎨+=⎩,解得:93 xy=⎧⎨=⎩,∴27xy=.故答案为:27cm2.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是_______.[答案](2019,2)[解析][分析]分析点P 的运动规律,找到循环次数即可.[详解]分析图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3 当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).[点睛]本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.三.解答题(共6小题)21.计算(1238(5)-﹣32|;(2381+27-[答案](1)3(2)6.[解析][分析](1)直接利用立方根以及二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用二次根式的性质以及立方根分别化简再合并得出答案.[详解]解:(1)原式=2+5﹣(23=2+5﹣3=3(2)原式=9﹣3=6.[点睛]本题考查了实数的运算,涉及到的知识有,立方根、二次根式的性质、绝对值的性质等知识,熟练掌握运算法则是解题的关键.22.解方程组(1)529 3411 x yx y+=⎧⎨+=⎩;(2)24 31y xx y=-⎧⎨+=⎩.[答案](1)12xy=⎧⎨=⎩;(2)12xy=⎧⎨=-⎩.[解析]分析](1)方程组利用加减消元法求出解即可;(2)方程组利用代入消元法求出解即可.[详解]解:(1)529 3411x yx y+=⎧⎨+=⎩①②,①×2﹣②得:7x=7,解得:x=1,把x=1代入①得:y=2,则方程组的解为12 xy=⎧⎨=⎩;(2)2431y xx y=-⎧⎨+=⎩①②,把①代入②得:3x+2x﹣4=1, 解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为12 xy=⎧⎨=-⎩.[点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A( , )、B( , );(2)求△ABC的面积;(3)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,画出△A′B′C′,写出A′、B′、C′三个点坐标.[答案](1)A(2,﹣1)、B(4,3);(2)5;(3)图详见解析,A′(0,0)、B′(2,4)、C′(﹣1,3).[解析][分析](1)根据直角坐标系的特点写出对应点的坐标;(2)用△ABC所在矩形面积减去三个小三角形的面积即可求解;(3)分别将点A、B、C先向左平移2个单位长度,再向上平移1个单位长度,得到点A′、B′、C′,然后顺次连接并写出坐标.[详解]解:(1)A(2,﹣1),B(4,3);(2)S△ABC=3×4﹣12×2×4﹣12×1×3﹣12×3×1=5,故△ABC的面积为5;(3)所作图形如图所示:A′(0,0)、B′(2,4)、C′(﹣1,3).[点睛]本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.24.完成下面的证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,( )又∵∠A=∠1,(已知)∴AC∥,( )∴∠2=,( )∴∠C=∠E(等量代换)[答案]两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等[解析][分析]首先根据平行线的性质求出∠2=∠C,进而求出AC∥DE,即可得到∠2=∠E,利用等量代换得到结论.[详解]证明:∵BE∥CD,(已知)∴∠2=∠C,(两直线平行,同位角相等)又∵∠A=∠1,(已知)∴AC∥DE,(内错角相等,两直线平行)∴∠2=∠E,(两直线平行,内错角相等)∴∠C=∠E(等量代换).故答案为两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等.[点睛]此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.25.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.[答案](1)一间大餐厅可供960名学生就餐,一间小餐厅可供360名学生就餐;(2)能,理由见解析.[解析][分析](1)根据题意可知本题的等量关系有,1个大餐厅容纳的学生人数+2个小餐厅容纳的学生人数=1680,2个大餐厅容纳的学生人数+1个小餐厅容纳的学生人数=2280.根据这两个等量关系,可列出方程组.(2)根据题(1)得到1个大餐厅和1个小餐厅分别可容纳学生的人数,可以求出5个大餐厅和2个小餐厅一共可容纳学生的人数,再和5300比较.[详解](1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,根据题意,得2168022280x y x y ==+⎧⎨+⎩ 解得:960360x y ⎧⎨⎩==, 答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.(2)因为960×5+360×2=5520>5300, 所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.[点睛]考查二元一次方程的应用,属于比较基本的应用问题.注意根据题目给出的已知条件,找出合适的等量关系,列出方程组,再求解.26.已知射线AB ∥射线CD ,P 为一动点,AE 平分∠PAB ,CE 平分∠PCD ,且AE 与CE 相交于点 E.(1)在图1中,当点P 运动到线段AC 上时,∠APC=180°.①直接写出∠AEC 的度数;②求证:∠AEC=∠EAB+∠ECD ;(2)当点P 运动到图2的位置时,猜想∠AEC 与∠APC 之间的关系,并加以说明;(3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC 与∠APC 之间的关系,并加以证明.[答案](1))①∠AEC=90°②见解析;(2)∠AEC=12∠APC , 理由见解析;(3)不成立,∠AEC=180∘−12∠APC ,理由见解析[解析][分析](1)①由平行线的性质可得出∠PAB+∠PCD=180°,进而可得出∠AEC 的度数;②在图1中,过E 作EF ∥AB ,根据平行线的性质可得出∠AEF=∠EAB 、∠CEF=∠ECD ,进而即可证出∠AEC=∠AEF+∠CEF=∠EAB+∠ECD ;(2)猜想:∠AEC=12∠APC,由角平分线的定义可得出∠EAB=12∠PAB、∠ECD=12∠PCD,由(1)可知∠AEC=∠EAB+∠ECD、∠APC=∠PAB+∠PCD,进而即可得出∠AEC=12(∠PAB+∠PCD)=12∠APC;(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180°-12∠APC,过P作PQ∥AB,由平行线的性质可得出∠PAB+∠APQ=180°、∠CPQ+∠PCD=180°,进而可得出∠PAB+∠PCD=360°-∠APC,再由角平分线的定义可得出∠EAB=12∠PAB、∠ECD=12∠PCD,结合(1)的结论即可证出∠AEC=180°-12∠APC.[详解](1)①∵AB∥CD,∴∠PAB+∠PCD=180°,∴∠AEC=90°;②证明:在图1中,过E作EF∥AB,则∠AEF=∠EAB. ∵AB∥CD,∴EF∥CD,∴∠CEF=∠ECD.∴∠AEC=∠AEF+∠CEF=∠EAB+∠ECD.(2)猜想:∠AEC=12∠APC,理由如下:∵AE、CE分别平分∠PAB和∠PCD,∴∠EAB=12∠PAB,∠ECD=12∠PCD.由(1)知∠AEC=∠EAB+∠ECD,∠APC=∠PAB+∠PCD,∴∠AEC=12∠PAB+12∠PCD=12(∠PAB+∠PCD)=12∠APC.(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180∘−12∠APC,其证明过程是:过P作PQ∥AB,则∠PAB+∠APQ=180°. ∵AB∥CD,∴PQ∥CD,∴∠CPQ+∠PCD=180∘.∴∠PAB+∠APQ+∠CPQ+∠PCD=360°,即∠PAB+∠PCD=360°−∠APC. ∵AE、CE分别平分∠PAB和∠PCD,∴∠EAB=12∠PAB,∠ECD=12∠PCD.由(1)知∠AEC=∠EAB+∠ECD,∴∠AEC=12∠PAB+12∠PCD=12(∠PAB+∠PCD)= 180°-12∠APC.[点睛]此题考查平行线的判定与性质,解题关键在于作辅助线。
人教版数学七年级下册《期中检测卷》(含答案)

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 32.在平面直角坐标系中,点A (﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A 30° B. 40° C. 50° D. 60°4.如图,AB ∥CD ,∠AGE=126°,HM 平分∠EHD ,则∠MHD 的度数是( )A. 44°B. 25°C. 26°D. 27° 5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°6.点()1,3-向右平移个单位后的坐标为( )A ()4,3- B. ()1,6- C. ()2,3 D. ()1,0- 7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( )A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩ 8.下列说法正确的是( )A. 的平方根是B. 的平方根C. 的平方根D. 的平方根9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,,25,3,0.2020020002...72π-+-(两个非零数之间依次多一个0),其中无理数有_______个12.16的平方根是.13.若25.36=5.036,253.6=15.906,则253600=__________.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________15.319127-=_____.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有_____(填序号).18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA 2B 2变换成△OA 3B 3,…,将△OAB 进行n 次变换,得到△OA n B n ,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A 2020的坐标是__三、解答题(第19-26题,共64分)19.计算 (1)231981416⎛⎫-+-+ ⎪⎝⎭(2)3232--20.解方程组:(1)23321x y x y -=⎧⎨+=⎩. (2)222529x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.25.如图1,点A、B直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm的小正方形,你能计算出每个长方形的长和宽吗?答案与解析一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 3[答案]C[解析]试题分析:9的算术平方根是3.故选C.考点:算术平方根.2.在平面直角坐标系中,点A(﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]B[解析][分析]根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.[详解]解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.[点睛]本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A. 30°B. 40°C. 50°D. 60°[答案]B[解析][分析]先根据∠1=50°,∠FEG=90°,求得∠3的度数,再根据平行线的性质,求得∠2的度数即可.[详解]解:如图,∵∠1=50°,∠FEG=90°,∴∠3=40°,∵AB∥CD,∴∠2=∠3=40°.故选:B.[点睛]本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.4.如图,AB∥CD,∠AGE=126°,HM平分∠EHD,则∠MHD的度数是()A. 44°B. 25°C. 26°D. 27°[答案]D[解析][分析]由题意可由平行线的性质,求出∠EHD的度数,再由HM平分∠EHD,即可求出∠MHD的度数.[详解]解:由题意得:∠AGE=∠BGF=126°,∵AB∥CD,∴∠EHD=180°−∠BGF=54°,又∵HM平分∠EHD,∴∠MHD=12∠EHD=27°.故选D.[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°[答案]D[解析][分析]根据对顶角的定义,余角与补角的关系,对各选项分析判断后利用排除法求解.[详解]解:A 、对顶角相等,相等的角不一定是对顶角,故本选项错误;B 、锐角的补角是钝角,直角的补角是直角,钝角的补角是锐角,故本选项错误;C 、只有两直线平行,同位角才相等,故本选项错误;D 、一个角α的补角为180°﹣α,它的余角为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,故本选项正确. 故选D .[点睛]本题综合考查了余角、补角、对顶角,是基本概念题,熟记概念与性质是解题的关键.6.点()1,3-向右平移个单位后坐标为( )A ()4,3-B. ()1,6-C. ()2,3D. ()1,0-[答案]C[解析][分析]直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.[详解]解:把点(−1,3)向右平移3个单位后所得的点的坐标为:(−1+3,3),即(2,3),故选C .[点睛]本题主要考查了坐标与图形变化−平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( ) A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩[答案]A[解析][分析] 根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.[详解]根据题意有83,74x y x y =+⎧⎨=-⎩故选:A.[点睛]本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.8.下列说法正确的是()A. 的平方根是B. 的平方根C. 的平方根D. 的平方根[答案]A[解析]分析]根据平方根性质,逐一判定即可.[详解]A选项,的平方根是,正确;B选项,的平方根是,错误;C选项,的平方根是,错误;D选项,没有平方根,错误;故选:A.[点睛]此题主要考查对平方根的理解,熟练掌握,即可解题.9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行[答案]C[解析][分析]根据平行于x轴的直线上两点的坐标特点解答.[详解]∵A,B两点的纵坐标相等,∴过这两点的直线一定平行于x轴.故选C.[点睛]解答此题的关键是掌握平行于坐标轴的直线上的点的坐标的特点.10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4[答案]C[解析][分析]由于二元一次方程2x+y=8中y的系数是1,可先用含x的代数式表示y,然后根据此方程的解是正整数,那么把最小的正整数x=1代入,算出对应的y的值,再把x=2代入,再算出对应的y的值,依此可以求出结果.[详解]解:∵2x +y =8,∴y =8﹣2x ,∵x 、y 都是正整数,∴x =1时,y =6;x =2时,y =4;x =3时,y =2.∴二元一次方程2x +y =8的正整数解共有3对.故选:C .[点睛]由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的正整数解,即此方程中两个未知数的值都是正整数,这是解答本题的关键.注意最小的正整数是1.二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,0.2020020002 (72)π-+-(两个非零数之间依次多一个0),其中无理数有_______个[答案]3[解析][分析]无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.[详解]解:无理数有2π−0.2020020002…(两个非零数之间依次多一个0),共3个, 故答案为3.[点睛]此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…(相邻两个2之间0的个数逐次加1)等有这样规律的数.的平方根是 .[答案]±2.