第四章 遗传算法

合集下载

遗传算法第四章交叉代码

遗传算法第四章交叉代码

遗传算法为了增加实用性,直接使用代码进行讲解;通过前面两章,我们知道交叉的方式有:单点交叉、多点交叉、均匀交叉、算术交叉、部分映射交叉【private List<Integer> singlePointCrossover(List<Integer> parent1, List<Integer> parent2) {// 单点交叉int startPos = random.nextInt(parent1.size());int endPos = random.nextInt(parent1.size());if (startPos > endPos) {int temp = startPos;startPos = endPos;endPos = temp;}List<Integer> child = new ArrayList<>(Collections.nCopies(parent1.size(), -1));for (int i = startPos; i <= endPos; i++) {int gene = parent1.get(i);child.set(i, gene);}for (int i = 0; i < parent2.size(); i++) {int gene = parent2.get(i);if (!child.contains(gene)) {for (int j = 0; j < child.size(); j++) {if (child.get(j) == -1) {child.set(j, gene);break;}}}}return child;}// 交叉操作(多点交叉)private List<Integer> multiPointCrossover(List<Integer> parent1, List<Integer> parent2) {int startPos = random.nextInt(parent1.size());int endPos = random.nextInt(parent1.size());if (startPos > endPos) {int temp = startPos;startPos = endPos;endPos = temp;}List<Integer> child = new ArrayList<>(parent1.subList(startPos, endPos));for (Integer gene : parent2) {if (!child.contains(gene)) {int insertionIndex = random.nextInt(child.size() + 1);child.add(insertionIndex, gene);}}return child;}// 交叉操作(均匀交叉)private List<Integer> uniformCrossover(List<Integer> parent1, List<Integer> parent2) { List<Integer> child = new ArrayList<>();for (int i = 0; i < parent1.size(); i++) {if (random.nextBoolean()) {child.add(parent1.get(i));} else {child.add(parent2.get(i));}}return child;}// 交叉操作(算术交叉)private List<Integer> arithmeticCrossover(List<Integer> parent1, List<Integer> parent2) {List<Integer> child = new ArrayList<>();for (int i = 0; i < parent1.size(); i++) {int gene1 = parent1.get(i);int gene2 = parent2.get(i);child.add((gene1 + gene2) / 2);}return child;}// 交叉操作(部分映射交叉)private List<Integer> partiallyMappedCrossover(List<Integer> parent1, List<Integer> parent2) {int startPos = random.nextInt(parent1.size());int endPos = random.nextInt(parent1.size());if (startPos > endPos) {int temp = startPos;startPos = endPos;endPos = temp;}List<Integer> child = new ArrayList<>(Collections.nCopies(parent1.size(), -1));for (int i = startPos; i <= endPos; i++) {int gene = parent1.get(i);child.set(i, gene);}for (int i = startPos; i <= endPos; i++) {int gene = parent2.get(i);int index = parent2.indexOf(gene);while (child.get(index) != -1) {gene = parent2.get(index);index = parent2.indexOf(gene);}child.set(index, parent2.get(i));}for (int i = 0; i < parent1.size(); i++) {if (child.get(i) == -1) {child.set(i, parent2.get(i));}}return child;}】。

遗传算法遗传算法

遗传算法遗传算法
11
(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10

遗传算法_精品文档

遗传算法_精品文档
几种方法求得: • 预先指定的一个较大的数。 • 进化到当前代为止的最大目标函数值。 • 当前代或最近几代群体中的最大目标函数值。
遗传算法
2.名词解释
(3)染色体与基因
染色体(chromosome) 就是问题中个体的某种字符串形式的编码表示。字符串
中的字符也就称为基因(gene)。
例如:
个体
染色体
• 预先指定的一个较小的数。 • 进化到当前代为止的最小目标函数值。 • 当前代或最近几代群体中的最小目标函数值。
遗传算法
➢ 个体适应度评价
方法二:对于求目标函数最小值的优化问题,变换方法为:
F(X) =
Cmax - f(X) if f(X) Cmax
0
if f(X) Cmax
其中,Cmax是一个适当地相对比较大的数,它可用下面
遗传算法
➢ 选择-复制操作
[论盘选择示例]
个体序号 适应度
适应度累计值 随机数
被选中的个体号
1 2 3 4 5 6 7 8 9 10 8 2 17 7 2 12 11 7 3 7 8 10 27 34 36 48 59 66 69 76 1 9 17 25 33 41 49 57 65 73 1 2 3 3 4 6 7 7 8 10
种群
繁殖
变异
交叉
后种群
遗传算法
1. 处理步骤
(1)对优化问题构造初始可行解解集并对其编码,每个可行 解的编码对应于遗传中的一条染色体,编码的目的是为了方便 后续处理。
→ 种群 (2)对每个可行解进行评价,淘汰一部分较差的可行解,剩 下的可行解构成一个可以繁殖下一代的群体。
→ 繁殖 (3)淘汰后剩下的可行解两两交叉繁殖出新的子代解。

