四川省资阳市九年级上学期数学期末考试试卷
四川省资阳市九年级上学期期末数学试卷

四川省资阳市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)一元二次方程x2-2x-m=0,用配方法解该方程,配方后的方程为()A . (x-1)2=m2+1B . (x-1)2=m-1C . (x-1)2=1-mD . (x-1)2=m+12. (2分)在研究相似问题时,甲、乙同学的观点如下:对于两人的观点,下列说法正确的是()A . 两人都对B . 两人都不对C . 甲对,乙不对D . 甲不对,乙对3. (2分)如图,四边形ABCD是⊙O的内接四边形,∠DAB与∠DCE的关系是()A . 相等B . 互余C . 互补D . 无法确定4. (2分)(2015·泗洪) 在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲的成绩的方差S甲2=1.21,乙的成绩的方差S乙2=3.98,由此可知().A . 甲比乙的成绩稳定B . 乙比甲的成绩稳定C . 甲、乙两人的成绩一样稳定D . 无法确定谁的成绩更稳定5. (2分)如图,在直角坐标系中,⊙O的半径为1,则直线y=﹣x+与⊙O的位置关系是().A . 相离B . 相交C . 相切D . 以上三种情形都有可能6. (2分)已知两点P1(x1 , y1)、P2(x2 , y2)在反比例函数的图象上,当x1>x2>0时,下列结论正确的是()A . 0<y1<y2B . 0<y2<y1C . y1<y2<0D . y2<y1<07. (2分)在直角坐标平面内,点A的坐标为(1,0),点B的坐标为(a,0),圆A的半径为2.下列说法中不正确的是()A . 当a=﹣1时,点B在圆A上B . 当a<1时,点B在圆A内C . 当a<﹣1时,点B在圆A外D . 当﹣1<a<3时,点B在圆A内8. (2分) (2017九上·东台期末) 如图,线段AB是圆O的直径,弦CD⊥AB,如果∠BOC=60°,那么∠BAD 等于()A . 20°B . 30°C . 35°D . 70°9. (2分)(2013·百色) 在反比例函数y= 中,当x>0时,y随x的增大而增大,则二次函数y=mx2+mx 的图象大致是图中的()A .B .C .D .10. (2分)(2017·梁溪模拟) 在直角坐标系中,O为原点,A(0,4),点B在直线y=kx+6(k>0)上,若以O、A、B为顶点所作的直角三角形有且只有三个时,k的值为()A .B .C . 3D .11. (2分)把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数y=x2+mx+n的图象与x轴有两个不同交点的概率是()A .B .C .D .12. (2分)如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A .B .C .D .13. (2分)(2019·南岸模拟) 如图,点C在以AB为直径的半圆O的弧上,∠ABC=30°,且AC=2,则图中阴影部分的面积是()A . ﹣B . ﹣2C . ﹣D . ﹣14. (2分) (2019九上·利辛月考) 如图,△ABC中,AB=AC=10,点D在BC上,连接AD,若CD=AB,AD=BD,则BC的长为()A . -5+5B . 5+5C . 10+5D . 15-515. (2分) (2016九下·广州期中) 如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A . 1B . 2C . 3D . 416. (2分)对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab-2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=-2,x2=1;③不等式组的解集为:-1<x<4;④点(,)在函数y=x⊗(-1)的图象上.其中正确的是()A . ①②③④B . ①③C . ①②③D . ③④二、填空题 (共4题;共4分)17. (1分)一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握了36次手,设到会的人数为x人,则根据题意列方程为________.18. (1分)已知A(1,2),B(3,0),将△AOB以坐标原点O为位似中心扩大到△OCD(如图),D(4,0),则点C的坐标为________ .19. (1分) (2018九上·北仑期末) 如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC =7+2 ,圆形纸片的半径为2,求圆心O运动的路径长为________.20. (1分)如图,是二次函数y=3x2的图象,把该图象向左平移1个单位,再向下平移2个单位,所得的抛物线的函数关系式为________.三、解答题 (共6题;共72分)21. (20分)(2018·黄冈模拟) 已知反比例函数y= 的图象与一次函数y=kx+m的图象相交于点A(2,1).(1)分别求出这两个函数的解析式;(2)当x取什么范围时,反比例函数值大于0;(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.22. (5分)(2019·凤翔模拟) 汉江是长江最长的支流,在历史上占居重要地位,陕西省境内的汉江为汉江上游段.李琳利用热气球探测器测量汉江某段河宽,如图,探测器在A处观测到正前方汉江两岸岸边的B、C两点,并测得B、C两点的俯角分别为45°,30°已知A处离地面的高度为80m,河平面BC与地面在同一水平面上,请你求出汉江该段河宽BC.(结果保留根号)23. (12分)在“爱满扬州”慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成统计图.(1)这50名同学捐款的众数为________ 元,中位数为________ 元。
四川省资阳市九年级上学期期末数学试卷(五四学制)

四川省资阳市九年级上学期期末数学试卷(五四学制)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)以下命题中,真命题的是()A . 两条线只有一个交点B . 同位角相等C . 两边和一角对应相等的两个三角形全等D . 等腰三角形底边中点到两腰的距离相等2. (2分)(2018·长沙) 下列计算正确的是()A . a2+a3=a5B .C . (x2)3=x5D . m5÷m3=m23. (2分)分式的值为零时,则x的值为()A . x=3B . x=﹣3C . x=±3D . 以上都不对4. (2分)(2017·南山模拟) 如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF~△CAB;②CF=2AF;③DF=DC;④tan∠CAD= .其中正确的结论有()A . 4个B . 3个C . 2个D . 1个5. (2分) (2015九下·武平期中) 如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2 .其中一定正确的是()A . ②④B . ①③C . ①④D . ②③6. (2分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,则她至少要答对()A . 10道题B . 12道题C . 13道题D . 16道题7. (2分)二次函数y=(x﹣1)(x﹣2)﹣1与x轴的交点x1 , x2 , x1<x2 ,则下列结论正确的是()A . x1<1<x2<2B . x1<1<2<x2C . x2<x1<1D . 2<x1<x28. (2分)(2017·五华模拟) 不等式组的解集在数轴上表示正确的是()A .B .C .D .9. (2分)在方程组、、、、、中,是二元一次方程组的有()A . 2个B . 3个C . 4个D . 5个10. (2分)用计算器计算,若按键顺序为,相应算式是()A . ×5﹣0×5÷2=B . (×5﹣0×5)÷2=C . ﹣0.5÷2=D . (-0.5)÷2=11. (2分)(2018·鄂尔多斯模拟) 如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A .B .C .D .12. (2分)(2012·朝阳) 如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数y= 的图象上,若点A的坐标为(﹣2,﹣3),则k的值为()A . 1B . ﹣5C . 4D . 1或﹣5二、填空题 (共5题;共5分)13. (1分)已知x+y=6,xy=﹣2,则=________ .14. (1分)某校七年级共有589名学生分别到北京博物馆和中国科技馆学习参观,其中到北京博物馆的人数比到中国科技馆人数的2倍还多56人,设到中国科技馆的人数为x人,依题意可列方程为________ .15. (1分) (2016九上·连城期中) 如图,边长为1的正方形ABCD的对角线AC、BD相交于点O,有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是________.