[解析][详解]±2. 故答案为±2.13.=5.036,=15.906,__________.[答案]503.6[解析][分析]根据平方根的计算方法和规律计算即可[详解]解:253600=25.3610000⨯=5.036×100=503.6.故答案为503.6.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________[答案]15°[解析][分析]如下图,过点E作EF∥BC,然后利用平行线的性质结合已知条件进行分析解答即可.[详解]由题意可得AD∥BC,∠DAE=∠1+45°,∠AEB=90°,∠EBC=30°,过点E作EF∥BC,则AD∥EF∥BC,∴∠AEF=∠DAE=∠1+45°,∠FEB=∠EBC=30°,又∵∠AEF=∠AEB-∠FEB,∴∠AEF=90°-30°=60°,∴∠1+45°=60°,∴∠1=60°-45°=15°.故答案为:15°.319127-_____.[答案]2 3[解析][分析]根据是实数的性质即可化简.[详解]解:原式=331982127273-==. 故答案为23. [点睛]此题主要考查二次根式的化简,解题的关键是熟知实数的性质.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC ∥AE ;③如果∠1=∠2=∠3,则有BC ∥AE ;④如果∠2=45°,必有∠4=∠E .其中正确的有_____(填序号).[答案]①③[解析][分析]根据平行线的判定和性质解答即可.[详解]解:∵∠EAD=∠CAB=90°,∴∠1=∠3,故①正确,当∠2=30°时,∠3=60°,∠4=45°,∴∠3≠∠4,故AE与BC不平行,故②错误,当∠1=∠2=∠3时,可得∠3=∠4=45°,∴BC∥AE,故③正确,∵∠E=60°,∠4=45°,∴∠E≠∠4,故④错误,故答案为:①③.[点睛]此题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解决本题的关键.18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,…,将△OAB进行n次变换,得到△OA n B n,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A2020的坐标是__[答案](22020,3)[解析][分析]根据图形写出点A系列的坐标与点B系列的坐标,根据具体数值找到规律即可.[详解]∵A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,横坐标都和2有关,为2n,∴An(2n,3);∴A2020(22020,3)故答案为:(22020,3)[点睛]依次观察各点的横纵坐标,得到规律是解决本题的关键.三、解答题(第19-26题,共64分)19.计算(1(2)[答案](1)12-;(2).[解析][分析](1)直接利用立方根以及平方根的性质分别化简得出答案;(2)直接利用绝对值的定义化简得出答案;[详解](11512442 =-+=-(2)==[点睛]考查了实数的混合运算以及二次根式的加减混合运算,正确化简各数是解题关键.20.解方程组:(1)23321x yx y-=⎧⎨+=⎩.(2)222529x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩[答案](1)11xy=⎧⎨=-⎩;(2)521xyz=⎧⎪=-⎨⎪=⎩.[解析][分析](1)首先由①×2+②,消去y,然后解关于x的方程即可求解.(2)由①+②+③得到x+y+z=4④,再由①-④得到y的值,②-④得到z的值,③-④得到x的值.[详解](1)23 321 x yx y①②-=⎧⎨+=⎩由①×2+②,得7x=7,解得x=1,把x=1 代入①式,得2﹣y=3,解得y=﹣1所以原方程组的解为11 xy=⎧⎨=-⎩.(2)2 2....2 5....29.... x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩①②③①+②+③ 得4x+4y+4z=16 即 x+y+z=4 ④①-④ 得y= -2②-④ 得z= 1③-④ 得x= 5所以原方程组的解为521x y z =⎧⎪=-⎨⎪=⎩[点评]考查了解二元一次方程组和解三元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.[答案](1)图见解析(2)点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3)(3)192[解析][分析](1)依据所得点的坐标,描点后首尾顺次连接即可求解;(2)根据点的坐标的平移规律即可求解;(3)根据割补法及三角形的面积公式可得答案.[详解](1)如图,△ABC 和△’’’A B C 为所求; (2)∵把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.∴点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3);(3)三角形ABC 的面积=5×5-12×3×5-12×3×2-12×2×5=25-152-3-5=192.[点睛]本题主要考查作图−平移变换,解题的关键是掌握平移变换的定义和性质,并根据平移变换的定义和性质得出变换后的对应点位置.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子的单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?[答案](1)跳绳的单价为16元,毽子的单价为4元;(2)商品按原价的八五折销售.[解析][分析](1)可设跳绳的单价为x 元,毽子的单价为y 元,根据题意列出关于x,y 的二元一次方程组,解方程组即可;(2)设商品按原价的z 折销售,根据第(1)问求出来的跳绳和毽子的单价,根据题意列出方程,解方程即可.[详解](1)设跳绳的单价为x 元,毽子的单价为y 元,根据题意有508011203050680x y x y +=⎧⎨+=⎩ ,解得164x y =⎧⎨=⎩所以跳绳的单价为16元,毽子的单价为4元;(2)设商品按原价的z 折销售,根据题意得(164)100170010z +⨯⨯= 解得8.5z = 所以商品按原价的八五折销售.[点睛]本题主要考查一元一次方程及二元一次方程组的应用,读懂题意,列出方程及方程组是解题的关键. 23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().[答案]∠BAE;两直线平行,同位角相等;∠BAE;∠CAD;∠CAD;等量代换;内错角相等,两直线平行.[解析][分析]根据平行线的性质得出∠4=∠BAE,由此∠3=∠BAE,根据∠2=∠1可得∠BAE=∠CAD,从而得出∠3=∠CAD,根据平行线的判定定理得出即可.[详解]解:∵AB∥CD,∴∠4=∠BAE( 两直线平行,同位角相等),∵∠3=∠4,∴∠3=∠BAE(等量代换),∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD( 等量代换),∴AD∥BE( 内错角相等,两直线平行).[点睛]本题考查平行线的性质和判定.熟记平行线的性质和判定定理,并能正确识图完成角度之间的转换是解决此题的关键.24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.[答案]见解析.[解析][分析]根据两直线平行,同旁内角互补得到∠A+∠ABC=180°,再根据∠A=∠C得到∠C+∠ABC=180°,根据同旁内角互补,两直线平行得到DC∥AB,再利用两直线平行,内错角相等得到∠1=∠2.[详解]∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=∠C,∴∠C+∠ABC=180°,∴DC∥AB,∴∠1=∠2.[点睛]考查了直线平行的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.25.如图1,点A、B在直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l的位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.[答案](1)1l∥2l;(2)①当Q在C点左侧时,∠BAC=∠CQP +∠CPQ,②当Q在C点右侧时,∠CPQ+∠CQP+∠BAC=180°.[解析]分析](1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出结论;(2)分两种情况讨论:①当Q 在C 点左侧时;②当Q 在C 点右侧时.[详解]解:(1)1l ∥2l .理由如下:∵AE 平分∠BAC ,CE 平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的定义);又∵∠1+∠2=90°(已知), ∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代换)∴1l ∥2l (同旁内角互补,两直线平行)(2)①当Q 在C 点左侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,(两直线平行,内错角相等),∠BAC=∠EPC ,(两直线平行,同位角相等),又∵∠EPC=∠1+∠CPQ ,∴∠BAC=∠CQP +∠CPQ (等量代换)②当Q 在C 点右侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,∠BAC=∠APE ,(两直线平行,内错角相等),又∵∠EPC=∠1+∠CPQ ,∠APE+∠EPC=180°(平角定义)∴∠CPQ+∠CQP+∠BAC=180°.[点睛]本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm 的小正方形,你能计算出每个长方形的长和宽吗?[答案]小长方形的长为10mm ,宽为6mm .[解析][分析]设每个小长方形的长为xmm ,宽为 ymm ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个长加2的和等于一个长与两个宽的和,于是得方程组,解出即可.[详解]设每个长方形的长为xmm ,宽为 ymm ,由题意得35222x yx x y=⎧⎨+=+⎩,解得:106xy=⎧⎨=⎩.答:小长方形的长为10mm,宽为6mm.[点睛]考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.。
人教版数学七年级下学期《期中检测题》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共40分)1. 已知的值不大于3-,用不等式表示的范围是( )A. 3a >-B. 3a <-C. 3a ≥-D. 3a ≤- 2. 若代数式31x -的值为4-,则的值为( )A. 1B.C. 53-D. 353. 下列各组中,不是二元一次方程37x y +=的解的是( )A. 14x y =⎧⎨=⎩B. 07x y =⎧⎨=⎩C. 32x y =⎧⎨=-⎩D. 1.53.5x y =⎧⎨=⎩4. 若a b >,则下列不等式中错误的是( )A. 22a b +>+B.22a b > C. 22a b -<- D. 22a b > 5. 将方程3213123x x x -++=-去分母,正确的是( ) A. ()()18336221x x x +-=-+B. ()()3331221x x x +-=-+C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+6. 某文具店开展促销活动,某种笔记本原价每本元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( )A. 0.68x x -=B. 0.0618x -=C. 80.61x -=D. 0.618x -= 7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+=B. x y 50{x y 180=++=C. x y 50{x y 90=++= D. x y 50{x y 90=-+=8. 《九章算术》是中国传统数学重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是( )A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩ 9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( ) A. 2- B. 2 C. D. 110. 已知关于,x y 的二元一次方程组43335x y m x y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ). A. 随增大而增大 B. 随减小而减小C. 既可能随增大而增大,也可能随减小而减小D. 与的大小无关 二、填空题(共24分)11. 若2x =-是方程520x k +=解,则k =__________.12. 已知二元一次方程235x y +=,若用含的代数式表示,则y =_______.13. 已知关于的不等式()15m x ->的解集为51x m <-,则的取值范围是_________. 14. 已知320a b --=,那么261a b -+=_________.15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.16. 若不等式组24x x m-≤⎧⎨<⎩无解,则的取值范围是____________. 三、解答题(共86分)17. 解方程:()()103421x x x --=+.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它解集在数轴上表示出来.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值. 20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.21. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求a +b 的值. 22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4.(1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围.24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n “相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. 25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有、、三种不同价格的彩票,进价分别是彩票每捆150元,彩票每捆200元,彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案;(2)若销售型彩票每捆获手续费20元,型彩票每捆获手续费30元,型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进、、三种彩票20捆,请你帮助经销商设计进票方案.答案与解析一、选择题(共40分)1. 已知的值不大于3-,用不等式表示的范围是( )A. 3a >-B. 3a <-C. 3a ≥-D. 3a ≤- [答案]D[解析][分析]的值不大于3-就是的值小于或等于3-,据此解答即可.[详解]解:的值不大于3-,用不等式表示的范围是:3a ≤-.故选:D .[点睛]本题考查了列出问题中的不等式,解题的关键是正确理解题意、把“不大于”转化为“≤”. 2. 若代数式31x -的值为4-,则的值为( )A. 1B. C. 53- D. 35[答案]B[解析]分析]根据题意,列出关于x 的一元一次方程314x -=-,通过解该方程可以求得x 的值.[详解]解:由题意,得314x -=-,解得1x =-;故选B .[点睛]本题考查一元一次方程的解法及一元一次方程的解的定义.牢记解一元一次方程的步骤及一元一次方程的解的定义是解题的关键.3. 下列各组中,不是二元一次方程37x y +=的解的是( ) A. 14x y =⎧⎨=⎩ B. 07x y =⎧⎨=⎩ C. 32x y =⎧⎨=-⎩ D. 1.53.5x y =⎧⎨=⎩[答案]D[解析][分析]把各选项中的x 、y 的值逐一代入计算即得答案.[详解]解:A 、把14x y =⎧⎨=⎩代入原方程,得3147⨯+=,∴14x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意; B 、把07x y =⎧⎨=⎩代入原方程,得3077⨯+=,∴07x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意; C 、把32x y =⎧⎨=-⎩代入原方程,得3327⨯-=,∴32x y =⎧⎨=-⎩是方程37x y +=的解,本选项不符合题意; D 、把 1.53.5x y =⎧⎨=⎩代入原方程,得3 1.5 3.587⨯+=≠,∴ 1.53.5x y =⎧⎨=⎩不是方程37x y +=的解,本选项符合题意. 