遗传算法的基本原理

遗传算法的基本原理

遗传算法的基本原理
遗传算法是一种模拟自然进化过程的优化算法,它基于生物遗传学中遗传和进化的原理,通过模拟遗传信息的交叉、变异和选择等操作来搜索和优化问题的解。

该算法通常包括以下几个步骤:
1. 初始化种群:随机生成一组初始解(个体),构成初始种群。

2. 适应度评估:对种群中的每个个体,计算其适应度,即问题的目标函数值。

3. 选择操作:根据种群中个体适应度的大小,采用一定策略从当前种群中选择一部分个体作为父代。

4. 交叉操作:将所选的父代个体进行交叉操作,生成一组子代个体。

5. 变异操作:对子代个体中的一部分个体进行变异操作,即随机改变其基因(解)的值。

6. 替换操作:将新生成的子代个体替换掉原来种群中适应度较差的个体。

7. 终止条件判断:判断是否满足终止条件,如达到最大迭代次数或找到满意的解。

8. 迭代操作:如果未满足终止条件,则返回步骤2,进行下一
次迭代。

在每次迭代中,通过选择、交叉和变异等操作,优秀的个体逐渐筛选出来,不断进化和改进,最终找到问题的近似最优解。

这种自然选择和进化的方式能够有效地避免陷入局部最优解,提高问题求解的全局搜索能力。

遗传算法的基本原理就是通过模拟自然界中的遗传和进化过程,通过不断的迭代和选择,逐渐搜索到问题的最优解。

遗传算法

遗传算法

遗传算法是计算数学中用于解决最优化的搜索算法,是进化算法的一种。

进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。

遗传算法通常实现方式为一种计算机模拟。

对于一个最优化问题,一定数量的候选解(称为个体)的抽象表示(称为染色体)的种群向更好的解进化。

传统上,解用二进制表示(即0和1的串),但也可以用其他表示方法。

进化从完全随机个体的种群开始,之后一代一代发生。

在每一代中,整个种群的适应度被评价,从当前种群中随机地选择多个个体(基于它们的适应度),通过自然选择和突变产生新的生命种群,该种群在算法的下一次迭代中成为当前种群遗传算法的机理在遗传算法里,优化问题的解被称为个体,它表示为一个变量序列,叫做染色体或者基因串。

染色体一般被表达为简单的字符串或数字串,不过也有其他的依赖于特殊问题的表示方法适用,这一过程称为编码。

首先,算法随机生成一定数量的个体,有时候操作者也可以对这个随机产生过程进行干预,以提高初始种群的质量。

在每一代中,每一个个体都被评价,并通过计算适应度函数得到一个适应度数值。

种群中的个体被按照适应度排序,适应度高的在前面。

这里的“高”是相对于初始的种群的低适应度来说的。

下一步是产生下一代个体并组成种群。

这个过程是通过选择和繁殖完成的其中繁殖包括交配(crossover,在算法研究领域中我们称之为交叉操作)和突变(mutation)。

选择则是根据新个体的适应度进行的,但同时并不意味着完全的以适应度高低作为导向,因为单纯选择适应度高的个体将可能导致算法快速收敛到局部最优解而非全局最优解,我们称之为早熟。