(1)EF= OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF= OA;(4)在旋转过程中,当△BEF 与△COF的面积之和最大时,AE= .16. (1分)(2017·天门模拟) 设x1、x2是一元二次方程x2+4x﹣3=0的两个根,2x1(x22+5x2﹣3)+a=2,则a=________.17. (1分)(2018·眉山) 已知关于x的分式方程-2= 有一个正数解,则k的取值范围为________.三、解答题 (共7题;共69分)18. (5分) (2017八下·罗山期中) 先化简,再求值:,其中a= +1,b= ﹣1.19. (10分)(2017八上·滨江期中) 解下列不等式(组).(1).(2).20. (6分) (2018八上·武汉期中) 如图,在由边长均为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及经过格点的直线m.(1)①画出△ABC关于直线m对称的△A1B1C1;②将△DEF先向左平移5个单位长度,再向下平移4个单位长度,画出平移后得到的△D1E1F1;(2)求∠A+∠E=________°.21. (15分)(2018·眉山) 如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.22. (10分) (2016九上·简阳期末) 某工程队修建一条总长为1860米的公路,在使用旧设备施工17天后,为尽快完成任务,工程队引进了新设备,从而将工作效率提高了50%,结果比原计划提前15天完成任务.(1)工程队在使用新设备后每天能修路多少米?(2)在使用旧设备和新设备工作效率不变的情况下,工程队计划使用旧设备m天,使用新设备n(16≤n≤26)天修建一条总长为1500米的公路,使用旧设备一天需花费16000元,使用新设备一天需花费25000元,当m、n分别为何值时,修建这条公路的总费用最少,并求出最少费用.23. (10分) (2019七下·兰州期中) 文具店出售书包和文具盒,书包每个定价为30元,文具盒每个定价为5元.该店制定了两种优惠方案:①买一个书包赠送一个文具盒;②按总价的九折(总价的90%)付款.某班学生需购买8个书包、若干个文具盒(不少于8个),如果设文具盒个数为x(个),付款数为y(元).(1)分别求出两种优惠方案中y与x之间的关系式;(2)购买文具盒多少个时,两种方案付款相同?24. (13分) (2018·峨眉山模拟) 如图(13),矩形中,、、,射线过点且与轴平行,点、分别是和轴正半轴上动点,满足.(1)①点的坐标是________;② =________度;③当点与点重合时,点的坐标为________;(2)设的中点为,与线段相交于点,连结,如图(13)乙所示,若为等腰三角形,求点的横坐标;(3)设点的横坐标为,且,与矩形的重叠部分的面积为,试求与的函数关系式.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共7题;共69分)18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、。
四川省资阳市资阳市雁江区2025届数学九上期末学业水平测试试题含解析

四川省资阳市资阳市雁江区2025届数学九上期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)1.如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠BOD=44°,则∠C的度数是()A.44°B.22°C.46°D.36°2.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=2103.如图,直线1l//2l//3l,若AB=6,BC=9,EF=6,则DE=()A.4 B.6 C.7 D.94.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6 B.C.9 D.5.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个6.如图,已知点A(m,m+3),点B(n,n﹣3)是反比例函数y=kx(k>0)在第一象限的图象上的两点,连接AB.将直线AB向下平移3个单位得到直线l,在直线l上任取一点C,则△ABC的面积为()A.92B.6 C.152D.97.如图,在△ABC中,DE∥BC,若DE=2,BC=6,则ADEABC的面积的面积=()A.13B.14C.16D.198.在一个不透明的袋子里装有6个颜色不同的球(除颜色不同外,质地、大小均相同),其中2个球为红球,4个球为白球,若从该袋子里任意摸出1个球,则摸出的球是白球的概率为()A.12B.13C.16D.239.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=4810.在△ABC中,∠A、∠B都是锐角,且13sin,cos2A B==ABC的形状的说法错误的是()A.它不是直角三角形B.它是钝角三角形C.它是锐角三角形D.它是等腰三角形二、填空题(每小题3分,共24分)11.三张完全相同的卡片,正面分别标有数字0,1,2,先将三张卡片洗匀后反面朝上,随机抽取一张,记下卡片上的数字m,放置一边,再从剩余的卡片中随机抽取一张卡片,记下卡片上的数字n,则满足关于x的方程x2+mx+n=0有实数根的概率为______.12.若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=_____.13.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.14.一组数据:2,3,4,2,4的方差是___.15.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为_____.16.如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,则sinA=_____.17.一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是_____.18.用一个圆心角为150º,半径为8的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为________.三、解答题(共66分)19.(10分)如图,已知直线y=12-x+2与x轴、y轴分别交于点B,C,抛物线y=12-x2+bx+c过点B、C,且与x轴交于另一个点A.(1)求该抛物线的表达式;(2)若点P是x轴上方抛物线上一点,连接OP.①若OP与线段BC交于点D,则当D为OP中点时,求出点P坐标.②在抛物线上是否存在点P,使得∠POC=∠ACO若存在,求出点P坐标;若不存在,请说明理由.20.(6分)先化简,再求值:(2241-442aa a a--+-)÷212a a-,其中a是一元二次方程对a2+3a﹣2=0的根.21.(6分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.(1)求证:MH为⊙O的切线.(2)若MH=32,tan∠ABC=34,求⊙O的半径.(3)在(2)的条件下分别过点A 、B 作⊙O 的切线,两切线交于点D ,AD 与⊙O 相切于N 点,过N 点作NQ ⊥BC ,垂足为E ,且交⊙O 于Q 点,求线段NQ 的长度.22.(8分)如图,AB 为半圆O 的直径,点C 在半圆上,过点O 作BC 的平行线交AC 于点E ,交过点A 的直线于点D ,且∠D =∠BAC(1)求证:AD 是半圆O 的切线;(2)求证:△ABC ∽△DOA ;(3)若BC =2,CE =2,求AD 的长.23.(8分)已知24(2)kk y k x +-=+是二次函数,且函数图象有最高点.(1)求k 的值;(2)当x 为何值时,y 随x 的增大而减少.24.(8分)已知AD 为⊙O 的直径,BC 为⊙O 的切线,切点为M ,分别过A ,D 两点作BC 的垂线,垂足分别为B ,C ,AD 的延长线与BC 相交于点E .(1)求证:△ABM ∽△MCD ;(2)若AD=8,AB=5,求ME 的长.25.(10分)在一个不透明的盒子里装有4个分别标有:﹣1、﹣2、0、1的小球,它们的形状、大小完全相同,小芳从盒子中随机取出一个小球,记下数字为x,作为点M的横坐标:小华在剩下的3个小球中随机取出一个小球,记下数字为y,作为点M的纵坐标.(1)用画树状图或列表的方式,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=2x的图象上的概率.26.(10分)已知抛物线y=2x2-12x+13(1)当x为何值时,y有最小值,最小值是多少?(2)当x为何值时,y随x的增大而减小(3)将该抛物线向右平移2个单位,再向上平移2个单位,请直接写出新抛物线的表达式参考答案一、选择题(每小题3分,共30分)1、B【分析】根据圆周角定理解答即可.【详解】解,∵∠BOD=44°,∴∠C=12∠BOD=22°,故选:B.【点睛】本题考查了圆周角定理,属于基本题型,熟练掌握圆周角定理是关键.2、B【详解】设全组共有x名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.3、A【分析】根据平行线分线段成比例定理列出比例式,代入数值进行计算即可. 