故选:D .[点睛]本题考查了二元一次方程的解的定义,属于基础题型,熟练掌握二元一次方程的解的概念是解题关键. 4. 若a b >,则下列不等式中错误的是( )A. 22a b +>+B. 22a b >C. 22a b -<-D. 22a b > [答案]D[解析][分析]根据不等式的性质逐项判断即可.[详解]解:A 、不等式a b >两边同时加上2,得22a b +>+,所以本选项变形正确,不符合题意; B 、在不等式a b >两边同时除以2,得22a b >,所以本选项变形正确,不符合题意; C 、在不等式a b >两边同时乘以﹣2,得22a b -<-,所以本选项变形正确,不符合题意;D 、由a b >不能得出22a b >,如1>﹣2,但()2212<-,所以本选项变形错误,符合题意.故选:D .[点睛]本题考查了不等式的性质,属于基础题型,熟练掌握不等式的性质是解题关键.5. 将方程3213123x x x -++=-去分母,正确的是( ) A. ()()18336221x x x +-=-+ B. ()()3331221x x x +-=-+C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+ [答案]A[解析][分析]根据去分母的方法:原方程两边同时乘以6可得答案.[详解]解:原方程两边同时乘以6,得:()()18336221x x x +-=-+.故选:A .[点睛]本题考查了一元一次方程解法,属于基本题型,熟练掌握去分母的方法是解本题的关键.6. 某文具店开展促销活动,某种笔记本原价每本元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( )A 0.68x x -=B. 0.0618x -=C. 80.61x -=D. 0.618x -=[答案]D[解析][分析]由题意可得第一次每本笔记本按原价打“六折”后售价为0.6x 元,第二次降价后的售价为()0.61x -元,进一步即可列出方程.[详解]解:根据题意可列方程为:0.618x -=.故选:D .[点睛]本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+= B. x y 50{x y 180=++= C. x y 50{x y 90=++= D. x y 50{x y 90=-+= [答案]C[解析] [详解]根据平角和直角定义,得方程x+y=90;根据∠1比∠2的度数大50°,得方程x=y+50.可列方程组为5090x y x y =+⎧⎨+=⎩,故选C . 考点:1.由实际问题抽象出二元一次方程组;2.余角和补角.8. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是( )A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩ [答案]A[解析][分析]设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组,进而得到答案.[详解]解:设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组为:8374x y y x -=⎧⎨-=⎩, 故选:A ;[点睛]本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( ) A. 2-B. 2C.D. 1[答案]C[解析][分析]先把m 看作是常数,解关于x ,y 二元一次方程组,求得用m 表示的x ,y 的值后,再代入3x+2y=19,建立关于m 的方程,解出m 的数值. [详解]x 2y 3m 1x y 5+=+⎧-=-⎨⎩①②, ①-②得:y=m+2③,把③代入②得:x=m-3,∵x+y=-3,∴m-3+m+2=-3,∴m=-1.故选C .[点睛]本题实质是解二元一次方程组,先用m 表示出x ,y 的值后,再求解关于m 的方程,解方程组关键是消元.10. 已知关于,x y 的二元一次方程组43335x y m x y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ). A. 随增大而增大B. 随减小而减小C. 既可能随增大而增大,也可能随减小而减小D. 与的大小无关[答案]D[解析][分析]方程组中的两个方程相加,再两边同时除以2即可进行判断. [详解]解:对方程组43335x y m x y m +=-⎧⎨-=-⎩①②,①+②,得()21x y -=-,即12x y -=-, ∴代数式x y -的值与的大小无关.故选:D .[点睛]本题考查了二元一次方程组的特殊解法,属于常考题型,灵活应用整体的思想方法是解题的关键.二、填空题(共24分)11. 若2x =-是方程520x k +=的解,则k =__________.[答案]5[解析][分析]将2x =-代入方程520x k +=即可求算.[详解]解:∵2x =-是方程520x k +=的解,2x =-代入方程:∴1020k -+=,解得:5k =故答案为:5[点睛]本题考查一元一次方程的解,掌握一元一次方程解的意义是解题关键.12. 已知二元一次方程235x y +=,若用含的代数式表示,则y =_______.[答案]523x - [解析][分析]移项,把x 看做已知数求出y 即可.[详解]解:二元一次方程235x y +=,移项得:352y x =-, 即:523x y, 故答案为:523x -; [点睛]此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .13. 已知关于的不等式()15m x ->的解集为51x m <-,则的取值范围是_________. [答案]1m <[解析][分析]根据不等式的性质可得10m -<,解不等式即得答案.[详解]解:由题意得:10m -<,解得:1m <.故答案为:1m <.[点睛]本题考查了不等式的性质和一元一次不等式的解法,属于基础题型,熟练掌握不等式的性质是解题的关键14. 已知320a b --=,那么261a b -+=_________.[答案]5[解析][分析]由已知可得32a b -=,然后将所求的代数式变形为()231a b -+后再整体代入求解即可.[详解]解:∵320a b --=,∴32a b -=,∴()2612312215a b a b -+=-+=⨯+=.故答案为:5.[点睛]本题考查了代数式求值,属于基本题型,熟练掌握整体代入的思想方法是解答的关键. 15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.[答案]314x y z =⎧⎪=⎨⎪=⎩[解析][分析]根据解三元一次方程组的方法解答即可.[详解]解:对457x yy zx z+=⎧⎪+=⎨⎪+=⎩①②③,①+②+③,得()216x y z++=,即8x y z++=④,④-①,得z=4, ④-②,得x=3, ④-③,得y=1,∴方程组的解是:314xyz=⎧⎪=⎨⎪=⎩.故答案为:314 xyz=⎧⎪=⎨⎪=⎩.[点睛]本题考查了三元一次方程组的解法,属于基本题型,熟练掌握解三元一次方程组的方法是解答的关键.16. 若不等式组24xx m-≤⎧⎨<⎩无解,则的取值范围是____________.[答案]2m≤-[解析][分析]先求出不等式的解集,再根据无解得出m的取值范围.[详解]解:24xx m-≤⎧⎨<⎩①②由①得:2x≥-由②得:x m<∵不等式组无解,没有公共部分∴2m≤-故答案为:2m≤-[点睛]本题考查不等式组参数问题,掌握求解不等式组的方法是解题关键.三、解答题(共86分)17. 解方程:()()103421x x x --=+.[答案]2x =-[解析][分析]根据解一元一次方程的方法和步骤解答即可.[详解]解:去括号,得1031222x x x -+=+,移项,得1032212x x x --=-,合并同类项,得510x =-,系数化为1,得2x =-.[点睛]本题考查了一元一次方程的解法,属于基础题型,熟练掌握解一元一次方程的方法是解题的关键.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它的解集在数轴上表示出来.[答案]0x <,图见解析[解析][分析]分别解出每一个不等式,再求出公共部分即可,然后在数轴上表示.[详解]解:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩①②由①得:3x ≤由②得:0x <∴不等式组的解集为:0x <该不等式组解集在数轴上表示如图:[点睛]本题考查一元一次不等式组,掌握一元一次不等式组的解法是解题关键.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值.[答案]a=5,b=-2[分析]将3x =,2y =时,ax by +的值是11;当2x =-,4y =时,ax by +的值是18-分别代入得出关于a 、b 的二元一次方程组,解方程即可.[详解]解:∵在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18- ∴32112418a b a b +=⎧⎨-+=-⎩①②由②得:29a b =+ ③将③代入①得:()329211b b ++= 解得:2b =-将2b =-代入③解得:5a =∴a=5,b=-2[点睛]本题考查代数式,将已知条件代入建立关于a 、b 的二元一次方程组是解题关键.20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.[答案]这个两位数为45.[解析][分析]要求这个两位数,可以转化为求个位数字与十位数字分别是多少,若设原数的个位数字是x ,则十位数字是9﹣x ,则原数是10(9﹣x )+x ,新数是10x +(9﹣x ),然后根据等量关系:新数=原数+9即可列出方程,解方程即得结果.[详解]解:设原两位数的个位数字是x ,则十位数字是9﹣x .根据题意得:10x +(9-x )=10(9﹣x )+x +9解得:x =5,则9﹣x =4,答:这个两位数为45.[点睛]本题考查了一元一次方程的应用之数字问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.21. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求a +b 的值. [答案]16[解析]根据题意列出x 和y 的方程组,然后进行求解,将解代入另外的两个方程求出a 和b 的值,进而即可求解.[详解]解方程组5325x y x y +=⎧⎨-=⎩,得12x y =⎧⎨=-⎩. 把12x y =⎧⎨=-⎩代入5451ax y x by +=⎧⎨+=⎩,得142a b =⎧⎨=⎩∴a+b=16.22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?[答案](1)购进甲种商品800件,购进乙种商品200件;(2)334;[解析][分析](1)设购进甲种商品x 件,购进乙种商品y 件,根据购进甲乙两种商品共1000件及销售完这批商品后能获利4200元,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据总利润=单件利润×购进数量结合该商店销售完这批商品后获利要多于5000元,即可得出关于a 的一元一次不等式,解之取其中的最小的整数即可得出结论.[详解]解:(1)设购进甲种商品x 件,购进乙种商品y 件,根据题意得:()()1000181544354200x y x y +⎧⎨-+-⎩== , 解得:800200x y ⎧⎨⎩== , 则购进甲种商品800件,购进乙种商品200件,答:购进甲种商品800件,购进乙种商品200件;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据题意得:(44-35)a+(18-15)(1000-a )>5000,解得:10003a > , ∵a 为整数,∴a 的最小值为334.答:至少应购进乙种商品334件.[点睛]本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列出关于a 的一元一次不等式.23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4.(1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围.[答案](1)31k b =-⎧⎨=⎩;(2)7≤m <13 [解析][分析](1)把25x y ⎧⎨⎩==﹣和14x y ⎧⎨⎩=﹣=代入y =kx +b ,可得254k b k b +=-⎧⎨-+=⎩,再解出关于k,b 的二元一次方程组即可解出k 、b 的值;(2)解不等式5﹣2x >m +4x 得x <56m -,再根据不等式最大整数解是k =-3,来得到m 的取值范围. [详解]解:(1)根据题意可得:254k b k b +=-⎧⎨-+=⎩解得:31k b =-⎧⎨=⎩; (2)解不等式5﹣2x >m +4x ,得:x <56m -, 因为该不等式的最大整数解是k ,即﹣3,所以﹣3<56m -≤﹣2, 解得:7≤m <13.[点睛]主要考查二元一次方程组的解与一元一次不等式的整数解.24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b .(1)若()1,b 为“相伴数对”,试求的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. [答案](1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析 [解析][分析] (1)根据“相伴数对”的定义,将()1,b 代入2323a b a b ++=+,从而求算答案; (2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可;(3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. [详解]解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b ++=+得: 112323b b ++=+ ,去分母得:()151061b b +=+ 解得:94b =- (2)2323a b a b ++=+化简得:94a b =- 只要满足这个等量关系即可,例如:92,2⎛⎫-⎪⎝⎭(答案不唯一) (3)∵(),m n 是“相伴数对” 将,a m b n == 代入2323a b a b ++=+: ∴2323m n m n ++=+ ,化简得:49m n 将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到:491,94n n -+-⎛⎫ ⎪⎝⎭ 将:491,94a n b n =-+=- 代入2323a b a b ++=+左边=49149 942336n n n-+--+=右边=49149 942336n n n-++--=+∴左边=右边∴当(),m n是“相伴数对”时,91,4m n⎛⎫⎪⎝+⎭-也是“相伴数对”[点睛]本题考查定义新运算,正确理解定义是解题关键.25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有、、三种不同价格的彩票,进价分别是彩票每捆150元,彩票每捆200元,彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案;(2)若销售型彩票每捆获手续费20元,型彩票每捆获手续费30元,型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进、、三种彩票20捆,请你帮助经销商设计进票方案.[答案](1)购进A种彩票5捆,C种彩票15捆或B种彩票与C种彩票各10捆;(2)A种彩票5捆,C种彩票15捆;(3)方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B 种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.[解析][分析](1)因为彩票有A,B,C三种不同型号,而经销商同时只购进两种,所以要将A,B,C两两组合,分三种情况:A,B;A,C;B,C,每种情况都可以根据下面两个相等关系列出方程,两种不同型号的彩票捆数之和=20,购买两种不同型号的彩票钱数之和=4500,然后根据实际含义即可确定他们的解;(2)根据上一问分别求出每一种情况的手续费,然后进行比较即可得出结果;(3)有两个等量关系:A彩票扎数+B彩票扎数+C彩票扎数=20,购买A彩票钱数+购买B彩票钱数+购买C 彩票钱数=4500;可设三个未知数,然后用含有同一个未知数的代数式去表示另外的两个未知数,再根据三个未知数都是正整数,并结合实际意义即可求出结果.[详解]解:(1)若设购进A种彩票x捆,B种彩票y捆,根据题意得:201502004500x yx y+=⎧⎨+=⎩,解得:1030xy=-⎧⎨=⎩,∵x<0,∴此种情况不合题意;若设购进A种彩票x捆,C种彩票y捆,根据题意得:201502504500x yx y+=⎧⎨+=⎩,解得:515xy=⎧⎨=⎩,若设购进B种彩票x捆,C种彩票y捆,根据题意得:202002504500x yx y+=⎧⎨+=⎩,解得:1010xy=⎧⎨=⎩,综上所述,若经销商同时购进两种不同型号的彩票,共有两种方案:即购进A种彩票5捆,C种彩票15捆或B 种彩票与C种彩票各10捆;(2)若购进A种彩票5捆,C种彩票15捆,销售完后可获手续费为:20×5+50×15=850(元);若购进B种彩票与C种彩票各10捆,销售完后可获手续费为:30×10+50×10=800(元);∴为使销售完后获得手续费最多,应选择的方案为:A种彩票5捆,C种彩票15捆;(3)设购进A种彩票m捆,B种彩票n捆,C种彩票h捆.由题意得:201502002504500m n hm n h++=⎧⎨++=⎩,解得:10210h mn m=+=-+⎧⎨⎩,∵m、n都是正整数,∴1≤m<5,∴m=1,2,3,4,所以共有4种进票方案,具体如下:方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.[点睛]此题考查了二元一次方程组的应用,属于常考题型,正确理解题意、分三种情况求解是解第(1)小题的关键,用含有同一个未知数的代数式去表示另外的两个未知数并结合未知数的实际意义是解第(3)小题的关键.。