作为折中,遗传算法依据原则:适应度越高,被选择的机会越高,而适应度低的,被选择的机会就低。

初始的数据可以通过这样的选择过程组成一个相对优化的群体。

之后,被选择的个体进入交配过程。

一般的遗传算法都有一个交配概率(又称为交叉概率),范围一般是0.6~1,这个交配概率反映两个被选中的个体进行交配的概率。

遗传算法

遗传算法
在实际问题中,许多优化问题都是非线性、多峰值的复杂函数优化问题,遗传算法 为解决这类问题提供了有效的工具。
遗传算法在人工智能领域具有重要的意义,它提供了一种模拟人类自然选择和遗传 学原理的优化搜索方法,为解决复杂问题提供了新的思路。
02
遗传算法基础概念
染色体与基因表示
染色体
在遗传算法中,染色体是用来表 示问题解决方案的一种编码方式 ,通常是一个字符串或数字数组

基因
基因是染色体的基本组成单位,表 示问题解决方案中的特定特征或参 数。
编码方式
根据问题的性质,可以选择二进制 编码、实数编码、排列编码等不同 的编码方式来表示染色体和基因。
适应度函数设计
适应度函数
用来评价染色体优劣的函数,通常根据问题的目标函数来设计。适 应度值较高的染色体在遗传过程中有更大的概率被保留和传承。
函数优化问题求解
求解非线性、非凸函数优化问题
遗传算法通过模拟生物进化过程,能够在复杂的搜索空间中找到全局最优解或近似最优解,特别 适用于求解非线性、非凸函数优化问题。
处理多峰值函数优化
遗传算法具有隐式并行性和全局搜索能力,能够同时搜索多个峰值,并找到全局最优解所在的区 域。
约束处理机制
针对约束优化问题,遗传算法可以通过罚函数法、修复法、解码法等机制处理约束条件,将约束 问题转化为无约束问题进行求解。
并行遗传算法
通过并行计算技术,将遗传算法的搜索过程分配到多个处理单元 上同时进行,显著提高了算法的运行速度和求解效率。
分布式遗传算法
在分布式系统中实现遗传算法,可以利用多台计算机的资源进行协 同优化,扩大了算法的搜索范围和应用领域。
云计算与遗传算法的结合
云计算平台为遗传算法提供了强大的计算能力和存储资源,使得处 理大规模优化问题成为可能。

遗传算法 算法原理

遗传算法 算法原理

遗传算法算法原理(原创实用版)目录1.遗传算法的概述2.遗传算法的原理3.遗传算法的应用正文一、遗传算法的概述遗传算法(Genetic Algorithm,简称 GA)是一种模拟自然界生物进化过程的优化算法。

其核心思想是基于自然选择、遗传和突变等生物学原理,通过群体中的个体在不断迭代中进行优胜劣汰,达到解决问题和优化目标的效果。

遗传算法在解决复杂问题、非线性问题和全局最优解问题等方面具有较强的优势,广泛应用于各个领域。

二、遗传算法的原理1.遗传操作遗传算法的基本操作包括选择、交叉和变异。

选择操作是根据适应度函数对当前群体中的个体进行评估,选择优秀个体进行繁殖。

交叉操作是将选中的优秀个体进行染色体互换,产生新的后代。

变异操作是在后代中随机选择某个位点进行变异,以一定的概率产生新的特性。

2.适应度函数适应度函数是遗传算法中的重要概念,用于评估每个个体的优劣程度。

适应度函数的取值范围为 [0, 1],其中 1 表示最优解,0 表示最劣解。

在遗传算法中,适应度函数的取值会直接影响到个体的选择和淘汰。

3.遗传算法的基本流程遗传算法的基本流程如下:(1)初始化种群:创建一个初始种群,包括多个随机生成的个体,每个个体表示一个解。

(2)评估适应度:计算种群中每个个体的适应度值。

(3)选择操作:根据适应度值对种群进行选择,选择一定数量的优秀个体进行繁殖。

(4)交叉操作:对选中的优秀个体进行染色体互换,生成新的后代。

(5)变异操作:在后代中随机选择某个位点进行变异,以一定的概率产生新的特性。

(6)更新种群:将新产生的后代替换掉原种群中一些适应度较低的个体,形成新的种群。

(7)重复步骤 2-6,直至满足停止条件。

三、遗传算法的应用遗传算法在许多领域都取得了显著的应用成果,如机器学习、控制系统、信号处理、图像处理、运筹学等。

遗传算法(精讲)

