高一数学下册期末考试试题(数学)
新高一数学下期末试卷(含答案)

新高一数学下期末试卷(含答案)新高一数学下期末试卷(含答案)一、选择题1.已知三角形ABC的内角A、B、C的对边分别为a、b、c,且a=b,则A选2.2.设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=5选3.3.已知三角形ABC中,A为60度,c=2,cosA=1/2,则ABC为有一个内角为30°的等腰三角形选D。
4.已知对任意实数x、y,不等式(x+y)/(1+xy)≥9恒成立,则实数a的最小值为2选D。
5.已知ABC为等边三角形,AB=2,设P,Q满足AP=λAB,AQ=(1-λ)AC(λ∈R),若BQ·CP=-2,则λ=1/2选A。
6.已知f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),ω>π/2,f(x)是奇函数,直线y=2与函数f(x)的图像的两个相邻交点的横坐标之差的绝对值为π/2,则f(x)在[π/3.π/8]上单调递减选B。
7.已知函数y=f(x)定义域是[-2,3],则y=f(2x-1)的定义域是[-1,2]选B。
8.若α,β均为锐角,sinα=2/5,sin(α+β)=3/5,则cosβ=4/5或-3/5选C。
9.要得到函数y=2/3cos2x+1/3的图像,只需将函数y=2sin2x的图像向左平移π/4个单位选C。
10.已知sin(π/3-α)=-1/2,cos(2α+π/3)=2/3,则cosα=7/8选D。
分析】详解】1) 当 $a=1$ 时,$f(x)=-x^2+x+4$,$g(x)=|x+1|+|x-1|$。
因为 $f(x)$ 是一个开口向下的二次函数,所以其图像在顶点处取得最大值。
顶点横坐标为 $x=\frac{-b}{2a}=-\frac{1}{2}$,纵坐标为 $f(-\frac{1}{2})=\frac{15}{4}$。
而 $g(x)$ 的图像是由两个 V 形图像组成的,分别在 $x=-1$ 和 $x=1$ 处取得最小值$0$。
江苏省南通市2023-2024学年高一下学期期末考试数学试卷(含解析)

江苏省南通市2023-2024学年高一下学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.若复数是纯虚数,则实数a 的值为( )A.0B.1C.-1D.2.下列特征数中,刻画一组数据离散程度的是( )A.平均数B.中位数C.众数D.方差3.已知圆锥的底面半径和高均为1,则该圆锥的侧面积为( )A.C. D.4.已知向量,,若,则( )5.一个水果盘子里有2个苹果和3个桃子,从盘中任选2个,则选中的水果品种相同的概率为( )6.若( )A.7.某数学兴趣小组测量学校旗杆的高度,在旗杆底部O 的正东方向A 处,测得旗杆顶端P 的仰角为,在A 的南偏西方向上的B 处,测得P 的仰角为(O ,A ,B在同一水平面内)( )A.10mB.14mC.17mD.20mA. B. C. D.二、多项选择题9.记的内角A ,B ,C 的对边分别为a ,b ,c .下列命题为真命题的是( )()21i z a a =+-1±π2π()2,4a =-()1,b x =//a b||b = πcos 3α⎛⎫-= ⎪⎝⎭π26α⎛⎫-= ⎪⎝⎭60 30 45 ≈ 1.7≈tan tan B C =+∞⎫+⎪⎪⎭⎫+∞⎪⎪⎭()1,+∞()2,+∞ABC △A.若,则为直角三角形B.若,则为等腰三角形C.若,则为等腰三角形为等腰直角三角形10.已知a,b,c为三条直线,,,为三个平面.下列命题为真命题的是( ) A.若,,则 B.若,,,则C.若,,则D.若,,,则11.一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个白色球(标号为3和4),从袋中不放回地依次随机摸出2个球.设事件“两个球颜色不同”,“两个球标号的和为奇数”,“两个球标号都不小于2”,则( )A.A与B互斥B.A与C相互独立C. D.三、填空题12.样本数据7,8,10,11,12,13,15,17的第40百分位数为______________.13.已知向量,,向量在,则______________.四、双空题14.以棱长为2的正方体的六个面为底面,分别向外作形状相同的正四棱锥,得到一个多数为____________.五、解答题15.记的内角A,B,C的对边分别为a,b,c,.(1)求B;(2)若,求.16.如图,在四棱锥中,底面是菱形,平面,E,F分别是棱,的中点.222sin sin sinA B C+=ABC△sin sina Ab B=ABC△cos cosa Ab B=ABC△cos Bb==ABCαβγa c⊥b c⊥//a b//aαaβ⊂bαβ=//a baα⊥aβ⊂αβ⊥αγ⊥βγ⊥aαβ=aγ⊥A=B=C=()()()P AB P AC P A+=()()()()P ABC P A P B P C=a2aba b⋅=ABC△222a c b+=+c=tan CP ABCD-ABCD PA⊥ABCD BC AP(1)证明:;(2)证明:平面.17.某班学生日睡眠时间(单位:h )频率分布表如下:;(2)用比例分配的分层随机抽样方法,从该班日睡眠时间在和的学生中抽取5人.再从抽取的5人中随机抽取2人,求2人中至少有1人的日睡眠时间在的概率.18.已知的面积为9,点D 在BC 边上,.(1)若,①证明:;②求AC ;(2)若,求AD 的最小值.19.如图,等腰梯形ABCD 为圆台的轴截面,E ,F 分别为上下底面圆周上的点,且B ,E ,D ,F 四点共面.的PC BD ⊥//EF PCD [)7,7.5[]8.5,9[77.5),ABC △2CD DB =cos BAC ∠=AD DC =sin 2sin ABD BAD ∠=∠AB BC =1OO(1)证明:;(2)已知,,四棱锥的体积为3.①求三棱锥的体积;②当母线与下底面所成的角最小时,求二面角的正弦值.//BF DE 2AD =4BC =C BEDF -B ADE -C BF D --参考答案1.答案:A解析:根据题意,复数是纯虚数,所以且,解得.故选:A.2.答案:D解析:平均数、中位数、众数是描述一组数据的集中趋势的量,方差是衡量一组数据偏离其平均数的大小的量,即刻画一组数据离散程度.故选:D.3.答案:B解析:根据题意圆锥的母线长即可求得.故选:B.4.答案:B解析:因为,所以,即所以,所以所以故选:B.5.答案:C解析:根据题意,设2个苹果分别记为:1和2,3个桃子编号为A ,B ,C ,从盘中任选两个,可得,,,,,,,,,共10种情况.选中的水果品种相同的选法有:,,,有4种.故选:C.6.答案:B()21i z a a =+-0a =210a -≠0a =l ==πrl 侧=π1S ⨯=侧=//a b =a b λ()()()()2,4=2,4=1,,x x λλλ⇒--2==24==2x x λλλ--⎧⎧⇒⎨⎨-⎩⎩()1,2b =- ||b ==()1,2()1,A ()1,B ()1,C ()2,A ()2,B ()2,C (),A B (),A C (),B C ()1,2(),A B (),A C (),B C =解析:令,,则令所以故选:B.7.答案:C解析:如图,设米,则米.在中,由题意可得,,由余弦定理可得解得米.故选:C.8.答案:A,所以π3x α=-π2cos 33α⎛⎫-= ⎪⎝⎭cos x =2y α=π22y x =-22ππ21sin 2sin sin 2cos 22cos 1216239y x x x α⎛⎫⎛⎫⎛⎫-==-==-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭OP h =tan 60h OA == tan 45hh ==OAB △60OAB ∠= 2cos cos 60OAB ∠== 17h =≈tan tan B C =+()sin sin sin sin cos cos sin sin cos cos cos cos cos cos cos cos B C B C B C B C A B C B C B C B C++=+===cos B ==又因为三角形ABC 为锐角三角形,所以所以,故选:A.9.答案:ABD解析:对于A,若,由正弦定理得,所以为直角三角形,故A 正确;对于B,若,由正弦定理得,所以,所以为等腰三角形,故B 正确;对于C,若,由正弦定理得,所以或,即或是等腰或直角三角形,故C 错误;,所以,,即为等腰直角三角形,故D 正确;故选:ABD.10.答案:BCD解析:对于A 选项,令,,若,则一定有,,而在同一平面的a ,b 两条直线可以平行,也可以相交,故A 错误;对于B 选项,这是线面平行的性质定理,故B 正确;对于C 选项,这是面面垂直的判定定理,故C 正确;()πsin sin 13tan cos cos 2A A B A A A ⎛⎫+ ⎪+⎝⎭====+ππ00ππ222πππ6200322A A A A C ⎧⎧<<<<⎪⎪⎪⎪⇒⇒<<⎨⎨⎪⎪<-<<<⎪⎪⎩⎩tan A ⎫∈+∞⎪⎪⎭1tan 2A ⎫=++∞⎪⎪⎭222sin sin sin A B C +=222a b c +=C =ABC △sin sin a A b B =22a b =a b =ABC △cos cos a A b B =sin cos sin cos A A B =12sin 22A B =22A B =22πA B +=A B =A B +=ABC cos B b ==cos cos sin sin B CB C==cos sin B B =cos sin C C =B ==ABC a α⊂b α⊂c α⊥a c ⊥b c ⊥对于D 项,设,,过平面内一点A ,分别作,,如图所示,因为,,,,所以,又因为,所以,同理:,又因为,、,所以,故D 项正确.