人教版数学七年级下册《期中检测试卷》及答案解析

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题)1.2﹣1的值是()A. 12B. 2C. 4D. 82.下列调查中,适宜采用全面调查的是()A. 对某班学生制作校服前的身高调查B. 对某品牌灯管寿命的调查C. 对浙江省居民去年阅读量的调查D. 对现代大学生零用钱使用情况的调查3.812﹣81肯定能被()整除.A. 79B. 80C. 82D. 834.下列计算正确的是()A. a2+a2=a4B. a2•a3=a6C. a6÷a2=a3D. (a4)2=a85.下列等式从左到右的变形,属于因式分解是()A. a(4﹣y2)=4a﹣ay2B ﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2C. x2+3x﹣1=x(x+3)﹣1D x2+y2=(x+y)2﹣2xy6.如图,AB∥CD,EF⊥CD,∠1=60°,则∠2等于()A. 60°B. 40°C. 30°D. 35°7.若二元一次方程组45ax bybx ay+=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,则a+b的值是()A. 9B. 6C. 3D. 18.如图,△ABC沿BC所在的直线平移到△DEF的位置,且C点是线段BE的中点,若AB=5,BC=2,AC=4,则AD的长是()A. 5B. 4C. 3D. 29.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使每天的工作效率是原来的2倍,结果共用6天完成了任务.若设该厂原来每天加工x个零件,则由题意可列出方程()A. 10050062x x+= B.10050062x x+=C. 10040062x x+= D.10040062x x+=10.有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为252ax yx ay a+=-⎧⎨-+=⎩,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是31 xy=⎧⎨=-⎩.其中正确说法是()A. ①④B. ①③④C. ②③D. ①②二、填空题(共6小题)11.因式分解:a2﹣4=_____.12.当x=____时,分式321xx--的值为0.13.已知x2+1,则代数式x2﹣2x+1的值为____.14.某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生只选一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知选最喜爱“体操”的学生是9人,则最喜爱“3D打印”学生数为____.15.已知∠A 与∠B 的两边分别平行,其中∠A 为x °,∠B 的为(210﹣2x )°,则∠A =____度. 16.现有1角、5角、1元硬币共16枚,总值8元.则5角的硬币是____枚.三、解答题(共7小题)17.计算与化简: (1)02000(21)(1)-+-; (2)(10a 2﹣5a )÷(5a ). 18.解方程或方程组: (1)24342x y x y +=⎧⎨-=⎩;(2)33233x x x-=--. 19.某市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行了抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题: (1)这次共抽取了 名学生进行调查.(2)用时在2.45﹣3.45小时这组的频数是 ,频率是 ;(3)如果该校有1200名学生,请估计一周电子产品用时在0.45﹣3.45小时的学生人数.20.(1)分解因式:2mx2﹣4mxy+2my2.(2)先化简,再求值:211122-⎛⎫-÷⎪++⎝⎭xx x,其中x=2020.21.(1)已知x2+y2=34,x﹣y=2,求(x+y)2的值.(2)设y=kx(x≠0),是否存在实数k,使得(3x﹣y)2﹣(x﹣2y)(x+2y)+6xy化简为28x2?若能,请求出满足条件的k 的值;若不能,请说明理由.22.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)销售时段销售数量销售收入A种型号B种型号第一周 6 5 2100元第二周 4 10 3400元(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由.(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠F AD=50°,∠ABC=40°,求∠BED的度数.(3)将图2中的线段BC沿DC所在的直线平移,使得点B在点A的右侧,若∠F AD=m°,∠ABC=n°,其他条件不变,得到图3,请你求出∠BED的度数(用含m,n的式子表示).答案与解析一、选择题(共10小题)1.2﹣1的值是()A. 12B. 2C. 4D. 8[答案]A[解析][分析]根据负整数指数幂的运算法则解答即可.[详解]解:1122-=.故选:A.[点睛]本题考查了负整数指数幂的运算法则,属于基础题型,熟练掌握运算法则是解题关键.2.下列调查中,适宜采用全面调查的是()A. 对某班学生制作校服前的身高调查B. 对某品牌灯管寿命的调查C. 对浙江省居民去年阅读量的调查D. 对现代大学生零用钱使用情况的调查[答案]A[解析][分析]由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.[详解]A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.[点睛]本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.812﹣81肯定能被()整除.A. 79B. 80C. 82D. 83[答案]B[解析][分析]原式提取公因式分解因式后,判断即可.[详解]解:原式=81×(81﹣1)=81×80,则812﹣81肯定能被80整除.故选:B.[点睛]本题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解题的关键.4.下列计算正确的是()A. a2+a2=a4B. a2•a3=a6C. a6÷a2=a3D. (a4)2=a8[答案]D[解析][分析]直接利用幂指数的运算法则和合并同类项法则即可得到答案.[详解]A.a2+a2=2a2,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.a6÷a2=a4,故本选项不合题意;D.(a4)2=a8,故本选项符合题意.故选:D.[点睛]考查了同底数幂的乘法、同底数幂的除法、幂的乘方与积的乘方以及合并同类项.准确掌握法则是解题的关键.5.下列等式从左到右的变形,属于因式分解是()A. a(4﹣y2)=4a﹣ay2B. ﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2C. x2+3x﹣1=x(x+3)﹣1D. x2+y2=(x+y)2﹣2xy[答案]B[解析][分析]根据因式分解的意义,可得答案.[详解]解:A.属于整式乘法运算,不属于因式分解;B.﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2,属于因式分解;C.右边不是几个整式积的形式,不属于因式分解;D.右边不是几个整式积的形式,不属于因式分解.故选:B.[点睛]本题考查了因式分解的意义,利用因式分解的意义是解题关键.6.如图,AB∥CD,EF⊥CD,∠1=60°,则∠2等于()A. 60°B. 40°C. 30°D. 35°[答案]C[解析][分析]先根据平行线的性质,可得∠AEG的度数,根据EF⊥CD可得EF⊥AB,再根据垂直和平角的定义可得到∠2的度数.[详解]解:∵AB∥CD,∠1=60°,∴∠AEG=60°.∵EF⊥CD,∴EF⊥AB,∴∠2=180°﹣60°﹣90°=30°.故选:C.[点睛]本题主要考查了平行线的性质的运用,解题时注意:两条平行线被第三条直线所截,同位角相等.7.若二元一次方程组45ax bybx ay+=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,则a+b的值是()A. 9B. 6C. 3D. 1 [答案]C[解析]分析]根据二元一次方程组的解及解二元一次方程组即可解答. [详解]解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得2425a b b a +=⎧⎨+=⎩解得:12a b =⎧⎨=⎩∴a +b =1+2=3. 故选:C .[点睛]此题主要考查二元一次方程组的解和解二元一次方程组,正确理解二元一次方程组的解和灵活选择消元法解二元一次方程组是解题关键.8.如图,△ABC 沿BC 所在的直线平移到△DEF 的位置,且C 点是线段BE 的中点,若AB =5,BC =2,AC =4,则AD 的长是( )A. 5B. 4C. 3D. 2[答案]B [解析] [分析]利用平移的性质解决问题即可. [详解]解:由平移的性质可知,AD=BE . ∵BC=CE ,BC=2, ∴BE=4, ∴AD=4. 故选:B .[点睛]本题考查平移的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使每天的工作效率是原来的2倍,结果共用6天完成了任务.若设该厂原来每天加工x 个零件,则由题意可列出方程()A. 10050062x x+= B.10050062x x+=C. 10040062x x+= D.10040062x x+=[答案]D[解析]分析]根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400个用的时间=6,即可列出方程.[详解]解:设该厂原来每天加工x个零件,根据题意得:10040062x x+=.故选D.[点睛]此题考查了由实际问题抽象出分式方程,分析题意,根据关键描述语,找到合适的等量关系是解决问题的关键.10.有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积的形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为252ax yx ay a+=-⎧⎨-+=⎩,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是31 xy=⎧⎨=-⎩.其中正确的说法是()A. ①④B. ①③④C. ②③D. ①②[答案]A[解析][分析]利用平行公理对①判断,利用平方差公式的特点对②分析,③通过0指数、底数为1,底数为-1对代数式进行分类讨论得结果,④抓住a取每一个值方程的解都相同,求出x、y的值.[详解]①按照平行公理可判断在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故本选项正确;②当k为负值时,多项式x2﹣ky2不能分解成两个一次因式积的形式,故本选项不正确;③当t=4、32时,(t ﹣3)3﹣2t =1,故本选项不正确; ④新方程(a ﹣1)x+(a+2)y=2a ﹣5.∵a 每取一个值时,就有一个方程,而这些方程总有一个公共解,∴当a=1时,y=﹣1,当a=﹣2时,x=3,∴公共解是31x y =⎧⎨=-⎩.综上正确的说法是①④. 故选:A .[点睛]本题考查了平行公理、因式分解、零指数幂和二元一次方程组的解等知识点,熟练掌握相关性质定理及运算法则是解题的关键.二、填空题(共6小题)11.因式分解:a 2﹣4=_____. [答案](a+2)(a ﹣2). [解析]试题分析:直接利用平方差公式分解因式a 2﹣4=(a+2)(a ﹣2).故答案为(a+2)(a ﹣2). [考点]因式分解-运用公式法. 12.当x =____时,分式321x x --的值为0. [答案]3 [解析] [分析]根据分式的值为0可得30x -=,由此可得出x 的值,再代入分式的分母进行检验即可. [详解]由题意得:30x -=, 解得3x =,当3x =时,2123150x -=⨯-=≠, 则当3x =时,分式321x x --的值为0, 故答案为:3.[点睛]本题考查了分式的值为0、分式有意义的条件,掌握分式的值为0的求值方法是解题关键.13.已知x +1,则代数式x 2﹣2x +1的值为____. [答案]2. [解析]利用完全平方公式将所求的代数式进行变形,然后代入求值即可.[详解]解:原式为:2x-2x+12=(x-1),将x=21代入上式,=(x-1)=(2+1-1)=2原式22故答案为:2.[点睛]此题考察了完全平方公式的计算,二次根式的性质.利用完全平方公式将所求代数式进行变形是解答此题的关键.14.某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生只选一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知选最喜爱“体操”的学生是9人,则最喜爱“3D打印”学生数为____.[答案]24.[解析][分析]先根据最喜爱体操的学生所占百分比及其对应的人数求出总人数,然后用总人数乘以最喜爱“3D打印”的学生所占百分比即得答案.[详解]解:∵选最爱体操的学生所占百分比为1﹣(10%+35%+40%)=15%,其对应人数为9人,∴被调查的总人数为9÷15%=60(人),∴最喜爱“3D打印”学生数为60×40%=24(人).故答案为:24.[点睛]本题考查了扇形统计图的相关知识,属于基本题型,读懂统计图提供的信息、掌握求解的方法是关键.15.已知∠A与∠B的两边分别平行,其中∠A为x°,∠B的为(210﹣2x)°,则∠A=____度.[答案]70或30.[解析]分∠A=∠B 与∠A+∠B=180°两种情况进行讨论即可求解.详解]解:根据题意,有两种情况:(1)当∠A=∠B ,可得:x=210﹣2x ,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.[点睛]本题考查的是平行线的性质,在解答此题时要注意分类讨论.16.现有1角、5角、1元硬币共16枚,总值8元.则5角的硬币是____枚.[答案]7.[解析][分析]设1角的硬币有x 枚,5角的硬币有y 枚,则1元的硬币有(16-x-y )枚,根据这些硬币的总值为8元(即80角),即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出结论.[详解]解:设1角的硬币有x 枚,5角的硬币有y 枚,则1元的硬币有(16﹣x ﹣y )枚,依题意,得:x +5y +10(16﹣x ﹣y )=80,∴y =16﹣95x . ∵x ,y 均为正整数,∴x =5,y =7.故答案为:7.[点睛]本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题(共7小题)17.计算与化简:(1)020001)(1)-+-;(2)(10a 2﹣5a )÷(5a ).[答案](1)2;(2)2a ﹣1.[解析](1)分别根据0指数幂的意义和﹣1的偶次幂计算每一项,再合并即可;(2)根据多项式除以单项式的法则解答即可.[详解]解:(1)020001)(1)+-=1+1=2;(2)(10a2﹣5a)÷(5a)=2a﹣1.[点睛]本题考查了0指数幂、实数的混合运算以及多项式除以单项式等知识,属于常见题型,熟练掌握上述基础知识是解题的关键.18.解方程或方程组:(1)24 342 x yx y+=⎧⎨-=⎩;(2)33233xx x-=--.[答案](1)21xy=⎧⎨=⎩;(2)x=﹣9.[解析][分析](1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解..