遗传算法(精讲)
6
适应值
三、遗传算法的基本流程(1) 遗传算法的基本流程( )
基本步骤:
确定实际问题参数集 对参数进行编码 (1)选择编码策略,把参数集合X和域转换为相应编码空间S。 选择编码策略,把参数集合X和域转换为相应编码空间S (2)定义适应值函数f(x)。 定义适应值函数f(x)。 f(x) 初始化群体P(t) 定义遗传策略,包括选择群体大小、交叉、 (3)定义遗传策略,包括选择群体大小、交叉、变异方法以及确定交 叉概率Pc、变异概率Pm等遗传参数。 叉概率P 变异概率P 等遗传参数。 评价群体 随机初始化生成群体P(t) P(t)。 (4)随机初始化生成群体P(t)。 (5)计算群体中个体的适应值f(X)。 计算群体中个体的适应值f(X)。 f(X) 群体P(t+1) 满足停止准则? 按照遗传策略,运用选择、交叉和变异操作作用于群体, (6)按照遗传策略,运用选择、交叉和变异操作作用于群体,形成下 三个基本操作: 一代群体。 一代群体。 结束 群体P(t) 1、选择 判断群体性能是否满足某一指标,或者已完成预定跌代次数, (7)判断群体性能是否满足某一指标,或者已完成预定跌代次数,不 遗传操作 2、交叉 满足则返回第6 或者修改遗传算法再返回第6 满足则返回第6步,或者修改遗传算法再返回第6步。 3、变异 其他高级操作 标准遗传算法基本流程框图 7
2
一、遗传算法概述(2) 遗传算法概述(
基本思想 使用模拟生物和人类进化的方法求 解复杂的优化问题,因而也称为模拟 解复杂的优化问题, 进化优化算法。 进化优化算法。将择优与随机信息交 换结合在一起。在每一代中, 换结合在一起。在每一代中,使用上 一代中最好的, 一代中最好的,即最适应环境的位或 片段,形成新的人工生物集。 片段,形成新的人工生物集。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



多样化损失(loss of diversity):在选择阶段未选 中个体数目占种群的比例;
智能优化计算
数学与统计学院 2013年
4.2 基本遗传算法
4.2.4 遗传操作——选择
几个概念

选择强度(selection intensity):将正规高斯分布应 用于选择方法,期望平均适应度;
适应度函数的设计

单值、连续、非负、最大化
合理、一致性 计算量小 通用性强
智能优化计算
数学与统计学院 2013年
4.2 基本遗传算法
4.2.3 适应度函数及其尺度变换
适应度函数的线性变换法
f’=α*f+β
系数的确定满足以下条件: ① ② f’avg= favg f’max= cmult f’avg cmult =1.0~2.0
智能优化计算
数学与统计学院 2013年
4.2 基本遗传算法
4.2.1 简单函数优化的实例
编码
表现型:x
基因型:二进制编码(串长取决于求解精度) 串长与精度之间的关系: 若要求求解精度到6位小数,区间长度为2-(-1)=3, 即需将区间分为3/0.000001=3×106等份。
2097152 221 3000000 222 4194304 所以编码的二进制串长应为22位。
若目标函数为最小化问题:
cmax f ( x), f ( x) cmax Fit( f ( x)) 0, 其他 式中,cmax为f ( x)的最大估计值。
智能优化计算
数学与统计学院 2013年
4.2 基本遗传算法
4.2.3 适应度函数及其尺度变换
几种常见的适应度函数