【详解】解:∵1l//2l//3l,∴AB DE BC EF,∵AB=6,BC=9,EF=6,∴696DE,∴DE=4故选:A【点睛】本题考查平行线分线段成比例定理,找准对应关系是解答此题的关键.4、C【解析】试题分析:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC ∵AO=OB,∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是1.故选C.考点:切线的性质;最值问题.5、A【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中白球有x个,根据题意得:1515+x=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选A.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn是解题关键.6、A【分析】由点A(m,m+3),点B(n,n﹣3)在反比例函数y=kx(k>0)第一象限的图象上,可得到m、n之间的关系,过点A、B分别作x轴、y轴的平行线,构造直角三角形,可求出直角三角形的直角边的长,由平移可得直角三角形的直角顶点在直线l上,进而将问题转化为求△ADB的面积.【详解】解:∵点A(m,m+3),点B(n,n﹣3)在反比例函数y=kx(k>0)第一象限的图象上,∴k=m(m+3)=n(n﹣3),即:(m+n)(m﹣n+3)=0,∵m+n>0,∴m﹣n+3=0,即:m﹣n=﹣3,过点A、B分别作x轴、y轴的平行线相交于点D,∴BD=x B﹣x A=n﹣m=3,AD=y A﹣y B=m+3﹣(n﹣3)=m﹣n+6=3,又∵直线l是由直线AB向下平移3个单位得到的,∴平移后点A与点D重合,因此,点D在直线l上,∴S△ACB=S△ADB=12AD•BD=92,故选:A.【点睛】本题主要考察反比例函数与一次函数的交点问题,解题关键是熟练掌握计算法则.7、D【解析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE∥BC∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即ADE ABC 的面积的面积=2213:=19. 故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.8、D【分析】让白球的个数除以球的总个数即为所求的概率.【详解】解:因为一共有6个球,白球有4个,所以从布袋里任意摸出1个球,摸到白球的概率为:4263 . 故选:D .【点睛】本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.9、D【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设教育经费的年平均增长率为x ,然后根据已知条件可得出方程.【详解】∵某超市一月份的营业额为36万元,每月的平均增长率为x ,∴二月份的营业额为36(1+x ),三月份的营业额为36(1+x )×(1+x )=36(1+x )2.∴根据三月份的营业额为48万元,可列方程为36(1+x )2=48.故选D.【点睛】本题考查了一元二次方程的应用,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.10、C【解析】先根据特殊角的三角函数值求出∠A 、∠B 的度数,再根据三角形内角和定理求出∠C 即可作出判断.【详解】∵△ABC 中,∠A 、∠B 都是锐角,sin A =12,cos B ∴∠A =∠B =30°. ∴∠C =180°−∠A −∠B =180−30°−30°=120°. 故选C.【点睛】本题主要考查特殊角三角函数值,熟悉掌握是关键.二、填空题(每小题3分,共24分)11、1 2【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与满足关于x的方程x2+mx+n=0有实数根的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有6种等可能的结果,满足关于x的方程x2+mx+n=0有实数根的有3种情况,∴满足关于x的方程x2+mx+n=0有实数根的概率为:36=12.故答案为:12.【点睛】本题主要考查一元二次方程根的判别式与概率,掌握画树状图求得等可能的结果数以及概率公式,是解题的关键.12、1【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【详解】解:把x=﹣1代入一元二次方程ax2﹣bx﹣1=0得:a+b﹣1=0,即a+b=1.故答案为:1.【点睛】此题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,关键是把方程的解代入方程.13、﹣1或1【解析】试题分析:根据方程有两个相等的实数根列出关于a的方程,求出a的值即可.∵关于x的一元二次方程x1+1ax+a+1=0有两个相等的实数根,∴△=0,即4a1﹣4(a+1)=0,解得a=﹣1或1.考点:根的判别式.14、0.1【分析】根据方差的求法计算即可.【详解】平均数为2342435++++=,方差为:()()()()()222221[2333432343]0.85-+-+-+-+-= ,故答案为:0.1.【点睛】本题主要考查方差,掌握方差的求法是解题的关键.15、2.【解析】令y =0,可以求得相应的x 的值,从而可以求得抛物线与x 轴的交点坐标,进而求得抛物线y =x 2﹣4x +3与x 轴两个交点之间的距离.【详解】∵抛物线y =x 2﹣4x +3=(x ﹣3)(x ﹣2),∴当y =0时,0=(x ﹣3)(x ﹣2),解得:x 2=3,x 2=2. ∵3﹣2=2,∴抛物线y =x 2﹣4x +3与x 轴两个交点之间的距离为2.故答案为:2.【点睛】本题考查了抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.16、35【分析】根据锐角的正弦为对边比斜边,可得答案. 【详解】解:在Rt △ABC 中,∠C =90°,AB =10,BC =6,则sinA =63105BC AB ==, 故答案为:35. 【点睛】本题考查了求解三角函数,属于简单题,熟悉正弦三角函数的定义是解题关键.17、【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【详解】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:. 故答案为.【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数. 18、103【分析】根据扇形条件计算出扇形弧长,由此得到其所围成的圆锥的底面圆周长,由圆的周长公式计算底面圆的半径.【详解】∵圆心角为150º,半径为8 ∴扇形弧长:1508201803l ππ⋅== ∴其围成的圆锥的底面圆周长为:203π ∴设底面圆半径为r 则2023r ππ=,得103r = 故答案为:103. 【点睛】本题考查了扇形弧长的计算,及扇形与圆锥之间的对应关系,熟知以上内容是解题的关键.三、解答题(共66分)19、(2)y =﹣12x 2+32x +2;(2)①点P 坐标为(2,3);②存在点P(12﹣2)或(72-7)使得∠POC =∠ACO【分析】(2)122y x =-+与x 轴、y 轴分别交于点B (4,0)、C (0,2),由题意可得1164022b c c ⎧-⨯++=⎪⎨⎪=⎩即可求解;(2)①过点P 作PE ∥OC ,交BC 于点E .根据题意得出△OCD ≌△PED ,从而得出PE =OC =2,再根据22131122222222PE m m m m m ⎛⎫⎛⎫=-++--+=-+= ⎪ ⎪⎝⎭⎝⎭即可求解; ②当点P 在y 轴右侧,PO ∥AC 时,∠POC=∠ACO .抛物线与x 轴交于A ,B 两点,点A 在点B 左侧,则点A 坐标为(-2,0).则直线AC 的解析式为y=2x+2.直线OP 的解析式为y=2x ,即可求解;当点P 在y 轴右侧,设OP 与直线AC 交于点G ,当CG=OG 时,∠POC=∠ACO ,根据等腰三角形三线合一,则CF=OF=2,可得:点G 坐标为1,12⎛⎫- ⎪⎝⎭即可求解.【详解】(2)∵y =﹣12x+2与x 轴、y 轴分别交于点B (4,0)、C (0,2). 由题意可得1164022b c c ⎧-⨯++=⎪⎨⎪=⎩,解得:322b c ⎧=⎪⎨⎪=⎩,∴抛物线的表达式为y =﹣12x 2+32x+2;(2)①如图,过点P作PE∥OC,交BC于点E.∵点D为OP的中点,∴△OCD≌△PED(AAS),∴PE=OC=2,设点P坐标为(m,﹣12m2+32m+2),点E坐标为(m,﹣12m+2),则PE=(﹣12m2+32m+2)﹣(﹣12m+2)=﹣12m2+2m=2,解得m2=m2=2.∴点P坐标为(2,3);②存在点P,使得∠POC=∠ACO.理由:分两种情况讨论.如上图,当点P在y轴右侧,PO∥AC时,∠POC=∠ACO.∵抛物线与x轴交于A,B两点,点A在点B左侧,∴点A坐标为(﹣2,0).∴直线AC的解析式为y=2x+2.∴直线OP的解析式为y=2x,解方程组2132222y x xy x⎧=++⎪⎨⎪=⎩,解得:x117-±(舍去负值)∴点P 171-172).如图,当点P在y轴右侧,设OP与直线AC交于点G,当CG=OG时∠POC=∠ACO,过点G作GF⊥OC,垂足为F.