故选:BCD.11.答案:BC解析:根据题意,从袋中不放回地依次随机摸出2个球,则,,,所以有对于A,,事件A 、B 可以同时发生,则A 、B 不互斥,A 错误;对于B,,A 、C 相互独立,B 正确;对于C,,C 正确;对于D,,D 错误.故选:BC .12.答案:11解析:首先对数据从小到大进行排序:7,8,10,11,12,13,15,17,共有8个数据m αγ= l βγ= γAB m ⊥AC l ⊥αγ⊥m αγ= AB γ⊂AB m ⊥AB α⊥a α⊂AB a ⊥AC a ⊥AB AC A ⋂=AB AC γ⊂a γ⊥()()()()()(){}Ω=1,21,31,42,32,43,4、、、、、()()()(){}()()()(){}1,31,42,32,4,1,2142334A B ==、、、、,、,、,()()(){}2,32,43,4C =、、()(){}()(){}()(){}1,42,3,2,32,4,2,33,4AB AC BC ===、、、(){}2,3ABC =()46P A ==()46B ==()3162C ==()26P AB ==()26AC ==()16P ABC =()(){}1,42,3AB =、()()()=P A P C P AC ()()()+=P AB P AC P A ()()()()P ABC P A P B P C ≠,所以这个样本数据的第40百分位数为第四位,即11,故答案为:11.13.答案:2解析:由已知向量在,.所以故答案为:2.14.答案:①.16②.12解析:根据题意,如图,以棱长为2正方体的一个面为底面的正四棱锥,取底面中心O ,中点E ,因为平面,平面,所以,又,,,平面,所以平面,则所以,从而该多面体的体积为,考虑到四棱锥的侧面夹角为.故答案为:16;12.15.答案:(1)(2)-2的840% 3.2⨯=a b1,2b a b b b ⋅=,1a b = ()cos ,cos ,2a b a b a b a a b b ⋅==⋅= P ABCD -CD PO ⊥ABCD CD ⊂ABCD CD PO ⊥CD PE ⊥PO PE P = PO PE ⊂POE CD ⊥POE PEO ∠=1h PO ==12226221163V =⨯⨯+⨯⨯⨯⨯=π12=π4B =解析:(1),故因,所以(2)设,,代入中,,故,解得,由余弦定理得则故.16.答案:(1)见解析(2)见解析解析:(1)连接,交于点O ,由四边形是菱形得,因为平面,平面,所以,因为,,,,平面,所以平面,又平面,所以.(2)连接,,因为四边形是菱形,所以点O 为,中点,又E ,F 分别是棱,的中点,所以,,因为平面,平面,所以平面,同理可得平面,因为,平面,且,为222222a c b a c b +=+⇒+-=222cos 2a c b B ac +-===()0,πB ∈B =a t =c =222a cb +=+2228t t b +=+⋅225b t =b =222cos 2a bc C ab +-===sin C ==sin tan 2cos CC C ===-AC BD ABCD AC BD ⊥PA ⊥ABCD BD ⊂ABCD PA BD ⊥PA BD ⊥AC BD ⊥PA AC A = PA AC ⊂PAC BD ⊥PAC PC ⊂PAC BD PC ⊥OE OF ABCD AC BD BC AP //FO PC //OE CD PC ⊂PCD FO ⊄PCD //FO PCD //EO PCD EO FO ⊂EFO EO FO O =所以平面平面,又平面,所以平面.17.答案:(1)解析:(1)因为容量,所以,,;(2)由(1)知,该班日睡眠时间在和频率比为,由比例分配的分层随机抽样方法,分别从和两组的学生中抽取2人,3人,记中抽取的2人为a ,b ,中抽取的3人为c,d,e ,设“2人中至少有1人的睡眠时间在”为事件A ,则,,所以A 发生的概率所以2人中至少有1人的日睡眠时间在18.答案:(1)证明见解析,(2)4解析:(1)①因为,,所以,在//EFO PCD EF ⊂EFO //EF PCD 8.03h200.450n =÷=500.126y =⨯=50(4206)20x =-++=()7.2547.75208.25208.756⨯+⨯+⨯+⨯()()12915516552.58.03h 50=⨯+++=[)7,7.5[]8.5,92:3[)7,7.5[]8.5,9[)7,7.5[]8.5,9[)7,7.5{}(,),(,),(,),(,),(,)(,),(,),(,),(,),(,)a b a c a d a e b c b d b e c d c e d e Ω={}(,),(,),(,),(,),(,)(,),(,)A a b a c a d a e b c b d b e =()P A =AC =2CD DB =AD DC =2AD DB =△=所以;②设,则因为,所以设,因为,所以,在中,,由①知,所以,所以,整理得,又因为,,所以因为,所以,在中,因为,,所以,所以,则,所以(2)记的内角为A ,B ,C ,所对边为a ,b ,c ,因为,所以,所以,在中,因为,所以由余弦定理可得,整理得,sin sin 2sin AD ABD BAD BAD BD∠=⨯∠=∠BAC θ∠=cos θ=0πθ<<sin θ==C α∠=AD DC =C CAD α∠=∠=ABD △π,B BAD θαθα∠∠=--=-sin 2sin ABD BAD ∠=∠sin()2sin()θαθα+=-sin cos cos sin 2sin cos 2cos sin θαθαθαθα+=-cos 4sin αα=22sin cos 1αα+=0πα<<sin αα==2CD DB =263ACD ABC S S ==△△ACD △AD DC =C α∠=cos 2AC AD α=2cos AC AD AC α==21sin 62ACD S AD AC AC α=⨯⨯⨯== AC =ABC △2CD DB =()22213333AD AC CD AC CB AC AB AC AB AC =+=+=+-=+ 222414cos 999AD c b bc BAC =++∠ ABC △AB BC =2222cos c c b bc BAC =+-∠2cos c BAC b ∠=c =因为,所以所以,所以,当且仅当所以AD 的最小值为4.19.答案:(1)证明见解析解析:(1)证明:在圆台中,平面平面,因为平面平面,平面平面,所以;(2)①将圆台的母线延长交于一点P ,连接,延长交底面于点Q ,连接,,在圆台中,平面平面,因为平面平面,平面平面,所以,又由(1)可知,所以,又,,,,,平面,1sin 92ABC S bc BAC =∠=△bc =236cos sin BAC b BAC ∠=∠22294cos cos sin b c BAC BAC BAC ==∠∠∠22412cos 412cos sin cos sin sin cos BAC BAC AD BAC BAC BAC BAC BAC∠+∠=+=∠∠∠∠∠ 224sin 16cos sin cos BAC BAC BAC BAC∠+∠=∠∠sin 4cos 416cos sin BAC BAC BAC BAC ∠∠⎛⎫=+≥ ⎪∠∠⎝⎭sin BAC ∠=BAC ∠=1OO //ADE BFC BEDF ADE DE =BEDF BFC BF =//BF DE 1OO PE PE BQ CQ 1OO //ADE BFC PCQ ADE DE =PCQ BFC CQ =//ED CQ //BF ED //BF CQ CF BF ⊥BQ CQ ⊥BF CF BQ CQ ⊂BFC所以,所以四边形为平行四边形,所以,在圆台中,,,所以,所以,连接,交所以A ,C 到平面所以②在等腰梯形中,过点D 作边的垂线,垂足为G ,在平面内过点G 作的平行线交于点H ,连接,易得,因为平面,所以平面,所以为母线与下底面所成角,因为,,所以,所以,要使最小,只要最小即可,因为,所以,所以,设,因为为圆的直径,所以,所以,,所以,当且仅当所以因为,,所以,因为平面,平面,所以,因为,,平面,所以平面,所以,因此为二面角的平面角,//BQ CF BFCQ BF CQ =1OO 2AD =4BC =AD BC ==AD BC ==2BDF BDE S S = 223D BFC C BDF C BEDF V V V ---===AC AD BC ==BEDF 1124B ADE A BDE C BED C BDF V V V V ----====ABCD BC DG BFC CF GH BF DH 1//DG OO 1OO ⊥BFC DG ⊥BFC DCG ∠2AD =4BC =1CG =tan DCG DG ∠=DCG ∠DG 2D BFC V -=123D BFC BFC V S DG -=⋅=△Δ6BFC DG S =CBF θ∠=BC 1O BF FC ⊥4sin FC θ=4cos FB θ=Δ14sin 242BFC S FC FB θ=⋅=≤θ=BF ==DG CF BF ⊥//CF GH GH BF ⊥DG ⊥BCF BF ⊂BCF DG BF ⊥DG HG G = DG HG ⊂DGH BF ⊥DGH BF DH ⊥DHG ∠C BF D --在因为平面,平面,所以,在中,由勾股定理得所以二面角BCF △BGBC===DG⊥BFC HG⊂BFC DG HG⊥Rt DGH△DH=DHG∠=C BF--。
高一下期末数学试卷含答案解析

故选B.