[详解](1)24342x yx y+=⎧⎨-=⎩①②,①×2+②得:5x=10,解得:x=2,把x=2代入①得:y=1,则方程组的解为21 xy=⎧⎨=⎩;(2)分式方程整理得:33xx-﹣2=﹣33x-,去分母得:3x﹣2(x﹣3)=﹣3, 去括号得:3x﹣2x+6=﹣3,解得:x=﹣9,经检验x=﹣9是分式方程的解.[点睛]本题考查了解分式方程,以及解二元一次方程组,熟练掌握各自的解法是解题的关键.19.某市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行了抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题:(1)这次共抽取了名学生进行调查.(2)用时在2.45﹣3.45小时这组的频数是,频率是;(3)如果该校有1200名学生,请估计一周电子产品用时在0.45﹣3.45小时的学生人数.[答案](1)400;(2)108,0.27;(3)678人.[解析][分析](1)将频数直方图内所有的频数求和,即可算得参加调查的总人数;(2)由频数直方图可查用时在2.45-3.45小时的频数是108,频率=频数总人数;(3)在400人中,求出用时在0.45-3.45小时频率,再乘以1200,即可求得全校电子产品用时在0.45-3.45小时的人数.[详解]解:(1)这次共抽取了50+68+108+82+52+40=400(人),故答案为:400;(2)由直方图可得:用时在2.45-3.45小时这组的频数是108,频率是108÷400=0.27;故答案为:108,0.27;(3)用时在0.45-3.45小时频率是(50+68+108)÷400=0.565,(人),1200人中用时在0.45-3.45小时的人数为:12000.565=678答:一周电子产品用时在0.45﹣3.45小时的学生有678人.[点睛]本题考察了频数与频率之间的关系以及用样本的某种“率”推测总体的“率”,解题的关键在于掌握频率=频数总人数.20.(1)分解因式:2mx 2﹣4mxy +2my 2.(2)先化简,再求值:211122-⎛⎫-÷ ⎪++⎝⎭x x x ,其中x =2020. [答案](1)2m (x ﹣y )2;(2)11x -,12009. [解析][分析](1)原式先提取公因式,再运用完全平方公式分解;(2)括号内先通分化简,再计算除法,然后把x 的值代入化简后的式子计算即可.[详解]解:(1)2mx 2﹣4mxy +2my 2=2m (x 2﹣2xy +y 2)=2m (x ﹣y )2; (2)211122-⎛⎫-÷ ⎪++⎝⎭x x x =()()112122x x x x x +-+-÷++ =()()12211x x x x x ++⋅++- =11x -, 当x =2020时,原式=11202012019=-. [点睛]本题考查了多项式的因式分解和分式的化简求值,属于常考题型,熟练掌握分解因式的方法和分式的混合运算法则是解题的关键.21.(1)已知x 2+y 2=34,x ﹣y =2,求(x +y )2的值.(2)设y =kx (x ≠0),是否存在实数k ,使得(3x ﹣y )2﹣(x ﹣2y )(x +2y )+6xy 化简为28x 2?若能,请求出满足条件的k 的值;若不能,请说明理由.[答案](1)64;(2)k =2或﹣2[解析][分析](1)先利用完全平方公式求得2xy的值,再根据(x+y)2=x2+y2+2xy即可求得;(2)先根据完全平方公式和平方差公式将多项式进行化简,再将y=kx代入,整理,根据结果为28x2即可求得k 的值.[详解]解:(1)把x﹣y=2两边平方得:(x﹣y)2=4,即x2﹣2xy+y2=4.∵x2+y2=34,∴2xy=30,则(x+y)2=x2+y2+2xy=34+30=64;(2)原式=9x2﹣6xy+y2﹣x2+4y2+6xy=8x2+5y2,把y=kx代入得:原式=8x2+5k2x2=(5k2+8)x2=28x2,∴5k2+8=28,即k2=4,开方得:k=2或﹣2,则存在实数k=2或﹣2,使得(3x﹣y)2﹣(x﹣2y)(x+2y)+6xy化简为28x2.[点睛]本题考查平方差公式和完全平方公式.熟记公式,并能灵活运用对公式进行变形解题关键.22.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.[答案](1)A种型号的电风扇的销售单价为100元,B种型号的电风扇的销售单价为300元;(2)能实现利润为8000元的目标,可采购A种型号的电风扇50台,B种型号的电风扇70台.[解析][分析](1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,根据前两周的销售数量及销售收入,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设采购A 种型号的电风扇m 台,B 种型号的电风扇n 台,根据该超市一共采购这两种型号的电风扇共120台且销售完毕后可获得8000元利润,即可得出关于m ,n 的二元一次方程组,解之即可得出结论.[详解](1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,依题意,得:6521004103400x y x y +=⎧⎨+=⎩, 解得:100300x y =⎧⎨=⎩. 答:A 种型号的电风扇的销售单价为100元,B 种型号的电风扇的销售单价为300元.(2)设采购A 种型号的电风扇m 台,B 种型号的电风扇n 台,依题意,得:()()120100803002008000m n m n +=⎧⎨-+-=⎩, 解得:5070m n =⎧⎨=⎩. 答:能实现利润为8000元的目标,可采购A 种型号的电风扇50台,B 种型号的电风扇70台.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 23.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB ∥CD ,则∠AEC =∠BAE +∠DCE 成立吗?请说明理由.(2)如图2,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .BE 、DE 所在直线交于点E ,若∠F AD =50°,∠ABC =40°,求∠BED 的度数.(3)将图2中的线段BC 沿DC 所在的直线平移,使得点B 在点A 的右侧,若∠F AD =m °,∠ABC =n °,其他条件不变,得到图3,请你求出∠BED 的度数(用含m ,n 的式子表示).[答案](1)成立,理由见解析;(2)45°;(3)∠BED 的度数改变,∠BED =180°﹣12n °+12m °. [解析][分析](1)根据平行线的性质即可得到结论;(2)先过点E作EH∥AB,根据平行线的性质和角平分线的定义,即可得到结论;(3)过E作EG∥AB,根据平行线的性质和角平分线的定义,即可得到结论.[详解]解:(1)如图1中,作EF∥AB,则有EF∥CD,∴∠1=∠BAE,∠2=∠DCE,∴∠AEC=∠1+∠2=∠BAE+∠DCE.(2)如图2,过点E作EH∥AB,∵AB∥CD,∠F AD=50°,∴∠F AD=∠ADC=50°.∵DE平分∠ADC,∠ADC=50°,∴∠EDC=12∠ADC=25°.∵BE平分∠ABC,∠ABC=40°,∴∠ABE=12∠ABC=20°.∵AB∥CD,∴AB∥CD∥EH,∴∠ABE=∠BEH=20°,∠CDE=∠DEH=25°, ∴∠BED=∠BEH+∠DEH=45°.(3)∠BED的度数改变.过点E作EG∥AB.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=∠GAD=m°,∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=12m°∵AB∥CD,∴AB∥CD∥EG,∴∠BEG=180°﹣∠ABE=180°﹣12n°,∠CDE=∠DEG=12m°,∴∠BED=∠BEG+∠DEG=180°﹣12n°+12m°.故答案为:180°﹣12n°+12m°.[点睛]本题主要考查了平移的性质,平行线的性质以及角平分线的定义的运用,解决问题的关键是正确的作出辅助线.。
人教版数学七年级下学期《期中检测试题》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列计算正确的是( )A. ()011-=-B. ()111-=C. ()()221a a -÷-=D. 3322a a -= 2.已知某种植物花粉的直径为0.000035米,那么用科学记数法可表示为( )A. 43.510⨯米B. 53.510-⨯米C. 43.510-⨯米D. 53.510⨯米 3.点P 为直线外一点,点A 、B 、C 为直线上三点,PA =4cm ,PB=5cm ,PC=3cm ,则点P 到直线距离为( )A. 4cmB. 5cmC. 小于3cmD. 不大于3cm 4.如图,若AB ∥CD ,则∠A 、∠E 、∠D 之间是( )A. ∠A +∠E +∠D =180°B. ∠A +∠E -∠D =180°C. ∠A -∠E +∠D =180°D. ∠A +∠E +∠D =270°5.在方程组2131x y y z -=⎧⎨=+⎩,231x y x =⎧⎨-=⎩,035x y x y +=⎧⎨-=⎩,123xy x y =⎧⎨+=⎩,111y x y ⎧=⎪⎨⎪+=⎩中,是二元一次方程组的有( )个.A 2 B. 3 C. 4 D. 56.如图,下列说法一定正确的是( )A. ∠1和∠4是内错角B. ∠1和∠3是同位角C. ∠3和∠4是同旁内角D. ∠1和∠C 是同位角 7.时钟显示为8:30时,时针与分针所夹锐角是( )A. 65︒B. 70︒C. 75︒D. 85︒8.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是( )A. 60°B. 50°C. 40°D. 30° 9.若35m =,34n =,则23m n -等于( ) A. 52 B. 254 C. 6 D. 2010.若方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩,则方程组(2012)2(2013)33(2012)4(2013)5a b a b +--=⎧⎨++-=⎩的解是( ) A. 2.20.4a b =⎧⎨=-⎩ B. 2014.22012.6a b =⎧⎨=⎩ C. 2009.82012.6a b =-⎧⎨=⎩ D. 2014.22013.4a b =⎧⎨=⎩ 11.若将一副三角板按如图所示的方式放置,则下列结论不正确的是( )A. 13∠=∠B. 如果230∠=︒,则有//AC DEC. 如果230∠=︒,则有//BC ADD. 如果230∠=︒,必有4C ∠=∠12.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A. 11910813x y y x x y =⎧⎨+-+=⎩()() B. 10891311y x x y x y +=+⎧⎨+=⎩C. 91181013x y x y y x ()()=⎧⎨+-+=⎩D. 91110813x y y x x y =⎧⎨+-+=⎩()() 二、填空题13.已知∠1=30°,则∠1的余角的补角度数是_________.14.计算:()()32p p -⋅-=________15.已知80AOB ∠=︒,20AOC ∠=︒,则BOC ∠的度数为______.16.如果方程组45x by ax =⎧⎨+=⎩解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为______. 17.如图,已知,GF AB ⊥12,B AGH ∠=∠∠=∠.则下列结论:①//GH BC ;②D F =∠∠;③HE 平分AHG ∠;④HE AB ⊥.其中正确的是________(把你认为正确答案的序号都填上)18.新定义一种运算,其法则为32a c a d bc b d =÷,则223x x x x--=__________ 三、解答题19.计算:(1)()02311233-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ (2)()52632x x x x -÷+⋅(3)232213112346x y x y x y ⎛⎫-⋅-+⎪⎝⎭ (4)()()221x x x +-+20.解方程组(1)128x y x y =+⎧⎨+=⎩(2)11233210x y x y +⎧-=⎪⎨⎪+=⎩ 21.已知:如图,AD BC ⊥于点,EF BC ⊥于点,3E ∠=∠,求证:AD 平分BAC ∠.22.如图,//EF AB ,70DCB ∠=︒,20CBF ∠=︒,130EFB ∠=︒.(1)直线CD 与AB 平行吗?为什么?(2)若68CEF ∠=︒,求ACB ∠的度数.23.如图,直线AB 、CD 、MN 相交与点O ,FO ⊥BO ,OM 平分∠DOF(1)请直接写出图中所有与∠AON 互余的角: .(2)若∠AOC=52∠FOM ,求∠MOD 与∠AON 的度数.24.如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC 的度数.25.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如下表:现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,货主应付运费多少元?选做题:26.九个小朋友围坐在一张圆桌旁,每人想好一个数,并告诉坐在两旁的人,然后将他两旁人告诉他的数的平均数报出来,每人报的结果如右图所示,那么报11的人想的数是多少?答案与解析一、选择题1.下列计算正确的是( )A. ()011-=-B. ()111-=C. ()()221a a -÷-=D. 3322a a -= [答案]D[解析][分析]根据幂的运算性质,对四个选项进行判断即可.[详解]解: A.(-1)0=1,∴A 错误; B.11(1)11--==--,∴B 错误; C .()()()22221a aa a -÷-=÷-=-,∴C 错误. D .3331222a a a -=⋅=,∴D 正确. 故选D . [点睛]此题主要考查了零指数幂和负整数指数幂,关键是掌握负整数指数为正整数指数倒数;任何非0数的0次幂等于1.2.已知某种植物花粉的直径为0.000035米,那么用科学记数法可表示为( )A. 43.510⨯米B. 53.510-⨯米C. 43.510-⨯米D. 53.510⨯米[答案]B[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]0.000035米=3.5×10-5米;故选B .[点睛]本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.点P 为直线外一点,点A 、B 、C 为直线上三点,PA =4cm ,PB=5cm ,PC=3cm ,则点P 到直线的距离为( )A. 4cmB. 5cmC. 小于3cmD. 不大于3cm [答案]D[详解]解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线的距离≤PC,即点P到直线的距离不大于3cm.故选:D.4.如图,若AB∥CD,则∠A、∠E、∠D之间的是( )A ∠A+∠E+∠D=180° B. ∠A+∠E-∠D=180°C. ∠A-∠E+∠D=180° D. ∠A+∠E+∠D=270°[答案]B[解析][分析]作EF∥AB,则EF∥CD∥AB,根据平行线的性质即可求解.[详解]作EF∥AB,则EF∥CD∥AB,∴∠A+∠AEF=180°,∠D=∠DEF,又∠AED=∠AEF+∠DEF,故∠A+∠E-∠D=180°选B.[点睛]此题主要考查平行线的性质,解题的关键是熟知平行线的性质.5.在方程组2131x yy z-=⎧⎨=+⎩,231xy x=⎧⎨-=⎩,35x yx y+=⎧⎨-=⎩,123xyx y=⎧⎨+=⎩,111yx y⎧=⎪⎨⎪+=⎩中,是二元一次方程组的有()个.A. 2B. 3C. 4D. 5 [答案]A[解析]根据二元一次方程组的定义逐一分析即可.[详解]2131x y y z -=⎧⎨=+⎩含有三个未知数,故不是二元一次方程组; 231x y x =⎧⎨-=⎩是二元一次方程组; 035x y x y +=⎧⎨-=⎩是二元一次方程组; 123xy x y =⎧⎨+=⎩中1xy =是二元二次方程,故该方程组不是二元一次方程组; 111y x y ⎧=⎪⎨⎪+=⎩中11y =不是整式方程,故该方程组不是二元一次方程组; 综上,是二元一次方程组的只有231x y x =⎧⎨-=⎩和035x y x y +=⎧⎨-=⎩. 故选:A .[点睛]本题考查二元一次方程组的定义,要求熟悉二元一次方程组的形式及其特点:含有2个未知数,最高次项的次数是1的整式方程.6.如图,下列说法一定正确的是( )A. ∠1和∠4是内错角B. ∠1和∠3是同位角C. ∠3和∠4是同旁内角D. ∠1和∠C 是同位角[答案]D[解析][分析] 根据内错角、同位角以及同旁内角的定义进行判断即可.[详解]解:A 、∠2和∠4是内错角,故本选项错误;B 、∠1和∠C 是同位角,故本选项错误;C 、∠3和∠4是邻补角,故本选项错误;D 、∠1和∠C 是同位角,故本选项正确;故选D .[点睛]本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.7.