根据等腰三角形三线合一,则CF=OF=2.∴可得点G 坐标为(﹣12,2) ∴直线OG 的解析式为y =﹣2x ;把y =﹣2x 代入抛物线表达式并解得x .∴点P 7).综上所述,存在点P (122)或(72-7)使得∠POC =∠ACO . 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、三角形全等、解直角三角形、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.20、a 1+3a ,1【分析】根据分式的减法和除法可以化简题目中的式子,然后根据a 1+3a ﹣1=0可以得到a 1+3a 的值,从而可以求得所求式子的值.【详解】解:(2241442a a a a---+-)÷212a a - =[2(2)(2)1(2)2a a a a +-+--]•a (a ﹣1) =(2122a a a ++--)•a (a ﹣1) =32a a +-•a (a ﹣1) =a (a +3)=a 1+3a ,∵a 1+3a ﹣1=0,∴a 1+3a =1,∴原式=1.【点睛】本题考查分式的化简求值,代数式求值.解决此题应注意运算顺序,能熟练掌握通分、因式分解、约分等知识点是解题关键.21、(1)证明见解析;(2)2;(3)4813. 【分析】(1)连接OH 、OM ,易证OH 是△ABC 的中位线,利用中位线的性质可证明△COH ≌△MOH ,所以∠HCO=∠HMO=90°,从而可知MH是⊙O的切线;(2)由切线长定理可知:MH=HC,再由点M是AC的中点可知AC=3,由tan∠ABC=34,所以BC=4,从而可知⊙O的半径为2;(3)连接CN,AO,CN与AO相交于I,由AC、AN是⊙O的切线可知AO⊥CN,利用等面积可求出可求得CI的长度,设CE为x,然后利用勾股定理可求得CE的长度,利用垂径定理即可求得NQ.【详解】解:(1)连接OH、OM,∵H是AC的中点,O是BC的中点∴OH是△ABC的中位线∴OH∥AB,∴∠COH=∠ABC,∠MOH=∠OMB又∵OB=OM,∴∠OMB=∠MBO∴∠COH=∠MOH,在△COH与△MOH中,∵OC=OM,∠COH=∠MOH,OH=OH∴△COH≌△MOH(SAS)∴∠HCO=∠HMO=90°∴MH是⊙O的切线;(2)∵MH、AC是⊙O的切线∴HC=MH=3 2∴AC=2HC=3∵tan∠ABC=34,∴ACBC=34∴BC=4∴⊙O的半径为2;(3)连接OA、CN、ON,OA与CN相交于点I ∵AC与AN都是⊙O的切线∴AC=AN,AO平分∠CAD∴AO⊥CN∵AC=3,OC=2∴由勾股定理可求得:A O∵12AC •OC =12AO •CI ,∴CI =61313∴由垂径定理可求得:C N =121313设OE =x ,由勾股定理可得:2222CN CE ON OE -=-∴22144(2)413x x -+=-, ∴x =1013,∴CE =1013, 由勾股定理可求得:EN =2413, ∴由垂径定理可知:NQ =2EN =4813.22、(1)见解析;(2)见解析;(3)6AD =【分析】(1)要证AD 是半圆O 的切线只要证明∠DAO =90°即可;(2)根据两组角对应相等的两个三角形相似即可得证;(3)先求出AC 、AB 、AO 的长,由第(2)问的结论△ABC ∽△DOA ,根据相似三角形的性质:对应边成比例可得到AD 的长.【详解】(1)证明:∵AB 为直径,∴∠ACB =90°,又∵OD ∥BC ,∴∠AEO =∠ACB =90°,∴∠AOD +∠BAC =90°,又∵∠D =∠BAC ,∴∠AOD +∠D =90°,∴∠OAD =90°,∴AD ⊥OA ,∴AD 是半圆O 的切线;(2)证明:由(1)得∠ACB =∠OAD =90°,又∵∠D =∠BAC ,∴△ABC ∽△DOA ;(3)解:∵O 为AB 中点,OD ∥BC ,∴OE 是△ABC 的中位线,则E 为AC 中点,∴AC =2CE ,∵BC =2,CE ,∴AC =∴AB ==,∴OA =12AB , 由(2)得:△ABC ∽△DOA , ∴=AC BC AD OA,=∴AD =. 【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.同时考查了相似三角形的判定与性质,难度适中.23、(1)3k =-;(2)当0x >时,y 随x 的增大而减少【分析】(1)根据二次函数的定义得出k 2+k-4=2,再利用函数图象有最高点,得出k+2<0,即可得出k 的值; (2)利用(1)中k 的值得出二次函数的解析式,利用形如y=ax 2(a≠0)的二次函数顶点坐标为(0,0),对称轴是y 轴即可得出答案.【详解】(1)∵242kk y k x +-=+()是二次函数,∴k 2+k-4=2且k+2≠0,解得k=-1或k=2,∵函数有最高点,∴抛物线的开口向下,∴k+2<0,解得k<-2,∴k=-1.(2)当k=-1时,y=-x2顶点坐标(0,0),对称轴为y轴,当x>0时,y随x的增大而减少.【点睛】此题主要考查了二次函数的定义以及其性质,利用函数图象有最高点,得出二次函数的开口向下是解决问题的关键.24、(1)证明见解析(2)415【分析】(1)由AD为直径,得到所对的圆周角为直角,利用等角的余角相等得到一对角相等,进而利用两对角对应相等的三角形相似即可得证;(2)连接OM,由BC为圆的切线,得到OM与BC垂直,利用锐角三角函数定义及勾股定理即可求出所求.【详解】解:(1)∵AD为圆O的直径,∴∠AMD=90°.∵∠BMC=180°,∴∠2+∠3=90°.∵∠ABM=∠MCD=90°,∴∠2+∠1=90°,∴∠1=∠3,∴△ABM∽△MCD;(2)连接OM.∵BC为圆O的切线,∴OM⊥BC.∵AB⊥BC,∴sin∠E=ABAE=OMOE,即ABAO OE+=OMOE.∵AD=8,AB=5,∴54OE+=4OE,即OE=16,根据勾股定理得:ME=22OE OM-=22164-=415.【点睛】本题考查了相似三角形的判定与性质,圆周角定理,锐角三角函数定义以及切线的性质,熟练掌握相似三角形的判定与性质是解答本题的关键.25、(1)见解析;(2)1 6【分析】(1)画树状图即可得到12种等可能的结果数;(2)利用反比例函数图象上点的坐标特征得到点(﹣2,1)和点(1,﹣2)满足条件,然后根据概率公式计算,即可.【详解】(1)画树状图为:共有12种等可能的结果,它们为(﹣1,﹣2),(﹣1,0),(﹣1,1),(﹣2,﹣1),(﹣2,0),(﹣2,1),(0,﹣1),(0,﹣2),(0,1),(1,﹣1),(1,﹣2),(1,0);(2)∵点M(x,y)在函数y=2x-的图象上的点有(﹣2,1),(1,﹣2),∴点M(x,y)在函数y=2x-的图象上的概率=212=16.【点睛】本题主要考查简单事件的概率和反比例函数的综合,画树状图,是解题的关键.26、(1)当x=3时,y有最小值,最小值是-5;(2)当x<3时,y随x的增大而减小;(3)y=2x2-20x+47.【分析】(1)将二次函数的一般式转化为顶点式,即可求出结论;(2)根据抛物线的开口方向和对称轴左右两侧的增减性即可得出结论;(3)根据抛物线的平移规律:括号内左加右减,括号外上加下减,即可得出结论.【详解】解:(1)y=2x2-12x+13=2(x2-6x)+13=2(x2-6x+9-9)+13=2(x-3)2-5∵2>0∴当x=3时,y有最小值,最小值是-5;(2)∵2>0,对称轴为x=3∴抛物线的开口向上∴当x<3时,y随x的增大而减小;(3)∵将该抛物线向右平移2个单位,再向上平移2个单位,∴平移后的解析式为:y=2(x-3-2)2-5+2=2(x-5)2-3即新抛物线的表达式为y=2x2-20x+47【点睛】此题考查的是二次函数的图像及性质,掌握用二次函数的顶点式求最值、二次函数的增减性和二次函数的平移规律是解决此题的关键.。
四川省资阳市九年级上学期数学期末考试试卷

四川省资阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)一元二次方程x(x﹣2)=0根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根2. (2分) (2019九上·新蔡期中) 若关于x的一元二次方程有两个不相等的实数根,则一次函数的大致图象是A .B .C .D .3. (2分) (2015九上·宜昌期中) 在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A .B .C .D .4. (2分)(2014·梧州) (2014•梧州)如图,已知四边形ABCD内接于⊙O,直径AC=6,对角线AC、BD交于E点,且AB=BD,EC=1,则AD的长为()A .B .C .D . 35. (2分)如图,已知P是△ABC边AB上的一点,连接CP.以下条件中不能判定△ACP∽△ABC的是()A . ∠ACP=∠BB . ∠APC=∠ACBC . AC2=AP•ABD . =6. (2分)(2017·增城模拟) 下列说法正确的是()A . 一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B . 为了了解全国中学生的心理健康状况,应采用普查的方式C . 一组数据0,1,2,1,1的众数和中位数都是1D . 