3.在正项等比数列{an}中,若a2=2,a4﹣a3=4,则公比为( )
A.2B.1C. D.
【考点】等比数列的通项公式.
【分析】利用等比数列的通项公式及其性质即可得出,
【解答】解:设正项等比数列{an}的公比为q>0,
∵a2=2,a4﹣a3=4,∴ =2q2﹣2q=4,
22.已知A(﹣1,0),B(1,0),圆C:x2﹣2kx+y2+2y﹣3k2+15=0.
(Ⅰ)若过B点至少能作一条直线与圆C相切,求k的取值范围.
(Ⅱ)当k= 时,圆C上存在两点P1,P2满足∠APiB=90°(i=1,2),求|P1P2|的长.
-学年河北省沧州市高一(下)期末数学试卷
参考答案与试题解析
化为q2﹣q﹣2=0,解得q=2.
故选;A.
4.若a>b,则下列不等式成立的是( )
A.a2>b2B. C.lga>lgbD.
【考点】不等关系与不等式.
【分析】利用不等式的性质和指数函数的单调性就看得出.
【解答】解:∵a>b,∴2a>2b>0,∴ ,
故D正确.
故选D.
5.若直线l∥平面α,直线m⊂α,则l与m的位置关系是( )
A. B. C. D.3
【考点】由三视图求面积、体积.
【分析】由三视图知该几何体是一个长方体截去一个三棱锥所得的组合体,由三视图求出几何元素的长度,由柱体、锥体的体积公式求出几何体的体积.
【解答】解:由三视图知几何体是一个长方体截去一个三棱锥所得的组合体,
且长方体长、宽、高分别是1、1、3,
三棱锥的底面是等腰直角三角形、直角边是1,三棱锥的高是1,
A.2B.1C. D.
2023-2024第二学期期末考试高一数学试卷

2023—2024学年第二学期期末试卷高一数学注意事项:1.本试卷包括单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题)四部分。
本试卷满分为150分,考试时间为120分钟。
2.答卷前,考生务必将自己的姓名、学校、班级填在答题卡上指定的位置。
3.作答选择题时,选出每小题的答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,再写上新答案;不准使用铅笔和涂改液。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z =3+i(i 为虚数单位),则复数zz -2i的虚部是 A .45B . 45iC . 35D .35i2.已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是 A .若m ∥α,n α⊂,则m ∥n B .若m ⊥α,n ⊥α,则m ∥nC .若m ∥β,n ∥β,且m α⊂,n α⊂,则α∥βD .若α⊥β,α β=m ,m ⊥n ,则n ⊥β 3.已知数据x 1,x 2,x 3, …x n 的平均数为10,方差为5,数据3x 1-1,3x 2-1,3x 3-1, …3x n-1的平均数为—x ,方差为s 2,则 A .—x =10,s 2=14 B .—x =9,s 2=44 C .—x =29,s 2=45D .—x =29,s 2=444.向量→a 与→b 不共线,→AB =→a + k →b ,→AC = m →a -→b (k ,m ∈R ),若→AB 与→AC 共线,则k ,m 应满足A .k +m =0B .k -m =0C .km +1=0D .km -1=05.同时抛掷两枚质地均匀的骰子,观察向上的点数,设事件A =“第一枚向上点数为奇数”,事件B =“第二枚向上点数为偶数”,事件C =“两枚骰子向上点数之和为8”,事件D =“两枚骰子向上点数之积为奇数”,则 A . A 与C 互斥B . A 与C 相互独立C . B 与D 互斥 D . B 与D 相互独立6. 在△ABC 中,角A ,B ,C 对边分别为a ,b ,c .若2b cos C =2a -c ,A =π4,b =3,则实数a 的值为 A . 6B . 3C . 6D . 37. 如图,四棱锥P -ABCD 中,P A ⊥面ABCD ,四边形ABCD 为正方形,P A =4,PC 与平面ABCD 所成角的大小为θ,且 tan θ=223,则四棱锥P -ABCD 的外接球表面积为 A . 26π B . 28π C . 34πD . 14π8.已知sin2θ=45,θ∈(0,π4) ,若cos(π4-θ)=m cos(π4+θ),则实数m 的值A .-3B .3C .2D .-2二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9.设复数z =i +3i 2(i 为虚数单位),则下列结论正确的是 A . z 的共轭复数为-3-iB .z ·i=1-3iC . z 在复平面内对应的点位于第二象限D .|z +2|= 210.已知△ABC 内角A ,B ,C 对边分别为a ,b ,c ,则下列说法正确的是 A .若sin A >sin B ,则A >BB .若a cos B =b cos A ,则△ABC 为等腰三角形 C .若a 2+b 2>c 2,则△ABC 为锐角三角形D .若a =1.5,b =2,A =30°的三角形有两解11.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是C 1D 1,C 1C ,A 1A 的中点,则A .M ,N ,B ,A 1四点共面B .若a =2,则异面直线PD 1与MNC .平面PMN 截正方体所得截面为等腰梯形D .若a =1,则三棱锥P -MD 1B 的体积为124三、填空题:本大题共3小题,每小题5分,共15分,不需写出解答过程,请把答案直接填写在答题卡相应位置上.12.一只不透明的口袋中装有形状、大小都相同的6个小球,其中2个白球,1个红球和3个黄球,从中1次随机摸出2个球,则恰有一球是黄球的概率是▲ .13.已知A(-3,5),B(1,10),C(2,1),则tan∠ACB=▲ .14.在△ABC中,角A、B、C所对的边分别为a、b、c,∠ABC=120°,BD是△ABC的中线,且1BD=,则a+c的最大值为▲.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步棸.15.(13分)已知sin α=-55,α∈(π,3π2),sin(α+β)=513,β∈(π2,π).(1)求tan2α的值;(2)求sinβ的值.16.(15分)某市高一年级数学期末考试,满分为100分,为做好分析评价工作,现从中随机抽取100名学生成绩,经统计,这批学生的成绩全部介于40和100之间,将数据按照[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分成6组,制成如图所示的频率直方图。
高一数学期末考试试题及答案doc

高一数学期末考试试题及答案doc一、选择题(每题5分,共50分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 圆D. 椭圆答案:B2. 函数f(x)=2x^2-4x+3的零点是:A. x=1B. x=2C. x=3D. x=-1答案:A3. 集合{1,2,3}与集合{2,3,4}的交集是:A. {1,2,3}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B4. 如果一个角是直角三角形的一个锐角的两倍,那么这个角是:A. 30°B. 45°C. 60°D. 90°答案:C5. 函数y=x^3-3x^2+4x-2在x=1处的导数值是:A. 0B. 1C. 2D. -1答案:B6. 以下哪个是等差数列的通项公式?A. a_n = a_1 + (n-1)dB. a_n = a_1 + n(n-1)/2C. a_n = a_1 + n^2D. a_n = a_1 + n答案:A7. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr^2答案:B8. 以下哪个选项是复数的模?A. |z| = √(a^2 + b^2)B. |z| = a + biC. |z| = a - biD. |z| = a * bi答案:A9. 以下哪个选项是向量的点积?A. a·b = |a||b|cosθB. a·b = |a||b|sinθC. a·b = |a||b|tanθD. a·b = |a||b|secθ答案:A10. 以下哪个选项是三角恒等式?A. sin^2x + cos^2x = 1B. sin^2x - cos^2x = 1C. sin^2x - cos^2x = 0D. sin^2x + cos^2x = 0答案:A二、填空题(每题5分,共30分)1. 如果一个等差数列的前三项分别是2,5,8,那么它的公差是______。
湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案