时钟显示为8:30时,时针与分针所夹的锐角是( )A. 65︒B. 70︒C. 75︒D. 85︒[答案]C[解析][分析]根据钟面平均分成2份,可得每份的度数,根据时针与分针相距的份数乘以每份的度数,可得答案.[详解]解:钟面每份是30°,8点30分时针与分针相距2.5份,8点30分时,时钟的时针与分针所夹的锐角是30°×2.5=75°,故选:C .[点睛]本题考查了钟面角,利用了时针与分针相距的份数乘以每份的度数等于钟面角.8.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是( )A. 60°B. 50°C. 40°D. 30°[答案]C[解析] [详解]解:∵FE ⊥DB ,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB ∥CD ,∴∠2=∠D=40°. 故选C .[点睛]本题考查平行线的性质.9.若35m =,34n =,则23m n -等于( ) A. 52 B. 254 C. 6 D. 20[答案]B[解析][分析]运用同底数幂的除法进行分解22n 3=33-÷m n m ,把值代入求职即可;[详解]由题可得()222n 3=33=33-÷÷m n m m n , 把35m =,34n =代入上式得:原式=22554=254=4÷÷. 故答案选B .[点睛]本题主要考查了整式乘法中幂的运算性质逆运算公式,准确应用公式是解题的关键. 10.若方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩,则方程组(2012)2(2013)33(2012)4(2013)5a b a b +--=⎧⎨++-=⎩的解是( ) A. 2.20.4a b =⎧⎨=-⎩ B. 2014.22012.6a b =⎧⎨=⎩ C. 2009.82012.6a b =-⎧⎨=⎩ D. 2014.22013.4a b =⎧⎨=⎩[答案]C[解析][分析]将2012+a 和2013-b 分别看作整体,则可分别对应x ,y 的值,分别解方程即可求得结果.[详解]解:令 2012+=a m ,2013-=b n ,则方程组(2012)2(2013)33(2012)4(2013)5a b a b +--=⎧⎨++-=⎩可化为23345m n m n -=⎧⎨+=⎩, ∵方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩, ∴方程组23345m n m n -=⎧⎨+=⎩的解是 2.20.4m n =⎧⎨=-⎩, 即2012 2.220130.4a b +=⎧⎨-=-⎩, 解得:2009.82012.6a b =-⎧⎨=⎩, 故选:C .[点睛]本题考查了二元一次方程组的解,掌握整体思想的运用是解题的关键.11.若将一副三角板按如图所示的方式放置,则下列结论不正确的是( )A. 13∠=∠B. 如果230∠=︒,则有//AC DEC. 如果230∠=︒,则有//BC ADD. 如果230∠=︒,必有4C ∠=∠[答案]C[解析][分析]根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.[详解]解:A 、∵∠CAB =∠EAD =90°,∴∠1=∠CAB−∠2,∠3=∠EAD−∠2,∴∠1=∠3;故该选项正确,B 、∵∠2=30°,∴∠1=90°−30°=60°,∵∠E =60°,∴∠1=∠E ,∴AC ∥DE ;故该选项正确,C 、∵∠2=30°,∴∠3=90°−30°=60°,∵∠B =45°,∴BC 不平行于AD ;故该选项错误;D 、由AC ∥DE 可得∠4=∠C ;故该选项正确,故选:C.[点睛]此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.12.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D91110813 x yy x x y=⎧⎨+-+=⎩()()[答案]D[解析][分析]根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.[详解]设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选D.[点睛]此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.二、填空题13.已知∠1=30°,则∠1的余角的补角度数是_________.[答案]120°[解析][分析]根据余角和补角概念计算即可.[详解]∵∠1=30°,∴∠1的余角=90°﹣∠1=90°﹣30°=60°,则∠1的余角的补角=180°﹣∠1的余角=180°﹣60°=120°.故答案为:120°.[点睛]本题考查了余角和补角,解答本题的关键是熟练掌握互余两角之和等于90°,互补两角之和等于180°.14.计算:()()32p p-⋅-=________[答案]p 5[解析][分析]根据同底数幂的乘法法则解答即可.[详解]解:原式=-p 3·(-p 2)=p 5.故答案为:p 5.[点睛]本题主要考查了同底数幂的乘法,同底数幂相乘,底数不变,指数相加.15.已知80AOB ∠=︒,20AOC ∠=︒,则BOC ∠的度数为______.[答案]100︒或60︒[解析][分析]先画图形,注意先画较大的角,分情况:当OC 在AOB ∠的内部时,当OC 在AOB ∠的外部时,从而利用角的和差可得答案.[详解]解:当OC 在AOB ∠的内部时,如图,此时:60,BOC AOB AOC ∠=∠-∠=︒当OC 在AOB ∠的外部时,如图,此时:100.BOC AOB AOC ∠=∠+∠=︒故答案为:100︒或60︒[点睛]本题考查是角的和差运算,画好符合题意的图形是解题的关键.16.如果方程组45x by ax =⎧⎨+=⎩的解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为______. [答案]1[解析][分析]根据题意,把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得到一个关于a ,b 的方程组,将方程组的两个方程左右两边分别相加,整理即可得出a+b 的值.[详解]解:根据题意把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得 345432b a b a +⎧⎨+⎩=①=②, ①+②,得:7(a+b )=7,则a+b=1,故答案为:1.[点睛]此题主要考查了二元一次方程组的解的定义以及加减消元法解方程组.一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.注意两个方程组有相同的解时,往往需要将两个方程组进行重组解题.17.如图,已知,GF AB ⊥12,B AGH ∠=∠∠=∠.则下列结论:①//GH BC ;②D F =∠∠;③HE 平分AHG ∠;④HE AB ⊥.其中正确的是________(把你认为正确答案的序号都填上)[答案]①④[解析][分析]根据平行线的性质定理与判定定理,即可解答.[详解]∵∠B=∠AGH ,∴GH ∥BC ,即①正确;∴∠1=∠MGH ,又∵∠1=∠2,∴∠2=∠MGH ,∴DE ∥GF ,∵GF ⊥AB ,∴DE ⊥AB ,即④正确;∠D=∠F ,HE 平分∠AHG ,都不一定成立;故答案为:①④.[点睛]此题考查平行线的性质定理与判定定理,解题的关键是熟记平行线的性质定理与判定定理.18.新定义一种运算,其法则为32a c a d bc b d =÷,则223x x x x--=__________ [答案][解析][分析]按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.[详解]222322333()()x x x x x x x xx--=-⋅÷-⋅= 故答案为: [点睛]本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.三、解答题19.计算:(1)()02311233-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ (2)()52632x x x x -÷+⋅(3)232213112346x y x y x y ⎛⎫-⋅-+⎪⎝⎭ (4)()()221x x x +-+[答案](1)0;(2)9x ;(3)53422492x y x y x y -+-;(4)34+x[解析][分析](1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用幂的乘方与积的乘方运算法则,以及单项式乘以单项式法则计算,合并即可得到结果;(3)原式利用幂的乘方与积的乘方运算法则,以及单项式乘以多项式法则计算即可得到结果;(4)原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果. [详解]解:(1)()02311233-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ 819=--+0=;(2)()52632x x x x -÷+⋅1092x x x =-÷+992x x =-+9x =;(3)232213112346x y x y x y ⎛⎫-⋅-+ ⎪⎝⎭ 232222131121212346x y x y x y x y x y =-⋅+⋅-⋅ 53422492x y x y x y =-+-;(4)()()221x x x +-+ ()()()222x x x x =++-+2244x x x x =++--34x =+;[点睛]此题考查了整式的混合运算,零指数幂、负整数指数幂,熟练掌握运算法则及公式是解本题的关键. 20.解方程组(1)128x y x y =+⎧⎨+=⎩(2)11233210x y x y +⎧-=⎪⎨⎪+=⎩ [答案](1)32x y =⎧⎨=⎩;(2)312x y =⎧⎪⎨=⎪⎩[解析][分析](1)利用代入消元法求解即可;(2)方程组整理后,利用加减消元法求解即可.[详解]解:(1)128x y x y =+⎧⎨+=⎩①②, 把①式代入②中,得:()218y y ++=,解这个方程得:y=2,把y=2代入①中,得x=3,所以方程组的解为32x y =⎧⎨=⎩; (2)11233210x y x y +⎧-=⎪⎨⎪+=⎩, 原方程组可变为:3283210x y x y -=⎧⎨+=⎩①②, ①+②得:6x=18,解这个方程得:x=3,把x=3代入①中,得: y=12, 所以方程组的解为312x y =⎧⎪⎨=⎪⎩. [点睛]此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.21.已知:如图,AD BC ⊥于点,EF BC ⊥于点,3E ∠=∠,求证:AD 平分BAC ∠.[答案]见解析[解析][分析]因为∠ADB=∠EFB ,由同位角相等证明AD ∥EF ,则有∠1=∠E ,∠2=∠3,又因为∠3=∠1,所以有∠1=∠2,故AD 平分∠BAC .[详解]证明:∵AD BC ⊥于点,EF BC ⊥于点(已知),∴90EFC ADC ∠=∠=︒(垂直定义),∴ EF AD ∥(同位角相等,两直线平行),∴1E ∠=∠(两直线平行,同位角相等),32∠=∠(两直线平行,内错角相等).又∵3E ∠=∠(已知),∴12∠=∠(等量代换),∴AD 平分BAC ∠(角平分线定义).[点睛]此题是一道把平行线性质和判定、角平分线的定义结合求解的综合题.有利于培养学生综合运用数学知识的能力.22.如图,//EF AB ,70DCB ∠=︒,20CBF ∠=︒,130EFB ∠=︒.(1)直线CD 与AB 平行吗?为什么?(2)若68CEF ∠=︒,求ACB ∠的度数.[答案](1)平行,理由见解析;(2)∠ACB=42°.[解析][分析](1)根据两直线平行、同旁内角互补求出∠ABF ,得到∠ABC ,根据内错角相等、两直线平行证明;(2)根据两直线平行、同旁内角互补求出∠DCE ,计算即可.[详解]解:(1)平行,理由如下:∵//EF AB ,130EFB ∠=︒,∴18013050ABF ∠=︒-︒=︒,∵20CBF ∠=︒,∴70CBA ABF CBF ∠=∠+∠=︒,∵70DCB ∠=︒,∴∠CBA =∠DCB ,∴//CD AB ;(2)∵//EF AB ,68CEF ∠=︒,∴68A ∠=︒,由(1)知://CD AB ,∴180ACD A ∠+∠=︒,∴180********ACD A ∠=︒-∠=︒-︒=︒,又∵70DCB ∠=︒,∴1127042ACB ACD DCB ∠=∠-∠=︒-︒=︒.[点睛]本题考查的是平行线的判定和性质,掌握平行线的判定定理和性质定理是解题的关键.23.如图,直线AB 、CD 、MN 相交与点O ,FO ⊥BO ,OM 平分∠DOF(1)请直接写出图中所有与∠AON互余的角:.(2)若∠AOC=52∠FOM,求∠MOD与∠AON的度数.[答案](1)∠FOM,∠MOD,∠CON;(2)20°,70°[解析][分析](1)根据垂直的定义可得∠BOF=∠AOF=90°,由角平分线的定义和对顶角相等可得与∠AON互余的角有:∠FOM,∠MOD,∠CON;(2)设∠MOD的度数为x°,用含x的式子表示出∠FOD和∠AOC的度数,然后由∠AOC=∠BOD,得出∠FOD+∠AOC=90°,据此列方程求解,再由(1)中∠MOD与∠AON互余可得出∠AON的度数.[详解]解:(1)∵FO⊥BO,∴∠BOF=∠AOF=90°,∴∠BOM+∠FOM=90°,又∠BOM=∠AON,∴∠AON+∠FOM=90°.∵OM平分∠DOF,∴∠DOM=∠FOM,又∵∠DOM=∠CON,∴与∠AON互余的角有:∠FOM,∠MOD,∠CON;(2)设∠MOD的度数为x°,∵OM平分∠FOD,∴∠MOD=∠FOM=x°,∴∠FOD=2x°,∠AOC=52∠FOM=5x2°,又∵FO⊥BO,∠AOC=∠BOD, ∴∠FOD+∠AOC=90°,即2x+5x2=90,解得:x=20.即∠MOD=20°,由(1)可知∠MOD与∠AON互余,∴∠AON=90°-∠MOD=90°-20°=70°.故∠MOD的度数为20°,∠AON的度数为70°.[点睛]本题考查了垂直的定义,角的平分线的定义,余角的定义与性质以及对顶角相等,正确理解相关概念是关键.24.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.[答案]20°[解析][分析]推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.[详解]∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB−∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.[点睛]本题考查了平行线的性质和判定,平行公理及推论,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.25.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如下表:现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,货主应付运费多少元?[答案]货主应该付运输费735元.[解析]试题分析:本题需知道1辆甲种货车,1辆乙种货车一次运货吨数.等量关系为:2辆甲种货车运货吨数+3辆乙种货车运货吨数=15.5;5辆甲种货车运货吨数+6辆乙种货车运货吨数=35.试题解析:设甲、乙两种货车每辆每次分别运货x吨、y吨,根据题意,得2315.5, {5635.x yx y+=+=解这个方程组,得4 {2.5 xy==则所运货物有3×4+5×2.5=24.5(吨),所以货主应该付运输费为24.5×30=735(元).答:货主应该付运输费735元.[点睛]应根据条件和问题知道应设的未知量是直接未知数还是间接未知数.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:2辆甲种货车运货吨数+3辆乙种货车运货吨数=15.5;5辆甲种货车运货吨数+6辆乙种货车运货吨数=35.列出方程组,再求解.选做题:26.九个小朋友围坐在一张圆桌旁,每人想好一个数,并告诉坐在两旁的人,然后将他两旁人告诉他的数的平均数报出来,每人报的结果如右图所示,那么报11的人想的数是多少?[答案]7[解析][分析]设报11的人心想的数是a ,用b ,c ,d 到i 分别表示顺指针其余8个小朋友所想的数,通过图可以分别表示出各字母之间的代数式,最后通过整合代数式列出方程,解方程即可.[详解]解:设、、、、、f 、、、分别表示9个小朋友所想的数,则有:248a c c =⨯-=-,21632b d d =⨯-=-,224c e e =⨯-=-,21326d f f =⨯-=-,2612e g g =⨯-=-,2128f h h =⨯-=-,2714g i i =⨯-=-,21021h a a =⨯-=-,21122i b b =⨯-=-,整合884441214a c e e g a =-=-+=+=+-==- 可得7a =,∴报11的人心想的数是7,故答案为:7.[点睛]正确理解题意,用方程的思想解决问题.要注意代数式的表示方法.。
人教版数学七年级下册《期中考试试卷》(含答案)

【答案】D
【解析】
分析】
直接利用已知点坐标建立平面直角坐标系,进而得出答案.