若甲组数据的方差S甲2=0.2,乙组数据的方差S乙2=0.5,则乙组数据比甲组数据稳定7. (2分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=6cm,CD⊥AB于D,以C为圆心,CD为半径画弧,交BC于E,则图中阴影部分的面积为()A . cm2B . cm2C . cm2D . cm28. (2分)如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是()A .B .C .D .二、填空题 (共10题;共10分)9. (1分)(2017·盐城模拟) 某二次函数的图象的顶点坐标(4,﹣1),且它的形状、开口方向与抛物线y=﹣x2相同,则这个二次函数的解析式为________.10. (1分)(2017·黑龙江模拟) 某超市今年一月份的营业额为60万元.三月份的营业额为135万元.若每月营业额的平均增长,则二月份的营业额是________万元.11. (1分) (2016九上·扬州期末) 小明推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣ +3,则小明推铅球的成绩是________m.12. (1分)(2017·莱西模拟) 如图,大圆半径为6,小圆半径为2,在如图所示的圆形区域中,随机撒一把豆子,多次重复这个实验,若把“豆子落在小圆区域A中”记作事件W,请估计事件W的概率P(W)的值________.13. (1分)(2017·溧水模拟) 如图,过原点O的直线与反比例函数y1、y2的图象在第一象限内分别交于点A、B,且A为OB的中点.若点B的坐标为(8,2),则y1与x的函数表达式是________.14. (1分) (2018九上·吴兴期末) 已知线段c是线段a、b的比例中项,且a=4,b=9,则线段c的长度为________ .15. (1分)如图,⊙O的弦AB=4cm,点C为优弧上的动点,且∠ACB=30°.若弦DE经过弦AC、BC的中点M、N,则DM+EN的最大值是________ cm.16. (1分)如图,在△ABC中,DE∥BC,AD=1,AB=3,DE=2,则BC=________.17. (1分)(2017·宝山模拟) 如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图像上,那么抛物线y=ax2+bx+c的对称轴是直线________.18. (1分) (2019八上·香洲期末) 如图,等边△ABC的周长为18cm , BD为AC边上的中线,动点P , Q 分别在线段BC , BD上运动,连接CQ , PQ ,当BP长为________cm时,线段CQ+PQ的和为最小.三、解答题 (共10题;共92分)19. (10分) (2016九上·扬州期末) 计算题(1)解方程:x(x﹣3)﹣4(3﹣x)=0;(2)利用配方法求抛物线y=﹣x2+4x﹣3的对称轴和顶点坐标.20. (5分)(2019·达州) 随机抽取某小吃店一周的营业额(单位:元)如下表:星期一星期二星期三星期四星期五星期六星期日合计540680640640780111010705460(1)分析数据,填空:这组数据的平均数是________元,中位数是________元,众数是________元.(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适么:________.(填“合适”或“不合适”)②选择一个你认为最合适的数据估算这个小吃店一个月的营业额 ________.21. (5分)在一次数学文化课题活动中,把一副数学文化创意扑克牌中的4张扑克牌(如图所示)洗匀后正面向下放在桌面上,从中随机抽取2张牌,请你用列表或画树状图的方法,求抽取的2张牌的数字之和为偶数的概率.22. (5分)如图,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)当通道宽a为10米时,花圃的面积是多少?(2)通道的面积与花圃的面积之比能否恰好等于3:5?如果可以,试求出此时通道的宽.23. (5分)已知,如图,==,那么△ABD与△BCE相似吗?为什么?24. (7分) (2017七上·东城期末) 如图①,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=30°时,则∠DOE的度数为________(2)将图①中的∠COD绕顶点O顺时针旋转至图②的位置,其它条件不变,探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;(3)将图①中的∠COD绕顶点O顺时针旋转至图③的位置,其他条件不变.直接写出∠AOC和∠DOE的度数之间的关系:________25. (15分) (2017八上·云南期中) 某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?(3)在(2)的条件下,每件商品的售价为多少元时,每天可获得最大利润?最大利润是多少元?26. (15分)(2019·武汉模拟) 如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,3)三点,D 为直线BC上方抛物线上一动点,DE⊥BC于E.(1)求抛物线的函数表达式;(2)如图1,求线段DE长度的最大值;(3)如图2,设AB的中点为F,连接CD,CF,是否存在点D,使得△CDE中有一个角与∠CFO相等?若存在,求点D的横坐标;若不存在,请说明理由.27. (10分)(2016·孝感) 如图,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.(1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.①试判断DF与DH的数量关系,并说明理由;②求⊙O的半径.28. (15分) (2017九下·泉港期中) 如图,在平面直角坐标系中,经过的点A(﹣4,0)、点B(6,0)的抛物线与y轴相交于点C(0,m),连接BC.(1)若△OAC∽△OCB,请求出m的值;(2)当m=3时,试求出抛物线的解析式;(3)在(2)的条件下,若P为抛物线上位于x轴上方的一动点,以P、A、B、C为顶点的四边形面积记作S,当S 取何值时,相应的点P有且只有3个?参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共92分)19-1、19-2、20-1、20-2、21-1、22-1、23-1、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。
四川省资阳市九年级上学期数学期末考试试卷

四川省资阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10个小题,每小题4分,共40分) (共10题;共40分)1. (4分) (2019九上·下陆月考) 设一元二次方程2x2﹣4x﹣3=0两个实根为x1和x2 ,则下列结论正确的是()A . x1x2=3B . x1+x2=﹣4C . x1+x2=2D . x1x2=2. (4分) (2019九上·慈溪月考) 下列叙述正确的是()A . “13位同学中有两人出生的月份相同”是随机事件B . 小亮掷硬币100次,其中44次正面朝上,则小亮掷硬币一次正面朝上的概率为0.44C . “明天降雨的概率是80%”,即明天下雨有80%的可能性D . 彩票的中奖概率为1%,买100张才会中奖3. (4分)如图所示,可以看作是正方形ABCD绕点O分别旋转多少度前后的图形共同组成的()A . 30°,45°B . 60°,45°C . 45°,90°D . 22.5°,67.5°4. (4分)(2016·随州) 随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A . 20(1+2x)=28.8B . 28.8(1+x)2=20C . 20(1+x)2=28.8D . 20+20(1+x)+20(1+x)2=28.85. (4分)如图,AB是半圆的直径,AB=2,∠B=30°,则的长为()A .B .C . πD .6. (4分) (2020九上·台安月考) 已知函数在上的最大值是1,最小值是,则的取值范围是()A .B .C .D .7. (4分)在平面直角坐标系内点A、点B的坐标分别为(0,3)、(4,3),在坐标轴上找一点C,使△ABC 是等腰三角形,则符合条件的点C的个数是()A . 5个B . 6个C . 7个D . 8个8. (4分)不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A .B .C .D .9. (4分) (2016九上·临洮期中) 若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1 , y2 , y3的大小关系是()A . y1<y2<y3B . y2<y1<y3C . y3<y1<y2D . y1<y3<y210. (4分) (2020七下·重庆期末) 如图,矩形ABCD中,AB=2 ,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是()A . 4 +3B . 2C . 2 +6D . 