武汉2023-2024学年度下学期期末考试高一数学试卷(答案在最后)命题教师:考试时间:2024年7月1日考试时长:120分钟试卷满分:150分一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(2i)3i z +=-,则z =()A.1i +B.1i- C.1i-+ D.1i--【答案】A 【解析】【分析】先利用复数的除法运算法则化简得到复数z ,再根据共轭复数的概念即可求解.【详解】因为(2i)3i z +=-,所以3i (3i)(2i)1i 2i 41z ---===-++,所以1i z =+.故选:A2.△ABC 中,60A =︒,BC =AC =C 的大小为()A.75︒B.45︒C.135︒D.45︒或135︒【答案】A 【解析】【分析】利用正弦定理可得sin B =45B = ,由三角形内角和即可求解.【详解】由正弦定理可得sin sin BC AC A B=,故32sin 2B ==,由于60A =︒,故0120B ︒︒<<,故45B = ,18075C A B =--= ,故选:A3.已知数据1x ,2x ,L ,9x 的方差为25,则数据131x +,231x +,L ,931x +的标准差为()A.25B.75C.15D.【答案】C 【解析】【分析】根据方差的性质求出新数据的方差,进而计算标准差即可.【详解】因为数据1x ,2x ,L ,9x 的方差为25,所以另一组数据131x +,231x +,L ,931x +的方差为2325225⨯=,15=.故选:C4.在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为()A.43B.53C.158D.2【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算求解作答.【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+ ,因AC AM BD λμ=+ ,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B5.正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.32【答案】C 【解析】【详解】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C b c C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是()A.332⎛⎝ B.332⎛⎝ C.332⎣ D.332⎡⎢⎣【答案】A 【解析】【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴23sin sin cos cos sin 3AC B C B +=∴23sin sin()sin 3AB C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin cos )3226a c A C A A A A A ππ+=+=+-=+=+ 203A π<<∴5666A πππ<+<∴)26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=7.设O 为△ABC 的外心,若2AO AB AC =+,则sin BAC ∠的值为()A.4B.4C.4-D.4【答案】D 【解析】【分析】设ABC 的外接圆半径为R ,由已知条件可得,2AC BO = ,所以12AC R =,且//AC BO ,取AC的中点M ,连接OM 可得π2BOM ∠=,计算cos sin BOC MOC ∠=-∠的值,再由余弦定理求出BC ,在ABC 中,由正弦定理即可求解.【详解】设ABC 的外接圆半径为R ,因为2AO AB AC =+ ,2AC AO AB BO =-=,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ⊥,因为//AC BO ,所以OM BO ⊥,即π2BOM ∠=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R ⎛⎫∠=+∠=-∠=-=-=-=- ⎪⎝⎭,在BOC中由余弦定理可得:2BC R ===,在ABC中,由正弦定理得:2sin 224RBCBAC RR ∠===.故选:D8.高为8的圆台内有一个半径为2的球1O ,球心1O 在圆台的轴上,球1O 与圆台的上底面、侧面都相切.圆台内可再放入一个半径为3的球2O ,使得球2O 与球1O 、圆台的下底面及侧面都只有一个公共点.除球2O ,圆台内最多还能放入半径为3的球的个数是()A.1 B.2C.3D.4【答案】B 【解析】【详解】作过2O 的圆台的轴截面,如图1.再作过2O 与圆台的轴垂直的截面,过截面与圆台的轴交于圆O .由图1.易求得24OO =.图1这个问题等价于:在以O 为圆心、4为半径的圆上,除2O 外最多还可放几个点,使以这些点及2O 为圆心、3为半径的圆彼此至多有一个公共点.由图2,3sin45sin sin604θ︒<=︒,有4560θ︒<<︒.图2所以,最多还可以放入36013122θ︒⎡⎤-=-=⎢⎣⎦个点,满足上述要求.因此,圆台内最多还可以放入半径为3的球2个.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了460人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为44000【答案】BD 【解析】【分析】根据分层抽样、古典概型、频率公式等知识对选项进行分析,从而确定正确选项.【详解】高中生抽取5500020004401200007500055000⨯=++人,A 选项错误.每名学生被抽到的概率为200011200007500055000125=++,B 选项正确.学生总人数为1200007500055000250000++=,估计该地区中小学生总体的平均近视率为1200007500055000132.50.30.70.80.53250000250000250000250⨯+⨯+⨯==,C 选项错误.高中学生近视人数约为550000.844000⨯=人,D 选项正确.故选:BD10.G 是ABC 的重心,2,4,120,AB AC CAB P ∠=== 是ABC 所在平面内的一点,则下列结论正确的是()A.0GA GB GC ++= B.AB 在AC上的投影向量等于12- AC .C.3AG =D.()AP BP CP ⋅+ 的最小值为32-【答案】ACD 【解析】【分析】根据向量的线性运算,并结合重心的性质,即可判断A ,根据投影向量的定义,判断B ;根据向量数量积公式,以及重心的性质,判断C ;根据向量数量积的运算率,结合图形转化,即可判断D.【详解】A.以,GB GC 为邻边作平行四边形GBDC ,,GD BC 交于点O ,O 是BC 的中点,因为G 是ABC 的重心,所以,,A G O 三点共线,且2AG GO =,所以2GB GC GD GO +== ,2GA AG GO =-=- ,所以0GA GB GC ++=,故A 正确;B.AB 在AC 上的投影向量等于1cos1204AC AB AC AC ⨯=-,故B 错误;C.如图,因为()12AO AB AC =+ ,所以()222124AO AB AC AB AC =++⋅,即211416224342AO ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,即3AO = 因为点G 是ABC 的重心,22333AG AO ==,故C 正确;D.取BC 的中点O ,连结,PO PA ,取AO 中点M ,则2PA PO PM += ,()12AO AB AC =+,()()2221124816344AO AB AB AC AC =+⋅+=⨯-+= ,则()()()()221224AP BP CP PA PB PC PA PO PA PO PA PO ⎡⎤⋅+=⋅+=⋅=⨯+--⎢⎥⎣⎦,222132222PM OA PM =-=- ,显然当,P M 重合时,20PM = ,()AP BP CP ⋅+ 取最小值32-,故D 正确.故选:ACD【点睛】关键点点睛:本题的关键是对于重心性质的应用,以及向量的转化.11.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1B F ∥平面1BC M ,则()A.三棱锥1D DCB -的外接球表面积为12πB.动点F 的轨迹的线段为22C.三棱锥1F BC M -的体积为43D.若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1AQ 长度的取值范围为45,225⎡⎢⎣⎦【答案】AC 【解析】【分析】选项A :三棱锥1D DCB -的外接球即为正方体的外接球,结合正方体的外接球分析;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH ;选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为H 到平面1BC M 的距离,再结合线面垂直及等体积法,利用四棱锥的体积求解所求三棱锥的体积;选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1AQ 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :由题意可知:三棱锥1D DCB -的外接球即为正方体的外接球,可知正方体的外接球的半径3R =所以三棱锥1D DCB -的外接球表面积为24π12πR =,故A 正确;对于B :如图分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD .由正方体的性质可得11B H C M ∥,且1B H ⊂平面1B GH ,1C M ⊄平面1B GH ,所以1C M //平面1B GH ,同理可得:1BC //平面1B GH ,且111BC C M C ⋂=,11,BC C M ⊂平面1BC M ,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,其长度为12222⨯=,故B 错误;对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为H 到平面1BC M 的距离,过点B 作1BP B H ⊥,因为11B C ⊥平面11ABB A ,BP ⊂平面11ABB A ,所以11B C BP ⊥,又1111⋂=B C B H B ,111,B C B H ⊂平面11B C MH ,所以BP ⊥平面11B C MH ,所以1111111111114252232335F BC M H BC M B C MH B B C MH B C MHV V V V S BP ----====⨯=⨯⨯⨯⨯,故C 正确;对于D :如图,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上,因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥,同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点,在四棱锥11A AMC N -中,侧棱11A C 最长,且11A C =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC ,又1AC =则112AMC S =⨯=△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以1111114333A AMC AMC C AA M V S h V --=⋅===△,解得3h =.综上,可知1AQ 长度的取值范围是,3⎡⎢⎣,故D 错误.故选:AC【点睛】关键点睛:由面面平行的性质得到动点的轨迹,再由锥体的体积公式即可判断C ,D 选项关键是找到临界点,求出临界值.三、填空题:本小题共3小题,每小题5分,共15分.12.已知复数()221i i()z m m m =-++⋅∈R 表示纯虚数,则m =________.【答案】1-【解析】【分析】根据2i 1=-和复数的分类要求得出参数值;【详解】因为复数()()2221ii=11i()z m m mm m =-++⋅-+-⋅∈R 表示纯虚数,所以210,10,m m ⎧-=⎨-≠⎩解得1m =-,故答案为:1-.13.定义集合(){},02024,03,,Z |A x y x y x y =≤≤≤≤∈,则从A 中任选一个元素()00,x y ,它满足00124x y -+-<的概率是________.【答案】42025【解析】【分析】利用列举法求解符合条件的()00,x y ,即可利用古典概型的概率公式求解.【详解】当0y =时,02024,Z x x ≤≤∈,有2025种选择,当1,2,3y =时,02024,Z x x ≤≤∈,分别有2025种选择,因此从A 中任选一个元素()00,x y ,共有202548100⨯=种选择,若00y =,则022y -=,此时由00124x y -+-<得012x -<,此时0x 可取0,1,2,若01y =或3,则021y -=,此时由00124x y -+-<得013x -<,此时0x 可取0,1,2,3,若02y =,则020y -=,此时由00124x y -+-<得014x -<,此时0x 可取0,1,2,3,4,综上可得满足00124x y -+-<的共有342516+⨯+=种情况,故概率为16481002025=故答案为:4202514.在ABC 和AEF △中,B 是EF的中点,1,6,AB EF BC CA ====,若2AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于__________.【答案】23【解析】【分析】【详解】由题意有:()()2AB AE AC AF AB AB BE AC AB BF ⋅+⋅=⋅++⋅+=,即22AB AB BE AC AB AC BF +⋅+⋅+⋅= ,而21AB =,据此可得:11,AC AB BE BF ⋅=⨯-=- ,即()112,2BF AC AB BF BC +⋅--=∴⋅= ,设EF 与BC 的夹角为θ,则2cos 2,cos 3BF BC θθ⨯⨯=∴= .四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[70,80)的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数(同一组中的数据用该组区间中点值为代表);(3)采用分层抽样的方法从甲样本数据中分数在[60,70)和[70,80)的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[70,80)中的概率.【答案】(1)50n =,0.018a =;(2)物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;(3)25【解析】【分析】(1)由频率分布直方图得乙样本中数据在[70,80)的频率为0.2,这个组学生有10人,由此能求出n ,由乙样本数据直方图能求出a ;(2)利用甲、乙样本数据频率分布直方图能估计估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数;(3)由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,利用列举法能求出这两人分数都在[70,80)中的概率.【小问1详解】解:由直方图可知,乙样本中数据在[70,80)的频率为0.020100.20⨯=,则100.20n=,解得50n =;由乙样本数据直方图可知,(0.0060.0160.0200.040)101a ++++⨯=,解得0.018a =;【小问2详解】解:甲样本数据的平均值估计值为(550.005650.010750.020850.045950.020)1081.5⨯+⨯+⨯+⨯+⨯⨯=,乙样本数据直方图中前3组的频率之和为(0.0060.0160.02)100.420.75++⨯=<,前4组的频率之和为(0.0060.0160.020.04)100.820.75+++⨯=>,所以乙样本数据的第75百位数在第4组,设第75百位数为x ,(80)0.040.420.75x -⨯+=,解得88.25x =,所以乙样本数据的第75百位数为88.25,即物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;【小问3详解】解:由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,则从这6人中随机抽取2人的基本事件有:12(,)A A ,11(,)A b ,12(,)A b ,13(,)A b ,14(,)A b ,21(,)A b ,22(,)A b ,23(,)A b ,24(,)A b ,12()b b ,,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个,所抽取的两人分数都在[70,80)中的基本事件有6个,即这两人分数都在[70,80)中的概率为62155=.16.(建立空间直角坐标系答题不得分)如图,在四棱锥11A BCC B -中,平面ABC ⊥平面11BCC B ,△ABC 是正三角形,四边形11BCC B 是正方形,D 是AC 的中点.(1)求证:1//AB 平面1BDC ;(2)求直线BC 和平面1BDC 所成角的正弦值的大小.【答案】(1)证明见解析(2)55【解析】【分析】(1)连接1B C ,交1BC 于点O ,连接OD ,由中位线的性质,可知1//OD AB ,再由线面平行的判定定理,得证;(2)过点C 作1CE C D ⊥于点E ,连接BE ,可证CE ⊥平面1BDC ,从而知CBE ∠即为所求,再结合等面积法与三角函数的定义,得解.【小问1详解】连接1B C ,交1BC 于点O ,连接OD ,则O 为1B C 的中点,因为D 是AC 的中点,所以1//OD AB ,又OD ⊂平面1BDC ,1AB ⊄平面1BDC ,所以1AB ∥平面1BDC .【小问2详解】过点C 作1CE C D ⊥于点E ,连接BE ,因为四边形11BCC B 是正方形,所以1BC CC ⊥,又平面ABC⊥平面11BCC B ,1CC ⊂平面11BCC B ,平面ABC ⋂平面11BCC B BC =,所以1CC ⊥平面ABC ,因为BD ⊂平面ABC ,所以1CC BD ⊥,因为ABC 是正三角形,且D 是AC 的中点,所以BD AC ⊥,又1CC AC C =I ,1,⊂CC AC 平面1ACC ,所以BD ⊥平面1ACC ,因为CE ⊂平面1ACC ,所以BD CE ⊥,又1C D BD D =I ,1,C D BD ⊂平面1BDC ,所以CE ⊥平面1BDC ,所以CBE ∠就是直线BC 和平面1BDC 所成角,设2BC =,在1Rt DCC 中,11CE DC CD CC ⋅=⋅,所以5CE ==,在Rt BCE 中,5sin 25CE CBE BC ∠===.17.