【详解】解:如图所示:邮局位置的点的坐标是(﹣3,﹣1).
故选:D.
【点睛】本题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.
8.如图,直线CE∥DF,∠CAB=125°,∠ABD=85°,则∠ECA+∠BDF=( )
(1)求点A、B、C、D的坐标;
(2)在x轴上是否存在点P,使三角形PBC的面积等于平行四边形ABDC的面积?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),点E在y轴的负半轴上,且∠BAE=∠DCB.求证:AE∥BC.
答案与解析
一.选择题(共8小题)
1.下列实数中,属于无理数的是( )
【解析】
【分析】
命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.
【详解】命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
【点睛】任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.
A.30°B.35°C.36°D.40°
【答案】A
【解析】
【分析】
首先由直线 ,根据两直线平行,同旁内角互补,求得 ,然后由 , ,利用三角形外角的性质,求得答案.
【详解】如图,∵CE∥DF,
∴∠CEA+∠F=180°,
∵∠CAB=125°,∠ABD=85°,
人教版七年级数学下学期期中测试卷含答案

七年级数学下学期期中测试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、两条直线的位置关系有()A、相交、垂直B、相交、平行C、垂直、平行D、相交、垂直、平行2、如图所示,是一个“七”字形,与∠1是同位角的是()A、∠2B、∠3C、∠4D、∠53、经过一点A画已知直线a的平行线,能画()A、0条B、1条C、2条D、不能确定4、如图4,下列条件中,不能判断直线a//b的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°5、下列图形中有稳定性的是()A.正方形 B.长方形 C.直角三角形 D.平行四边形6、一个正数x的平方根是2a-3与5-a,则x的值是()。
A.64B.36C.81D.497、如图,已知:∠1=∠2,∠3=∠4,∠A=80°,则∠BOC等于()A、95°B、120°C、130°D、无法确定8、若a*=1.1062,b*=0.947是经过舍入后作为的近似值,问a*+b*有几位有效数字?()A、4B、5C、6D、79、下列说法正确的是()A、符号相反的数互为相反数B、符号相反绝对值相等的数互为相反数C、绝对值相等的数互为相反数D、符号相反的数互为倒数10、在平面直角坐标系中,已知点A(-4,0)、B(0,2),现将线段AB向右平移,使A 与坐标原点0重合,则B平移后的坐标是()。
A.(0,-2)B.(4,2)C.(4,4)D.(2,4)二、填空题(本大题共7小题,每小题4分,共28分)11、用科学记数法表示9349000(保留2个有效数字)为________________.12、如图1直线AB,CD,EF相交与点O,图中∠AOE的对顶角是_________,∠COF的补角是__________。
13、如图2,要把池中的水引到D处,可过C点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,试说明设计的依据:______________________________14、多项式4x²+4mx+36是一个完全平方式,则m=_____________.15、如图,AC平分∠BAD,∠DAC=∠DCA,填空:因为AC平分∠BAD,所以∠DAC= _______,又因为∠DAC=∠DCA,所以∠DCA= _______,所以AB∥_______。
人教版数学七年级下册《期中检测试卷》含答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.9的算术平方根是( )A. 3B. 3C. ±3D. ±3 2.-2,4,2,3.14,327-,5π,这6个数中,无理数共有( ) A. 4个 B. 3个C. 2个D. 1个 3.平面直角坐标中,点M(-2,3)在( )A. 第一象限B. 第二象限C. 第三象限 D. 第四象限 4.如图所示的车标,可以看作由“基本图案”经过平移得到的是( )A. B. C. D. 5.如图,直线a ,b 相交于点O ,若∠1等于45°,则∠2等于( )A. 45°B. 135°C. 115°D. 55°6.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为( )A. 10°B. 15°C. 25°D. 35°7.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A. (5,4)B. (4,5)C. (3,4)D. (4,3)8.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A. (2,1)B. (﹣2,﹣1)C. (﹣2,1)D. (2,﹣1)9.如图,直线a ,b 被直线c 所截,下列说法正确的是( )A. 当∠1=∠2时,a ∥bB. 当a ∥b 时,∠1=∠2C. 当a ∥b 时,∠1+∠2=90°D. 当a ∥b 时,∠1+∠2=180°10.如图,已知直线AB CD ,相交于点,OE AB ⊥,28EOC ∠=︒,则∠BOD 的度数为( )A. 28°B. 52°C. 62°D. 118°11.若|x |=3,y 是4的算术平方根,且|y ﹣x |=x ﹣y ,则x +y 的值是( )A. 5B. ﹣5C. 1D. ﹣112.下列命题中正确的有( )①相等的角是对顶角; ②在同一平面内,若a ∥b ,b ∥c ,则a ∥c ;③同旁内角互补; ④互为邻补角的两角的角平分线互相垂直.A. 4个B. 1个C. 2个D. 3个13.已知A (a ,0)和B 点(0,10)两点,且AB 与坐标轴围成的三角形的面积等于20,则a 的值为( )A. 2B. 4C. 0或4D. 4或﹣414.如图,在平面直角坐标系中A (3,0),B (0,4),AB =5,P 是线段AB 上一个动点,则OP 的最小值是()A. 245B. 125C. 4D. 3 二、填空题 15.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.16.已知x ,y 为实数,且3x -+(y +2)2=0,则y x =___.17.实数,在数轴上的位置如图所示,请化简:222()a b a b ---18.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.三、解答题19.计算:(1)239118()162+--;(2)122332----+-. 20.解方程:(1)2(1)9x -=;(2)32(1)54x -+=.21.已知4a-11的平方根是,3a+b-1的算木平方根是1,c 是20的整数部分.(1)求a ,b ,c 的値;(2)求2a-b+c 的立方根.22.完成下列推理说明:如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°( ),∴AB ∥CD ( )∴∠B = ( )又∵∠B=∠D( 已知),∴∠=∠( 等量代换)∴AD∥BE( )∴∠E=∠DFE( )23.如图,已知∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,∠1=∠3,试说明:AB∥DC24.如图,AD∥BC,∠EAD=∠C.(1)试判断AE与CD的位置关系,并说明理由;(2)若∠FEC=∠BAE,∠EFC=50°,求∠B的度数.25.在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC 平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是;(3)求△DEF的面积.26.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即沿长方形移动一周).(1)写出B点的坐标;(2)当点P移动3秒时,求三角形OAP的面积;(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动时间.答案与解析一、选择题1.9的算术平方根是( )A. 3B.C. ±3 [答案]A[解析][分析]根据算术平方根定义即可得到结果.[详解]解:∵32=9∴9的算术平方根是3,故选:A.[点睛]本题考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.2.在-2,3.14,5π,这6个数中,无理数共有( ) A. 4个B. 3个C. 2个D. 1个 [答案]C[解析]-22=, 3.14, 3=-是有理数;,5π是无理数; 故选C.点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个). 3.在平面直角坐标中,点M(-2,3)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 [答案]B[解析]∵−2<0,3>0,∴(−2,3)在第二象限,故选B.4.如图所示的车标,可以看作由“基本图案”经过平移得到的是( )A. B. C. D.[答案]B[解析][分析]根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.[详解]解:根据平移概念,观察图形可知图案B通过平移后可以得到.故选B.[点睛]本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.5.如图,直线a,b相交于点O,若∠1等于45°,则∠2等于()A 45° B. 135° C. 115° D. 55°[答案]B[解析][分析]根据互为邻补角的两个角的和等于180°列式计算即可得解.[详解]解:由图可知,∠1与∠2互为邻补角,∴∠2=180°-∠1=180°-45°=135°.故选:B.[点睛]本题考查了邻补角的定义,是基础题,熟记概念并准确识图是解题的关键6.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A. 10°B. 15°C. 25°D. 35°[答案]C[解析][分析]由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.[详解]如图,∵∠1=65°∴∠3=∠1=65°,∴∠2=90°−65°=25°.故选:C.[点睛]考查平行线的性质,掌握两直线平行,同位角相等是解题的关键.7.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A. (5,4)B. (4,5)C. (3,4)D. (4,3)[答案]D[解析][分析]根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.[详解]如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.[点睛]本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.8.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为( )A. (2,1)B. (﹣2,﹣1)C. (﹣2,1)D. (2,﹣1)[答案]C[解析]分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选C点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.9.如图,直线a,b被直线c所截,下列说法正确的是( )A. 当∠1=∠2时,a∥bB. 当a∥b时,∠1=∠2C. 当a∥b时,∠1+∠2=90°D. 当a∥b时,∠1+∠2=180°[答案]D[解析][分析]根据平行线的性质,两直线平行,同旁内角互补以及对顶角的性质即可判断.[详解]解:∠1=∠2时,∠2=∠3,同旁内角相等,a∥b不一定成立,选项A错误;当a ∥b 时,∠2+∠3=180°,而∠1=∠3,则∠1+∠2=180°,故D 正确.故选D .[点睛]此题考查平行线的性质,解题关键在于掌握其性质定义.10.如图,已知直线AB CD ,相交于点,OE AB ⊥,28EOC ∠=︒,则∠BOD 的度数为( )A. 28°B. 52°C. 62°D. 118°[答案]D[解析] 分析:利用互余和互补的概念,可求得∠BOD 的大小.详解:因为OE AB ⊥,28EOC ∠=︒,所以∠COB =62°,所以∠BOD=180°-62°=118°. 故选D.点睛:辨析互余互补:(1)相加等于90°的两角称作互为余角.(2)相加等于180°的两个角互为补角.11.若|x |=3,y 是4的算术平方根,且|y ﹣x |=x ﹣y ,则x +y 的值是( )A. 5B. ﹣5C. 1D. ﹣1 [答案]A[解析]分析]由|y ﹣x |=x ﹣y 知x ≥y ,再根据|x |=3,y 是4的算术平方根得出x 、y 的值,代入计算可得[详解]解:因为|y ﹣x |≥0,所以x ﹣y ≥0,即x ≥y .由|x |=3,y 是4的算术平方根可知x =3、y =2.则x+y=5,故选A.[点睛]此题考查算术平方根,解题关键在于掌握运算法则.12.下列命题中正确的有()①相等的角是对顶角;②在同一平面内,若a∥b,b∥c,则a∥c;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A. 4个B. 1个C. 2个D. 3个[答案]C[解析][分析]根据对顶角的性质、平行公理、平行线的判定定理和垂直的定义对各个选项进行判断即可.[详解]解:相等的角不一定是对顶角,①错误;在同一平面内,若a∥b,b∥c,则a∥c,②正确;同旁内角不一定互补,③错误;互为邻补角的两角的角平分线互相垂直,④正确,故选:C.[点睛]本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.13.已知A(a,0)和B点(0,10)两点,且AB与坐标轴围成的三角形的面积等于20,则a的值为( )A. 2B. 4C. 0或4D. 4或﹣4[答案]D[解析][分析]根据点A、B的坐标可找出OA、OB的长度,再根据三角形的面积公式即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.