4二、填空题(本大题共6个小题,每小题4分,共24分) (共6题;共24分)11. (4分)(2020·上海模拟) 如果关于的方程有两个相等的实数根,那么m的值是________.12. (4分) (2020九上·合肥月考) 将抛物线y=x2-12x+16作关于x轴对称,所得抛物线的解析式是________.13. (4分) (2019九上·宁波期末) 如图,显示的是用计算机模拟随机投掷一枚图钉的某次试验的结果.小明根据试验结果推断:随着重复试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,就可以估计“钉尖向上”的概率是0.618.你认为小明的推断是________(填写“正确”或“错误”)的.14. (4分)如图所示,∠2=2∠1,∠3=70°,∠4=120°,则∠A=________.15. (4分) (2018八上·浉河期末) 如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=8cm2 ,则图中阴影部分的面积等于________cm²16. (4分) (2019九上·武汉月考) 我们把a、b两个数中较小的数记作min{a,b},直线y=kx﹣k﹣2(k<0)与函数y=min{x2﹣1、﹣x+1}的图象有且只有2个交点,则k的取值为________.三、解答题(本大题共9个小题,共86分) (共9题;共86分)17. (8分)解方程:x2﹣3x+2=018. (8分) (2016九上·嵊州期中) 如图,AB是⊙O的直径,点C,D在圆上,且 = ,求证:AC∥OD.19. (8分) (2020九上·东莞月考) 已知抛物线经过点(0,3),且顶点坐标为(1,﹣4),求抛物线的解析式.20. (10分) (2018八上·大石桥期末) 在等边△ABC中,AO是高,D为AO上一点,以CD为一边,在CD下方作等边△CDE,连接BE.(1)求证:AD=BE;(2)过点C作CH⊥BE,交BE的延长线于H,若BC=8,求CH的长.21. (10分) (2020九上·成都月考) 为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其他活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了________名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为________,喜欢“戏曲”活动项目的人数是________人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.22. (10分) (2016九下·赣县期中) 已知关于x的一元二次方程x2﹣kx+k﹣1=0.(1)求证:此一元二次方程恒有实数根.(2)无论k为何值,该方程有一根为定值,请求出此方程的定值根.23. (10分)(2019·天门模拟) 某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金,某电视台栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量(件)与销售价(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其他费用为106元(不包含债务).(1)求日销售量(件)与销售价(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最少需要多少天能还清所有债务,此时每件服装的价格应定为多少元?24. (10分)(2020·新疆模拟) 如图,在矩形中,过对角线中点O的直线分别交边于点 .(1)求证:四边形是平行四边形;(2)若,当四边形是菱形时,求的长.25. (12分) (2017九上·重庆期中) 如图,已知二次函数的图象与x轴交于点 A、点B,交 y 轴于点 C.(1)求直线 BC的函数表达式;(2)如图,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;(3)在(2)的条件下,在轴上是否存在一点M使△CPM的周长最小,若存直接写出周长的最小值;若不存在,请说明理由.参考答案一、选择题(本大题共10个小题,每小题4分,共40分) (共10题;共40分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题(本大题共6个小题,每小题4分,共24分) (共6题;共24分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题(本大题共9个小题,共86分) (共9题;共86分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:。
四川省资阳市九年级上学期数学期末试卷

四川省资阳市九年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)函数y=ax(a≠0)与y=在同一坐标系中的大致图象是()A .B .C .D .2. (2分)已知x=2时关于x的一元二次方程的一个解,则a的值为()A . 0B . -1C . 1D . 23. (2分) (2016九上·呼和浩特期中) 下列方程中,有两个不相等的实数根的是()A . x2+x+1=0B . x2﹣x﹣1=0C . x2﹣6x+9=0D . x2﹣2x+3=04. (2分)给出下列命题及函数y=x,y=x2和y=的图象:①如果>a>a2 ,那么0<a<1;②如果a2>a>,那么a>1;③如果>a2>a ,那么-1<a<0;④如果a2>>a时,那么a<-1.则()A . 正确的命题是①④B . 错误的命题是②③④C . 正确的命题是①②D . 错误的命题只有③5. (2分) (2017九上·建湖期末) 如图,△ACD和△ABC相似需具备的条件是()A .B .C . AC2=AD•ABD . CD2=AD•BD6. (2分)如图,把一张长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:①BD=AD2+AB2;②△ABF≌△EDF;③=④AD=BD•cos45°.其中正确的一组是()A . ①②B . ②③C . ①④D . ③④7. (2分)从1.5m高的测量仪上,测得某建筑物顶端仰角为30°,测量仪距建筑物60m,则建筑物的高大约为()A . 34.65mB . 36.14mC . 28.28mD . 29.78m8. (2分)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A . 3个B . 2个C . 1个D . 0个二、填空题 (共8题;共8分)9. (1分) (2016九上·新泰期中) sin260°+cos260°﹣tan45°=________.10. (1分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为________.11. (1分)(2016·龙岗模拟) 已知一元二次方程x2﹣4x+3=0的两根为x1 , x2 ,那么(1+x1)(1+x2)的值是________12. (1分) (2016九上·浦东期中) 已知线段b是线段a、c的比例中项,且a=2 cm,b=4 cm,那么c=________cm.13. (1分)(2020·泰兴模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=6,点G是△ABC的重心,GH⊥BC,垂足是H,则GH的长为________.14. (1分)(2017·西安模拟) 如图,△AOB与反比例函数交于C、D,且AB∥x轴,△AOB的面积为6,若AC:CB=1:3,则反比例函数的表达式为________.15. (1分)如图,边长为a的正方形ABCD和边长为b的正方形BEFG排放在一起,O1和O2分别是两个正方形的中心,则阴影部分的面积为________,线段O1O2的长为________.16. (1分) (2019九上·榆树期中) 如图,四边形与四边形关于点O成位似图形.若四边形与四边形的面积之比为,则它们的位似比为________.三、解答题 (共10题;共69分)17. (5分)解方程:(1)x2﹣4x+1=0;(2)x(x﹣2)+x﹣2=0.18. (5分) (2017七下·东城期中) .19. (5分)(2018·泸州) 如图,甲建筑物AD,乙建筑物BC的水平距离为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).20. (5分)(2018·崇仁模拟) 市政府为了解决市民看病贵的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是多少?21. (5分)(2018·河东模拟) 如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设ABCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.22. (2分)如图1,Rt ACB Rt ACO,点A在第二象限内,点B、C在x轴的负半轴上,OA=4,CAO=30.(1)求点C的坐标(2)如图2,将ACB绕点C按顺时针方向旋转30到的位置,其中交直线OA于点E,分别交直线OA、CA于点F、G,则除外,还有哪几对全等的三角形,请直接写出答案(不再另外添加辅助线);(3)在(2)的基础上,将绕点C按顺时针方向继续旋转,当COE的面积为时,求直线CE的函数表达式.23. (15分)(2019·襄阳) 今年是中华人民共和国建国70周年,襄阳市某学校开展了“我和我的祖国”主题学习竞赛活动.