甲、乙两人进行乒乓球对抗赛,每局依次轮流发球,连续赢2个球者获胜,且比赛结束,通过分析甲、乙过去比赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为25,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率;(2)求该局打5个球结束的概率.【答案】(1)875(2)44675【解析】【分析】(1)先设甲发球甲赢为事件A ,乙发球甲赢为事件B ,然后分析这4个球的发球者及输赢者,即可得到所求事件的构成,利用相互独立事件的概率计算公式即可求解;(2)先将所求事件分成甲赢与乙赢这两个互斥事件,再分析各事件的构成,利用互斥事件和相互独立事件的概率计算公式即可求得概率.【小问1详解】设甲发球甲赢为事件A ,乙发球甲赢为事件B ,该局打4个球甲赢为事件C ,由题知,2()3P A =,2()5P B =,则C ABAB =,所以23228()()()(()()353575P C P ABAB P A P B P A P B ===⨯⨯⨯=,所以该局打4个球甲赢的概率为875.【小问2详解】设该局打5个球结束时甲赢为事件D ,乙赢为事件E ,打5个球结束为事件F ,易知D ,E 为互斥事件,D ABABA =,E ABABA =,F D E =⋃,所以()()()()()()()P D P ABABA P A P B P A P B P A ==2222281135353675⎛⎫⎛⎫=-⨯⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()()()()P E P ABABA P A P B P A P B P A ==2222241113535375⎛⎫⎛⎫⎛⎫=⨯-⨯⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以8444()()()()67575675P F P D E P D P E =⋃=+=+=,所以该局打5个球结束的概率为44675.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b C -=.(1)求B ;(2)若点D 为边BC 的中点,点E ,F 分别在边AB ,AC (包括顶点)上,π6EDF ∠=,2b c ==.设BDE α∠=,将DEF 的面积S 表示为α的函数,并求S 的取值范围.【答案】(1)π3(2)3ππ,π328sin 23S αα=≤≤⎛⎫- ⎪⎝⎭,3,84S ⎡∈⎢⎣⎦【解析】【分析】(1)由题干及余弦定理可得222a c b ac +-=,再根据余弦定理即可求解;(2)由题可得ABC 为等边三角形,ππ32α≤≤,在BDE 与CDF 中,分别由正弦定理求出DE ,DF ,根据三角形面积公式可得3ππ,2ππ3216sin sin 36S ααα=≤≤⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,由三角恒等变换及正弦函数的图象与性质即可求解.【小问1详解】因为22cos a c b C -=,所以222222222a b c a b c a c b ab a +-+--=⋅=,即222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===.因为()0,πB ∈,所以π3B =.【小问2详解】由π3B=及2b c==可知ABC为等边三角形.又因为π6EDF∠=,BDEα∠=,所以ππ32α≤≤.在BDE中,2π3BEDα∠=-,由正弦定理可得sin sinDE BDB BED∠=,即32π2sin3DEα=⎛⎫-⎪⎝⎭.在CDF中,π6CFDα∠=-,由正弦定理可得sin sinDF CDC CFD∠=,即π2sin6DFα=⎛⎫-⎪⎝⎭.所以31π3ππsin,2ππ2ππ8632 sin sin16sin sin3636Sααααα=⨯⨯=≤≤⎛⎫⎛⎫⎛⎫⎛⎫----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为2ππ11sin sin cos sin sin cos362222αααααα⎛⎫⎛⎫⎛⎫⎛⎫--=+-⎪⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2213313sin cos cos sin sin2cos224444αααααα=-+=-1πsin223α⎛⎫=-⎪⎝⎭,因为ππ32α≤≤,所以ππ2π2,333α⎡⎤-∈⎢⎥⎣⎦,所以π3sin2,132α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦,所以1π1sin2,2342α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦.所以2ππ16sin sin36αα⎛⎫⎛⎫⎡⎤--∈⎪ ⎪⎣⎦⎝⎭⎝⎭,所以33,2ππ8416sin sin36αα⎡∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭,所以333,2ππ8416sin sin36Sαα⎡=∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭.所以S 的取值范围为3,84⎡⎢⎣⎦.19.(建立空间直角坐标系答题不得分)如图,在三棱柱ADP BCQ -中,侧面ABCD 为矩形.(1)若PD⊥面ABCD ,22PD AD CD ==,2NC PN =,求证:DN BN ⊥;(2)若二面角Q BC D --的大小为θ,π2π,43θ⎡⎤∈⎢⎥⎣⎦,且2cos 2AD AB θ=⋅,设直线BD 和平面QCB 所成角为α,求sin α的最大值.【答案】(1)证明见解析(2)12-【解析】【分析】(1)问题转化为证明DN⊥平面BCP ,即证明ND BC ⊥和DN PC ⊥,ND BC ⊥转化为证明BC ⊥平面PQCD ,而ND BC ⊥则只需证明PDN PCD△△(2)作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,列出sin α的表达式,最后把问题转化为函数最值问题.【小问1详解】因为PD⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,又CD BC ⊥,PD CD D ⋂=,,PD CD ⊂平面PCD ,所以BC ⊥平面PQCD ,又ND ⊂平面PQCD ,所以ND BC ⊥,在Rt PCD 中,2PD ==,则CD =3PC =,所以2NC =,1PN =,由PN PDND PC=,DPN CPD ∠=∠,所以PDN PCD △△,所以DN PC ⊥,又因为ND BC ⊥,PC BC C ⋂=,,PC BC ⊂平面BCP ,所以DN⊥平面BCP ,又因为BN ⊂平面BCP ,所以DN BN ⊥.【小问2详解】在平面QBC 中,过点C 作CF BC ⊥,因为ABCD 为矩形,所以BC CD ⊥,所以DCF ∠为二面角Q BC D --的平面角,且DCF θ∠=,又⋂=CF CD C ,,CD CF ⊂平面CDF ,所以BC ⊥平面CDF ,在平面CDF 中,过点D 作DG FC ⊥,垂足为G ,连接BG ,因为BC ⊥平面CDF ,DG ⊂平面CDF ,所以DG BC ⊥,又BC FC C ⋂=,,BC FC ⊂平面BCQ ,所以DG ⊥平面BCQ ,所以DBG ∠为直线BD 与平面QCB 所成的角,即DBG α∠=,sin DG DC θ=,又因为2cos 2AD AB θ=⋅,所以222sin 32cos 14cos 2DGBDAB AD αθθ===+++π2π,43θ⎡⎤∈⎢⎥⎣⎦可得12cos ,22θ⎡∈-⎢⎣⎦,21cos 0,2θ⎡⎤∈⎢⎥⎣⎦,设32cos t θ=+,2,32t ⎤∈+⎥⎦,则23cos 2t θ-=,()2223sin 1cos 14t θθ-=-=-,所以()2222563125651sin 14222t t t t α⎛⎫-++ ⎪--+⎝⎭=-=≤=,当且仅当25t =时等号,所以sin α51-.【点睛】关键点点睛:本题的关键是作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,然后写出sin α的表达式,最后求函数最值问题利用了换元法和基本不等式.。
高一下学期数学期末考试试卷