[详解]∵A(a,0),B(0,10),∴OA=|a|,OB=10,∴S△AOB=12OA•OB=12•10|a|=20,解得:a=±4.故选D.[点睛]本题考查了坐标与图形性质,根据三角形的面积公式列出关于a的含绝对值符号的一元一次方程是解题的关键.14.如图,在平面直角坐标系中A(3,0),B(0,4),AB=5,P是线段AB上的一个动点,则OP的最小值是( )A. 245B.125C. 4D. 3[答案]B[解析][分析]利用等面积法求得OP的最小值.[详解]解:当OP⊥AB时,OP的值最小.∵A(3,0),B(0,4),∴OB=4,OA=3.∴12OA•OB=12AB•OP.∴OP=341255 OA OBAB⨯==.故选B.[点睛]此题考查坐标与图形,解题关键在于利用三角形面积公式进行计算.二、填空题15.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.[答案]如果两个角互为对顶角,那么这两个角相等[解析][分析]根据命题的形式解答即可.[详解]将“对顶角相等”改写为“如果...那么...”的形式,可写为如果两个角互为对顶角,那么这两个角相等,故答案为:如果两个角互为对顶角,那么这两个角相等.[点睛]此题考查命题的形式,可写成用关联词“如果...那么...”连接的形式,准确确定命题中的题设和结论是解题的关键.16.已知x ,y 为实数,且3x -+(y +2)2=0,则y x =___.[答案]-8[解析][分析]直接利用非负数的性质得出x ,y 的值,进而得出答案.[详解]解:∵3x -+(y+2)2=0,∴x-3=0,y+2=0,解得x=3,y=-2,故y x =(-2)3=-8.故答案为:-8.[点睛]此题主要考查了非负数的性质,根据几个非负数的和等于0,则每一个式子都等于0进行列式是解题的关键.17.实数,在数轴上的位置如图所示,请化简:222()a b a b -[答案]0[解析][分析]先判断a ,b ,a-b 的符号,再根据二次根式的性质化简即可.[详解]解:由数轴可知0a <,0b >,∴0a b -<,222()a b a b -||||||a b a b =---()0a b a b =--+-=.[点睛]本题考查了利用数轴比较实数的大小,二次根式的性质与化简,熟练掌握二次根式的性质是解答本题的关键.18.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.[答案](-4,8)[解析][分析]根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解.[详解]解:∵点P (2a ,2-3a )是第二象限内的一个点,且P 到两坐标轴的距离之和为12,∴-2a+2-3a=12,解得a=-2,∴2a=-4,2-3a=8,∴点P 的坐标为(-4,8).故答案为:(-4,8).[点睛]本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题19.计算:(121()2;(2)1-+[答案](1)-1;(2[解析][分析](1)首先化简二次根式,再计算加减即可;(2)首先根据绝对值的性质计算,再计算加减即可.[详解]解:(121()2+124- 51=244-- =-1(2)1-[点睛]此题主要考查了二次根式的加减和绝对值的性质,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变,对于含有绝对值的运算先去掉绝对值符号再运算.20.解方程:(1)2(1)9x -=;(2)32(1)54x -+=.[答案](1)4x =或2x =-;(2)4x =-[解析][分析](1)根据平方形式开方运算,即可解答;(2)根据等式的性质,可化成立方的形式,根据开方运算,可得答案.[详解]解:(1)2(1)9x -=则:13x -=±当13x -=时,4x =当13x -=-时,2x =-综上所述,4x =或2x =-(2)32(1)54x -+= 3(1)-27x +=13x +=-4x =-[点睛]本题考查了平方根和立方根,能够先化成平方和立方的形式,再进行开方运算是解题的关键.21.已知4a-11的平方根是,3a+b-1的算木平方根是1,c 的整数部分.(1)求a ,b ,c 的値;(2)求2a-b+c 的立方根.[答案](1)a=5,b=-13,c=4;(2)3.[解析][分析](1)根据题意可得:4a-1l=9,3a+b-1=1,c=4,求解即可;(2)代入数值,根据立方根的性质求解.[详解]解:(1)∵4a-1l 的平方根是.∴4a-1l=9∴a=5∵3a+b-1的算木平方根是1∴3a+b-1=l∴b=-13;∵c 是20的整数部分,4<20<5∴c=4(2)333225(13)4273a b c -+=⨯--+==[点睛]本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键.22.完成下列推理说明: 如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°( ),∴AB ∥CD ( ) ∴∠B = ( )又∵∠B =∠D ( 已知 ),∴ ∠ = ∠ ( 等量代换 )∴AD ∥BE ( )∴∠E =∠DFE ( )[答案]详见解析[解析][分析]根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B=∠DCE ,求出∠DCE=∠D ,根据平行线的判定得出AD ∥BE ,根据平行线的性质得出即可.[详解]证明:∵∠B+∠BCD=180°( 已知 ),∴AB ∥CD (同旁内角互补,两直线平行),∴∠B= ∠DCE (两直线平行,同位角相等 ),又∵∠B=∠D( 已知),∴∠ DCE = ∠ D ( 等量代换),∴AD∥BE(内错角相等,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等),故答案为同旁内角互补,两直线平行,∠DCE,两直线平行,同位角相等;∴∠DCE;∠D;内错角相等,两直线平行;两直线平行,内错角相等.[点睛]本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然. 23.如图,已知∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,∠1=∠3,试说明:AB∥DC.[答案]证明见解析[解析]试题分析:先根据角平分线定义可证明∠1=∠2,进而利用平行线的判定方法得出答案.试题解析:证明:∵BF平分∠ABC,∴∠1=∠FBC.∵DE平分∠ADC,∴∠2=∠ADE.∵∠ABC=∠ADC,∴∠1+∠FBC=∠2+∠ADE,∴2∠1=2∠2,即∠1=∠2.又∵∠1=∠3,∴∠2=∠3,∴AB∥DC.24.如图,AD∥BC,∠EAD=∠C.(1)试判断AE与CD的位置关系,并说明理由;(2)若∠FEC=∠BAE,∠EFC=50°,求∠B的度数.[答案](1)AE∥CD,理由见解析;(2)50°[解析][分析](1)根据平行线的性质得出∠D+∠C=180°,求出∠EAD+∠D=180°,根据平行线的判定得出即可;(2)根据平行线的性质和三角形的外角性质求出即可.[详解]解:(1)AE∥CD,理由是:∵AD∥BC,∴∠D+∠C=180°,∵∠EAD=∠C,∴∠EAD+∠D=180°,∴AE∥CD;(2)∵AE∥CD,∠EFC=50°,∴∠AEF=∠EFC=50°,∵∠AEC=∠B+∠BAE=∠AEF+∠FEC,又∵∠FEC=∠BAE,∴∠B=∠AEF=50°.[点睛]此题考查平行线的判定与性质,三角形的外角性质,解题关键在于掌握判定定理.25.在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC 平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是;(3)求△DEF的面积.[答案]⑴如图所示见解析;⑵平行且相等;⑶7 2[解析][分析](1)将点B、C均向右平移4格、向上平移1格,再顺次连接可得;(2)根据平移的性质可得;(3)割补法求解即可.[详解](1)如图所示,△DEF即为所求;(2)由图可知,线段AD与BE的关系是:平行且相等,(3)S△DEF=3×3-12×2×3-12×1×2-12×1×3=72.[点睛]本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.26.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即沿长方形移动一周).(1)写出B点的坐标;(2)当点P移动3秒时,求三角形OAP的面积;(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动的时间.[答案](1)(4,6);(2)4;(3)4秒或8秒[解析][分析](1)根据长方形的性质,易得B得坐标;(2)根据题意,P的运动速度与移动的时间,进而结合三角形的面积公式可得答案;(3)根据题意,当点P到x轴距离为5个单位长度时,有P在AB与OC上两种情况,分别求解可得答案.[详解]解:(1)根据长方形的性质,可得AB与y轴平行,BC与x轴平行;故B的坐标为(4,6);(2)∵A(4,0)、C(0,6),∴OA=4,OC=6.∵3×2=6>4,∴点P在线段AB上.∴P A=2.∴S△OAP=12OA×P A=12×4×2=4.(3)∵OC=AB=6>4,∴点P在AB上或OC上.当点P在AB上时,P A=4,此时点P移动路程为4+4=8,时间为12×8=4.当点P在OC上时,OP=4,此时点P移动路程为2(4+6)﹣4=16,时间为12×16=8.∴点P移动的时间为4秒或8秒.[点睛]此题考查长方形的性质,坐标与图形变化-平移,解题关键在于掌握平移的性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级下学期期中测试数学试卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 下列运算正确的是()
A.B.
C.D.
2 . 己知下列算式:①;②;③;④;
⑤.其中计算结果错误的有()
A.1个B.2个C.3个D.4个
3 . 某地为了紧急安置60名灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好能容纳这60名灾民,则不同的搭建方案有()
A.4种B.6种C.9种D.11种
4 . 下列各式中,相等关系一定成立的是()
A.
B.
C.
D.
5 . 下列多项式能用平方差公式分解的因式有()
(1)a2+b2 (2) x2-y2 (3)-m2+n2 (4) -b2-a2 (5)-a6+4
A.2个B.3个C.4个D.5个
6 . △ABC的两边是方程组的解,第三边长为奇数,符合条件的三角形有()
A.1个B.2个C.3个D.4个
7 . 下列运算正确的是()
A.x2•x3=x6B.x2+x2=2x4
C.(﹣2x)2=4x2D.(﹣2x)2•(﹣3x)3=6x5
8 . 如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()
A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-ab
C.(a-b)2=a2-b2D.a2-b2=(a+b)(a-b)
二、填空题
9 . 已知,、为正整数,则___________
10 . 计算:(1)(2)
11 . 据中国统计信息网公布的年中国第五次人口普查资料,我国人口总数约为人.用科学记数法表示这个数为______.
12 . 若方程组的解为,则写出这个方程组为____________.
13 . 已知x=2,x+y=3,则x2y+xy2=_____.
14 . 已知,,则________.
15 . 若+|b2﹣1|=0,则ab=_____.
16 . 给出下列各组数:①与;②与;③与;④与;⑤与.其
中相等的有______.(填序号)
17 . 已知多项式ax5+bx3+cx+9,当x=-1时,多项式的值为17,则该多项式当x=1时的值是___.
18 . 某同学做了一道数学题:“已知两个多项式为 A、B,B=3x﹣2y,求 A﹣B 的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是 x ﹣y,那么原来的 A﹣B的值应该是.
三、解答题
19 . 观察下表:
序号123……
x x x x
x x x y y y
x x y y x x x x
图形 y x x x y y y
x x y y x x x x
x x x y y y
x x x x
我们把某格中字母和所得到的多项式称为“特征式多项式”。
例如第1格的“特征式多项式”为4x+y。
(1)第3格的“特征式多项式”为________________;
(2)第4格的“特征式多项式”为________________;
(3)第n格的“特征式多项式”为________________;
(4)若第1格的“特征式多项式”为10,第2格的“特征式多项式”为19,求x、y的值。
20 . 计算:.
21 . 已知关于x,y的方程组的解为正数.(1)求a的取值范围;(2)化简:
22 . 计算:(a﹣1)(a+2)﹣(a2﹣2a)÷a
23 . 解下列方程组:
(1)
(2)
24 . 越来越多的人在用微信付款、转账,把微信账户里的钱转到银行卡叫做提现。
自2016年3月l日起,每个微信账户终身享有1000元的免费提现额度,当累计提现金额超过1000元时,累计提现金额超出1000元的部分需支付0.1%的手续费,以后每次提现支付的手续费为提现金额的0.1%.
(1)小明在今天第1次进行了提现,金额为l600元,他需支付手续费_________元;
(2)小亮自2016年3月1日至今,用自己的微信账户共提现3次,3次提现金额和手续费分别如下:
第1次第2次第3次
提现金额(元)A b
手续费(元)00.4 3.4
问:小明3次提现金额各是多少元?
(3)单笔手续费小于0.1元的,按照0.1元收取(即提现不足100元,按照100元收取手续费).小红至今共提现两次,每次提现金额都是整数,共支付手续费2.4元,第一次提现900元。
求小红第二次提现金额的范围.
25 . (1)计算:(-4b)·(-a2b)2÷(-2a);
(2)分解因式:x2(x-2y)+xy2.
26 . 若的值
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
二、填空题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
三、解答题1、
2、
3、
4、
5、
6、
7、
8、。