学校3000名学生全部参加了竞赛,结果所有学生成绩都不低于60分(满分100分).为了了解成绩分布情况,学校随机抽取了部分学生的成绩进行统计,得到如下不完整的统计表.根据表中所给信息,解答下列问题:成绩(分)分组频数频率150.300.401050.10(1)表中 ________, ________;(2)这组数据的中位数落在________范围内;(3)判断:这组数据的众数一定落在范围内,这个说法________(填“正确”或“错误”);(4)这组数据用扇形统计图表示,成绩在范围内的扇形圆心角的大小为________;(5)若成绩不小于80分为优秀,则全校大约有________名学生获得优秀成绩.24. (2分) (2020九上·路南期末) 游乐园新建的一种新型水上滑道如图,其中线段表示距离水面(x 轴)高度为5m的平台(点P在y轴上).滑道可以看作反比例函数图象的一部分,滑道可以看作是二次函数图象的一部分,两滑道的连接点B为二次函数的顶点,且点B到水面的距离,点B到y轴的距离是5m.当小明从上而下滑到点C时,与水面的距离,与点B的水平距离 .(1)求反比例函数的关系式及其自变量的取值范围;(2)求整条滑道的水平距离;(3)若小明站在平台上相距y轴1m的点M处,用水枪朝正前方向下“扫射”,水枪出水口N距离平台,喷出的水流成抛物线形,设这条抛物线的二次项系数为p,若水流最终落在滑道上(包括B、D两点),直接写出p的取值范围.25. (10分) (2020九上·武侯月考) 在中,,,.(1)如图1,折叠使点落在边上的点D处,折痕交、分别于、,若,则HQ=________.(2)如图2,折叠使点落在边上的点处,折痕交、分别于、.若,求证:四边形是菱形.(3)如图3,在(1)(2)的条件下,线段上是否存在点,使得和相似?若存在,求出的长;若不存在,请说明理由.26. (15分) (2018八上·田家庵期中) 如图,在△ABC中,AB=AC , AB的垂直平分线分别交AB , AC于点D , E .(1)若∠A=40°,求∠EBC的度数;(2)若AD=5,△EBC的周长为16,求△ABC的周长.参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共8题;共8分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共10题;共69分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:考点:解析:答案:23-1、答案:23-2、答案:23-3、答案:23-4、答案:23-5、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:答案:26-1、答案:26-2、考点:解析:。
四川省资阳市九年级上学期数学期末考试试卷

四川省资阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·贵港模拟) 若一元二次方程的两个根分别为,则的值为()A . -4B . -2C . 0D . 1【考点】2. (2分) (2018九上·宁城期末) 二次函数y=2x2的图象可以看做抛物线y=2( x-1)2+3怎样平移得到的()A . 向左平移1个单位,再向下平移3个单位B . 向左平移1个单位,再向上平移3个单位C . 向右平移1个单位,再向上平移3个单位D . 向右平移1个单位,再向下平移3个单位【考点】3. (2分)(2020·无锡模拟) 已知圆锥的底面半径为,母线长为,则圆锥的侧面积是()A .B .C .D .【考点】4. (2分)(2019·贺州) 如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB=3,DE =4,则BC等于()A . 5B . 6C . 7D . 8【考点】5. (2分)一组数据35、38、37、36、37、36、35、36的众数是()A . 35.B . 36C . 37D . 38【考点】6. (2分)下列命题中,假命题是()A . 在同圆中,相等的弧所对的弦相等B . 在同圆中,相等的弦所对的弧相等C . 在同圆中,相等的弧所对的圆心角相等D . 在同圆中,相等的圆心角所对的弦相等【考点】7. (2分)已知☉O的半径为6,A为线段PO的中点,当OP=10时,点A与☉O的位置关系为()A . 在圆上B . 在圆外C . 在圆内D . 不确定【考点】8. (2分) (2020九上·北海期末) 如图,在△ABC中,DE∥BC,=,DE=4cm,则BC的长为()A . 8cmB . 12cmC . 11cmD . 10cm【考点】9. (2分)已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A . 20cm2B . 20πcm2C . 10πcm2D . 5πcm2【考点】10. (2分)(2017·深圳模拟) 如图,在 ABC中,AB=10,AC=8,BC=12,AD⊥BC于D,点E、F分别在AB、AC边上,把 ABC沿EF折叠,使点A与点D恰好重合,则 DEF的周长是().A . 14B . 15C . 16D . 17【考点】二、填空题 (共8题;共8分)11. (1分) (2019九上·兰州期中) 方程(x-3)2=4的解是________【考点】12. (1分) (2020九上·新昌期末) 如果2a=3b,那么 ________.【考点】13. (1分)某工厂一月份产值50万元,第一季度的产值比一月份的3倍还多32万元,设二三月份的平均增长率是x,则列出方程是________ .【考点】14. (1分) (2018九上·永康期末) 如图所示,AB是⊙O的弦,OC⊥AB于C.若AB=,OC=1,则半径OB的长为________.【考点】15. (1分)(2019·萧山模拟) 如图,直线l与x轴、y轴分别交于点A、B,且OB=4,∠ABO=30°,一个半径为1的⊙C,圆心C从点(0,1)开始沿y轴向下运动,当⊙C与直线l相切时,⊙C运动的距离是________【考点】16. (1分) (2020九上·赣州月考) 如图,在正六边形ABCDEF中,分别以C , F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为________.【考点】17. (1分)(2020·吉林) 如图,.若,,则 ________.【考点】18. (1分)二次函数y=2x2+3x﹣9的图象与x轴交点的横坐标是________.【考点】三、解答题 (共10题;共88分)19. (5分)如图,AB是半圆O的直径,点C在半圆上,过点C的切线交BA的延长线于点D,CD=CB,CE∥AB 交半圆于点E.(1)求∠D的度数;(2)求证:以点C,O,B,E为顶点的四边形是菱形.【考点】20. (10分) (2019九上·金凤期中) 解方程(1) x2﹣2x=5(2)(3﹣y)2+y2=9(3) 2x2﹣7x+1=0【考点】21. (5分) (2019九上·孟津月考) 是否存在a的值,使方程x2+(a-2)x+a2+4=0的两根互为相反数?若有,求出a的值;若没有,说明原因.【考点】22. (10分)(2017·南漳模拟) 为弘扬中华优秀传统文化,今年2月20日举行了襄阳市首届中小学生经典诵读大赛决赛.某中学为了选拔优秀学生参加,广泛开展校级“经典诵读”比赛活动,比赛成绩评定为A,B,C,D,E五个等级,该校七(1)班全体学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)该校七(1)班共有________名学生;扇形统计图中C等级所对应扇形的圆心角等于________度;(2)补全条形统计图;(3)若A等级的4名学生中有2名男生2名女生,现从中任意选取2名参加学校培训班,请用列表法或画树状图的方法,求出恰好选到1名男生和1名女生的概率.【考点】23. (10分) (2020九上·濉溪期末) 如图,内接于,,是的弦,与相交于点,平分,过点作,分别交,的延长线于点、,连接 .(1)求证:是的切线;(2)求证: .【考点】24. (6分)按要求作图如图(1)选择点O为对称中心,画出线段AB关于点O的对称线段A′B′.如图(2)选择△ABC内一点P为对称中心,画出△ABC关于点P的对称△A′B′C′.【考点】25. (10分) (2019九上·港南期中) 小琴的父母承包了一块荒山地种植一批梨树,今年收获一批金溪密梨,小琴的父母打算以m元/斤的零售价销售5000斤密梨;剩余的5000(m+1)斤密犁以比零售价低1元的批发价批给外地客商,预计总共可赚得55 000元的毛利润.(1)求小琴的父母今年共收获金溪密梨多少斤?(2)若零售金溪密梨平均每天可售出200斤,每斤盈利2元.为了加快销售和获得较好的售价,采取了降价措施,发现销售单价每降低0.1元,平均每天可多售出40斤,应降价多少元?每天销售利润为600元.【考点】26. (6分) (2016九上·通州期末) 小明四等分弧AB,他的作法如下:①连接AB(如图);作AB的垂直平分线CD交弧AB于点M,交AB于点T;②分别作AT,TB的垂直平分线EF,GH,交弧AB于N,P两点,则N,M,P三点把弧AB四等分。
四川省资阳市九年级上学期数学期末试卷

【考点】
12. (1分)(2020九上·海门月考)抛物线 的顶点在 轴上,则 ________.