高一下学期数学期末考试试卷高一下学期数学期末试卷带答案第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.不等式>0的解集是A.(,)B.(4,)C.(,-3)∪(4,+)D.(,-3)∪(,)2.设,向量且,则A.B.C.D.3.设,,∈R,且>,则A.B.C.D.4.在△ABC中内角A,B,C所对各边分别为,,,且,则角=A.60°B.120°C.30°D.150°5.已知各项不为0的等差数列,满足,数列是等比数列,且,则A.2B.4C.8D.166.如图,设A、B两点在河的两岸,一测量者在A的同侧所在的河岸边选定一点C,测出AC的距离为50m,后,就可以计算出A、B两点的距离为A.B.C.D.7.某个几何体的三视图如图所示(单位:m),则该几何体的表面积(结果保留π)为A.B.C.D.8.中,边上的高为,若,,,,,则A.B.C.D.9.已知数列,如果,,,……,,……,是首项为1,公比为的等比数列,则=A.B.C.D.10.已知,,,若>恒成立,则实数m的取值范围是A.或B.或C.D.11.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…则此数列第20项为A.180B.200C.128D.16212.已知定义在R上的奇函数满足,,数列是等差数列,若,,则A.-2B.-3C.2D.3第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卷中的相应位置.13.正项等比数列中,,则.14.某等腰直角三角形的一条直角边长为4,若将该三角形绕着直角边旋转一周所得的几何体的体积是,则.15.已知的面积为,三个内角成等差数列,则.16.如果关于的不等式和的解集分别为,和,,那么称这两个不等式为“对偶不等式”.如果不等式与不等式为“对偶不等式”,且,,那么=.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)在等比数列中,.(1)求;(2)设,求数列的前项和.18.(本小题满分12分)已知△ABC的角A,B,C所对的边分别是设向量,,.(1)若∥,试判断△ABC的形状并证明;(2)若⊥,边长,∠C=,求△ABC的面积.19.(本小题满分12分)已知数列满足,且≥(1)求证数列是等差数列,并求数列的通项公式;(2)设,求数列的前项和.20.(本小题满分12分)某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A、B、C三地位于同一水平面上,在C处进行该仪器的垂直弹射,观测点A、B两地相距100米,∠BAC=60°,在A 地听到弹射声音的时间比在B地晚217秒.A地测得该仪器弹至最高点H时的仰角为30°.(1)求A、C两地的距离;(2)求该仪器的垂直弹射高度CH.(声音的传播速度为340米/秒)21.(本小题满分12分)、设函数.(1)若对于一切实数恒成立,求的取值范围;(2)对于,恒成立,求的取值范围.22.(本小题满分12分)已知数列的前项和,函数对任意的都有,数列满足.(1)求数列,的通项公式;(2)若数列满足,是数列的前项和,是否存在正实数,使不等式对于一切的恒成立?若存在请求出的取值范围;若不存在请说明理由.数学参考答案及评分意见一、选择题(本题共12小题,每小题5分,共60分)题号123456789101112答案DBDABCCDACBB二、填空题(本题共4小题,每小题5分,共20分)13.114.15.16.三、解答题(本题共6小题,共70分)17.(1)设的公比为q,依题意得解得因此.……………………………5分(2)因为,所以数列的前n项和.…………………………10分18.解:(1)ABC为等腰三角形;证明:∵=(a,b),(sinB,sinA),∥,∴,…………………………2分即=,其中R是△ABC外接圆半径,∴∴△ABC为等腰三角形…………………………4分(2)∵,由题意⊥,∴………………………6分由余弦定理可知,4=a2+b2﹣ab=(a+b)2﹣3ab………………………8分即(ab)2﹣3ab﹣4=0,∴ab=4或ab=﹣1(舍去)………………………10分∴S=absinC=×4×sin=.………………………12分19.解:(1)∵∴∴,即………………………2分∴数列是等差数列,首项,公差为1.………………………4分∴∴………………………6分(2)由(1),==…8分∴数列的前项和==+++++…………10分=……………12分20.解:(1)由题意,设AC=x,则BC=x-217×340=x-40.……………2分在△ABC中,由余弦定理,得BC2=BA2+AC2-2×BA×AC×cos∠BAC,……………4分即(x-40)2=10000+x2-100x,解得x=420.……………6分∴A、C两地间的距离为420m.……………7分(2)在Rt△ACH中,AC=420,∠CAH=30°,所以CH=AC×tan∠CAH=1403.……………10分答:该仪器的垂直弹射高度CH为1403米.……………12分21.解:(1)解(1)要使mx2-mx-1<0恒成立,若m=0,显然-1<0,满足题意;……………2分若m≠0,则m<0,Δ=m2+4m<0⇒-4∴实数m的范围-4(2)方法1当x∈[1,3]时,f(x)<-m+5恒成立,即当x∈[1,3]时,m(x2-x+1)-6<0恒成立.……………8分∵x2-x+1=+34>0,又m(x2-x+1)-6<0,∴m<6x2-x+1.……………10分∵函数y=6x2-x+1=在[1,3]上的最小值为67,∴只需m<67即可.综上所述,m的取值范围是.……………12分方法2要使f(x)<-m+5在x∈[1,3]上恒成立.就要使m+34m-6<0在x∈[1,3]上恒成立.……………7分令g(x)=m+34m-6,x∈[1,3].……………8分当m>0时,g(x)在[1,3]上是增函数,∴g(x)max=g(3)=7m-6<0,∴0当m=0时,-6<0恒成立;……………10分当m<0时,g(x)在[1,3]上是减函数,∴g(x)max=g(1)=m-6<0,得m<6,∴m<0.……………11分综上所述,m的取值范围是.……………12分22.(1)…………………………1分时满足上式,故…………………3分∵=1∴…………………………4分∵①∴②∴①+②,得……………………………6分(2)∵,∴∴①,②①-②得即…………………………8分要使得不等式恒成立,恒成立对于一切的恒成立,即……………………………10分令,则当且仅当时等号成立,故所以为所求.…………12分高一数学下学期期末联考试题第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分。
高一数学第二学期期末考试试题(带参考答案)

高一数学第二学期期末考试试题(带参考答案)选择题1. 以下属于集合 {1, 2, 3, 4} 的真子集的个数是:A. 3B. 7C. 15D. 16正确答案:A2. 已知集合 A = {x | -2 ≤ x ≤ 3},则集合 A 中的元素个数是:A. 4B. 5C. 6D. 7正确答案:C3. 设集合 A = {a, b, c},集合 B = {1, 2, 3},则集合 A × B 的元素个数是:A. 3B. 6C. 9D. 12正确答案:D4. 已知集合 A = {x | -5 ≤ x ≤ 5},则集合 A 的幂集的元素个数是:A. 10B. 20C. 32D. 64正确答案:C解答题1. 已知函数 f(x) = 2x + 3,求 f(-4) 的值。
解答:将 x = -4 代入函数 f(x) = 2x + 3 中,得到 f(-4) = 2(-4) + 3 = -5。
2. 计算下列算式的值:(-3)^4 - 2 × 5^2解答:首先计算指数,得到(-3)^4 = 81,5^2 = 25。
然后代入算式,得到值为 81 - 2 × 25 = 31。
3. 已知一组数据为 {2, 4, 6, 8, 10},求这组数据的中位数。
解答:将数据从小到大排序为 {2, 4, 6, 8, 10},可以看出中间的数为 6,所以这组数据的中位数为 6。
4. 某商品标价为 800 元,商场打折后的售价为 720 元,求打折幅度。
解答:打折幅度为原价与打折后价之间的差值除以原价,所以打折幅度为 (800 - 720) ÷ 800 = 0.1,即打折幅度为 10%。
以上为高一数学第二学期期末考试试题及参考答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
出题人:孔鑫辉 审核人:罗娟梅 曾巧志 满分:150分 2009-07-07一、选择题(本题共10小题,每小题5分,共计50分)1、经过圆:C 22(1)(2)4x y ++-=的圆心且斜率为1的直线方程为 ( ) A 、30x y -+= B 、30x y --= C 、10x y +-= D 、30x y ++= 2、半径为1cm ,中心角为150o 的弧长为( ) A 、cm 32B 、cm 32π C 、cm 65 D 、cm 65π 3、已知△ABC 中,12tan 5A =-,则cos A =( ) A 、1213 B 、 513 C 、513- D 、 1213-4、两个圆0222:221=-+++y x y x C 与0124:222=+--+y x y x C 的位置关系是( )A 、外切B 、内切C 、相交D 、外离 5、函数1)4(cos 22--=πx y 是 ( )A 、最小正周期为π的奇函数B 、最小正周期为π的偶函数C 、最小正周期为2π的奇函数 D 、最小正周期为2π的偶函数6、已知向量()2,1a =,10a b •=,||52a b +=,则||b =( )A 、5B 、10C 、5D 、 257、已知21tan =α,52)tan(=-αβ,那么)2tan(αβ-的值为( ) A 、43-B 、121-C 、 89-D 、 97 8、已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( )A 、2(2)x ++2(2)y -=1 B 、2(2)x -+2(2)y +=1 C 、2(2)x ++2(2)y +=1 D 、2(2)x -+2(2)y -=19、已知函数()3cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )A 、5[,],1212k k k Z ππππ-+∈ B 、511[,],1212k k k Z ππππ++∈C 、[,],36k k k Z ππππ-+∈ D 、2[,],63k k k Z ππππ++∈10、设向量a ,b 满足:||3a =,||4b =,0a b •=,以a ,b , a b -的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( )A 、3 B 、4 C 、5 D 、6 二、填空题(本题共4小题,每小题5分,共计20分)11、已知向量(3,1)a =,(1,3)b =,(,7)c k =,若()a c -∥b ,则k = .12、以点(2,1-)为圆心且与直线6x y +=相切的圆的方程是 . 13、右图是一个算法的流程图,最后输出的W = .14、若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。