【考点】
13. (1分)(2020九上·罗山期末)如图,小明同学用自制的直角三角形纸板DEF测量树AB的高度,他调整自己的位置,使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,则AB=________m.
【考点】
20. (1分)(2020八上·陆川期末)如图,△ABC的三边AB,BC,CA的长分别为14,12,8,其三条角平分线的交点为O,则 ________.
【考点】
三、 解答题 (共7题;共67分)
21. (5分)(2018·东营模拟)计算题
(1) 计算:|﹣ |﹣ +2sin60°+( ) ﹣1+(2﹣ )0
A .
B .
C .
D .
【考点】
3. (2分) 把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式 为( )
A . y=-(x+1)2-3
B . y=-(x-1)2-3
C . y=-(x+1)2+3
D . y=-(x-1)2+3
【考点】
4. (2分) 如图,在Rt△ABC中,∠C=90°,点B在CD上,且BD=BA=2AC,则tan∠DAC的值为( )
A . y1>y2>y3
B . y1>y3>y2
C . y3>y1>y2
D . y2>y3>y1
【考点】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省资阳市九年级上学期数学期末考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分) (2020九上·温州月考) 在下列函数中,属于二次函数的是()
A . y=
B .
C . y=
D . y=3x-5
2. (2分)如图,二次函数y=ax2+bx+c图象的一部分,其中对称轴为x=﹣1,且过(﹣3,0),下列说法:
①abc<0,②2a<b,③4a+2b+c=0,④若(﹣5,y1),(5,y2)是抛物线上的点,则y1<y2 ,其中说法正确的有()
A . 4个
B . 3个
C . 2个
D . 1个
3. (2分) (2018九上·康巴什月考) 下列函数关系式中,不属于二次函数的是()
A . y=1-x2
B . y=(3x+2)(4x-3)-12x2
C . y=ax2+bx+c
D . y=(x-2)2+2
4. (2分)(2020·无锡模拟) 下列说法正确的是()
A . 打开电视,它正在播天气预报是不可能事件
B . 要考察一个班级中学生的视力情况适合用抽样调查
C . 抛掷一枚均匀的硬币,正面朝上的概率是,若抛掷10次,就一定有5次正面朝上.
D . 甲、乙两人射中环数的方差分别为,,说明乙的射击成绩比甲稳定
5. (2分) (2018九上·灌云月考) 如图,半径为5的⊙P与y轴相交于点M(0,﹣4)和N(0,﹣10).则
P点坐标是()
A . (﹣4,﹣7)
B . (﹣3,﹣7)
C . (﹣4,﹣5)
D . (﹣3,﹣5)
6. (2分)(2016·湘西) 在RT△ABC中,∠C=90°,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则⊙C与直线AB的位置关系是()
A . 相交
B . 相切
C . 相离
D . 不能确定
7. (2分)下列命题中,正确的是()
① 顶点在圆周上的角是圆周角;② 圆周角的度数等于圆心角度数的一半;
③ 90°的圆周角所对的弦是直径;④ 不在同一条直线上的三个点确定一个圆;
⑤ 同弧所对的圆周角相等。
A . ①②③
B . ③④⑤
C . ①②⑤
D . ②④⑤
8. (2分) (2019九上·衢州期中) 如图,以AB为直径的半圆上有一点C,∠C=25°,则的度数为()
A . 25°
B . 30°
C . 50°
D . 65°
9. (2分)(2019·保定模拟) 某同学以正六边形三个不相邻的顶点为圆心,边长为半径,向外作三段圆弧,设计了如图5所示的图案。
已知正六边形的边长为1,则该图案外围轮廓的周长为()
A . 2π
B . 3π
C . 4π
D . 6π
10. (2分)(2018·吉林模拟) 已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB的延长线交于点P,则∠P等于()
A . 15°
B . 20°
C . 25°
D . 30°
二、填空题 (共5题;共7分)
11. (1分)函数y=(2x﹣1)2+2的顶点坐标为________
12. (1分)若二次函数y=m 的图象开口向下,则m=________
13. (1分)若直线y=m(m为常数)与函数y=的图象有三个不同的交点,则常数m的取值范围________
14. (2分)(2020·龙泉驿模拟) 如图,内接于,为直径,若,则
________度.
15. (2分)(2018·新乡模拟) 如图所示,半圆O的直径AB=4,以点B为圆心,为半径作弧,交半圆O于点C,交直径AB于点D,则图中阴影部分的面积是________.
三、解答题 (共8题;共60分)
16. (10分) (2018九上·许昌月考) 已知抛物线经过,,三点,
(1)求该抛物线的解析式;
(2)利用配方法或公式法求该抛物线的顶点坐标和对称轴.
17. (10分)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如表所示:
x…012345…
y…410149…
(1)顶点坐标为________;
(2)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式:________;
(3)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数y=ax2+bx+c的图象上,问:当m<﹣3时,y1、y2、y3的值一定能作为同一个三角形三边的长吗?为什么?
18. (11分) (2019九下·常德期中) 随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.常德市五中487班小玥组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次统计共抽查了________名学生;
(2)在扇形统计图中,表示“QQ”的扇形圆心角的度数为________度;
(3)将条形统计图补充完整;
(4)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?
19. (5分) (2016九上·松原期末) 如图在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A、D作⊙O,使圆心O在AB上,⊙O与AB交于点E.
(1)求证:直线BD与⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直径.
20. (10分) (2019九上·武汉月考) 某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:
已知日销售量y是售价x的一次函数.
(1)直接写出日销售量y(件)与销售价x(元)的函数关系式;
(2)要使每日的销售利润最大,每件产品的售价应定为多少元?此时的日销售利润是多少?
(3)若日销售利润不低于125元,请直接写出售价的取值范围.
21. (10分) (2016八上·吴江期中) 已知:如图,AB是⊙O的直径,点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.
(1)试说明:DE=BF;
(2)若∠DAB=60°,AB=6,求△ACD的面积.
22. (2分)如图,△ABC 中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.
(1)求证:DF是⊙O的切线;
(2)若,半径OA=4,求AE的长.
23. (2分)(2018·长宁模拟) 在直角坐标平面内,直线y= x+2分别与x轴、y轴交于点A、C.抛物线y=﹣ +bx+c经过点A与点C,且与x轴的另一个交点为点B.点D在该抛物线上,且位于直线AC的上方.
(1)求上述抛物线的表达式;
(2)联结BC、BD,且BD交AC于点E,如果△ABE的面积与△ABC的面积之比为4:5,求∠DBA的余切值;
(3)过点D作DF⊥AC,垂足为点F,联结CD.若△CFD与△AOC相似,求点D的坐标.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共5题;共7分)
11-1、
12-1、
13-1、
14-1、
15-1、
三、解答题 (共8题;共60分)
16-1、
16-2、
17-1、17-2、
17-3、18-1、18-2、
18-3、18-4、
19-1、
19-2、20-1、20-2、
20-3、21-1、
21-2、
22-1、
22-2、23-1、
23-2、23-3、。