三、解答题:(本题共6小题,共计80分) 15、(本小题满分12分)已知三角形的顶点是A (-5,0)、B (3,-3)、C (0,2),求: (1) AB 边上的中线CD 的长及CD 所在的直线方程; (2) △ABC 的面积。
16、(本小题满分12分)已知()sin 3cos 2,f x x x x R =++∈ (1)求函数)(x f 的最小正周期;(2)求函数)(x f 的最大值,并指出此时x 的值. (3)求函数)(x f 的对称轴和对称中心。
17、(本小题满分14分)已知向量(sin ,cos 2sin ),(1,2).a b θθθ=-=(1)若//a b ,求tan θ的值; (2)若||||,0,a b θπ=<<求θ的值。
18、(本小题满分14分)已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2(,2)3M π-.(1)求()f x 的解析式; (2)当[,]122x ππ∈,求()f x 的值域.19、(本小题满分14分)在平面直角坐标系xoy 中,已知圆221:(3)(1)4C x y ++-=和圆222:(4)(5)4C x y -+-=.(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为23,求直线l 的方程;互相垂直的直线1l 和2l ,它们(2)设P 为平面上的点,满足:存在过点P 的无穷多对分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标。
20、(本小题满分14分)已知函数2()4sin sin ()cos 2 1.42xf x x x π=++- (1)设ω>0为常数,若]32,2[)(ππω-=在区间x f y 上是增函数,求ω的取值范围;(2)设集合2221{|},{|[()]()10},632A x xB x f x mf x m m ππ=≤≤=-++->若A ⊂B 恒成立,求实数m 的取值范围广东梅县东山中学2008-2009学年度高一第二学期数学期末答案一、 选择题:(本题共有10小题,每题5分,共计50分) 题目 12345678910 答案A D C C A CB BC B二、 填空题:(本题共有4小题,每题5分,共计20分) 11、5 12、2225(2)(1)2x y -++=13、22 14、—8三、解答题:(本题共有6小题,共计80分) 15、(本小题满分12分)解:⑴AB 的中点D 的坐标为:3(1,)2D -- …… 2分由两点距离公式得:()2235310222CD ⎛⎫=--++= ⎪⎝⎭… 4分由直线两点式可得CD 方程为:2031022y x --=---- 整理得:7240x y -+= …… 6分 ⑵AC 所在直线方程为:152x y+=-,整理得:25100x y -+= …… 7分 点B 到直线AC 的距离为:61510312929425d ++==+ … 9分 25429AC =+= …… 10分1313129292292ABC S ∆=••= ……12分另法:AB 方程为38150x y ++=,C 到AB 距离为3173AB 长度为73,面积一样算出为31216、(本小题满分12分)解:()sin 3cos 22sin 23f x x x x π⎛⎫=++=++ ⎪⎝⎭…… 2分 ⑴函数)(x f 的最小正周期是221T ππ== ……4分 ⑵ 当13sin =⎪⎭⎫⎝⎛+πx 时, )(x f 取得最大值, 最大值为4 . ……………6分 此时232x k πππ+=+,即26x k ππ=+∈k (Z ). ……8分(3))(x f 的对称轴为6x k ππ=+∈k (Z ) ……10分对称中心为,23k ππ⎛⎫-⎪⎝⎭∈k (Z ) ……12分评分说明:此处对称轴一定要写成6x k ππ=+∈k (Z )的形式;对称中心学生容易写成,03k ππ⎛⎫- ⎪⎝⎭,一律零分;另外,k Z ∈没写,一个扣1分。
17、(本小题满分14分) 解:⑴因为//a b ,所以2sin cos 2sin ,θθθ=- ……2分于是4sin cos θθ=,故1tan .4θ=……4分⑵由||||a b =知,22sin (cos 2sin )5,θθθ+-=……6分所以212sin 24sin5.θθ-+=从而2sin 22(1cos 2)4θθ-+-=,……8分 即sin 2cos21θθ+=-, 于是2sin(2)42πθ+=-. ……10分 又由0θπ<<知,92444πππθ<+<,……11分 所以5244ππθ+=, ……12分 或7244ππθ+=. ……13分因此2πθ=,或3.4πθ= ……14分18、(本小题满分14分)解(1)由最低点为2(,2)3M π-得A=2. …2分 由x 轴上相邻的两个交点之间的距离为2π得2T =2π,即T π=,222T ππωπ=== (4)分由点2(,2)3M π-在图像上可得: 242sin(2)2,)133ππϕϕ⨯+=-+=-即sin( ……6分故42,32k k Z ππϕπ+=-∈1126k πϕπ∴=- ……7分又(0,),,26ππϕϕ∈∴=……9分()2sin(2)6f x x π=+故 ……10分(2)[,],122x ππ∈ 72[,]636x πππ∴+∈ ……11分当26x π+=2π,即6x π=时,()f x 取得最大值2; ……12分当7266x ππ+=,即2x π=时,()f x 取得最小值1-,……13分故()f x 的值域为[]1,2- ……14分 19、(本小题满分14分)解:(1)当直线l 的斜率不存在时,不满足条件 ……1分 设直线l 的方程为:(4)y k x =-,即40kx y k --= …2分由垂径定理得:圆心1C 到直线l 的距离22234()12d =-=, 结合点到直线距离公式,得:2|314|1,1k k k ---=+……3分化简得:272470,0,,24k k k or k +===-……4分求直线l 的方程为:0y =或7(4)24y x =--, 即0y=或724280x y +-= ……5分(2) 设点P 坐标为(,)m n ,直线1l 、2l 的方程分别为:1(),()y n k x m y n x m k-=--=--,即:110,0kx y n km x y n m k k -+-=--++=……6分 因为直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,两圆半径相等。
由垂径定理得:圆心1C 到直线1l 与2C 直线2l 的距离相等。
故有:2241|5||31|111n m k n km k k k k --++--+-=++, ……8分得:(2)3,(8)5m n k m n m n k m n --=---+=+-或…10分 关于k 的方程有无穷多解, 有:20,30m n m n --=⎧⎧⎨⎨--=⎩⎩m-n+8=0或m+n-5=0…………12分 解之得:点P 坐标为313(,)22-或51(,)22-。
……14分20、(本小题满分14分)解:⑴1cos()2()4sin cos 212x f x x x π-+=⋅+- 22sin (1sin )2sin 2sin .x x x x =+-=……2分2()2sin [,]23f x x ππωω=-在是增函数,2[,][,]2322ππππωω∴-⊆-23,(0,]324ππωω⇒≤∴∈ ……4分 (2)221[()]()12f x mf x m m -++- =22sin 2sin 10x m x m m -++-> …5分 因为2[,]63x ππ∈,设t x =sin ,则∈t [12,1] 上式化为22210t mt m m -++-> …6分 由题意,上式在∈t [12,1]上恒成立.记22()21f t t mt m m =-++-, …7分 这是一条开口向上抛物线,则121()02m f ⎧<⎪⎪⎨⎪>⎪⎩ ……8分或1120m ⎧≤≤⎪⎨⎪∆<⎩ ……9分 或1(1)0m f >⎧⎨>⎩……10分解得:312m m <->. ……14分|。