界限构造法2
4.2 基本遗传算法
4.2.1 简单函数优化的实例
模拟结果
世代数 1 9 17 30 50 80 120 200 自变量 1.4495 1.8395 1.8512 1.8505 1.8506 1.8506 1.8506 1.8506 适应度 3.4494 3.7412 3.8499 3.8503 3.8503 3.8503 3.8503 3.8503
4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 简单函数优化的实例 遗传基因型 适应度函数及其尺度变换 遗传操作——选择 遗传操作——交叉/基因重组 遗传操作——变异 算法的设计与实现 模式定理
智能优化计算
数学与统计学院 2013年
4.3 遗传算法的改进
2
P 0.18 0.03 0.04 0.13
某个体i,其适应度为fi,则其被选取的概率Pi为: 3 3.0 9.00 0.26
Pi fi
4 5
i
2
1.0 1.2 2.1
1.00 1.44 4.41
f
i 1
M
6
7 8 9 10
0.8
2.5 1.3 0.9 1.8
0.64
6.25 1.69 0.81 3.24

在交叉操作时,二进制编码比浮点数编码产生新个 体的可能性多,而且产生的新个体不受父个体所构 成的超体的限制;
在变异操作时,二进制编码的种群稳定性比浮点数 编码差。

智能优化计算
数学与统计学院 2013年
4.2 基本遗传算法
4.2.3 适应度函数及其尺度变换
适应度函数的重要性
适应度函数的选取直接影响遗传算法的收敛速度以 及能否找到最优解。
4.3.1 CHC算法 4.3.2 自适应遗传算法 4.3.3 基于小生境技术的遗传算法
4.4 遗传算法的应用
4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 解决带约束的函数优化问题 解决多目标优化问题 解决组合优化问题 遗传算法在过程建模中的应用 遗传算法在模式识别中的应用
智能优化计算
f(x)=xsin(10πx)+2.0=2.586345
智能优化计算
数学与统计学院 2013年
4.2 基本遗传算法
4.2.1 简单函数优化的实例
计算适应度
(0000000000000000000000)→-1 (1111111111111111111111)→2
二进制与十进制之间的转换:
第一步,将一个二进制串(b21b20…b0)转化为10进制 21 数: (b21b20 b0 ) 2 ( bi 2i )10 x'
智能优化计算
数学与统计学院 2013年
4.2 基本遗传算法
4.2.3 适应度函数及其尺度变换
适应度函数的幂函数变换法
f’= f k
k与所求优化相关
k
智能优化计算
数学与统计学院 2013年
4.2 基本遗传算法
4.2.3 适应度函数及其尺度变换
适应度函数的指数变换法
f’= e-af
a决定了复制的强制性,其值越小,复制的强制性 就越趋向于那些具有最大适应性的个体。
α
智能优化计算
数学与统计学院 2013年
4.2 基本遗传算法
4.2.4 遗传操作——选择
几个概念

选择压力(selection pressure):最佳个体选中的概 率与平均个体选中概率的比值;
偏差(bias):个体正规化适应度与其期望再生概 率的绝对差值; 个体扩展(spread):单个个体子代个数的范围;
选择方差(selection variance):将正规高斯分布 应用于选择方法,期望种群适应度的方差。

智能优化计算
数学与统计学院 2013年
4.2 基本遗传算法
4.2.4 遗传操作——选择
个体选择概率的常用分配方法

按比例的适应度分配(proportional fitness f f 个体 assignment) 1 2.5 6.25
f ' ( x) sin(10 x) 10 x cos(10 x) 0 即 tan( x) 10 x 10
解有无穷多个:
2i 1 xi i , i 1,2, 20 i (i 1,2, 及i 1,2,)是 , x0 0 一接近于0的实数递减序列。 2i 1 i , i 1,2, xi 20
数学与统计学院 2013年
4.2 基本遗传算法
4.2.1 简单函数优化的实例
问题的提出
一元函数求最大值:
f ( x) x sin(10 x) 2.0 x [1,2]
智能优化计算
数学与统计学院 2013年
4.2 基本遗传算法
4.2.1 简单函数优化的实例
问题的提出
用微分法求取f(x)的最大值:
智能优化计算
数学与统计学院 2013年
4.2 基本遗传算法
4.2.1 简单函数优化的实例
问题的提出
当i为奇数时xi对应局部极大值点,i为偶数时xi对应 局部极小值。x19即为区间[-1,2]内的最大值点:
37 x19 19 1.85 19 20
此时,函数最大值f(x19)比f(1.85)=3.85稍大。
数学与统计学院 2013年
4.2 基本遗传算法
4.2.3 适应度函数及其尺度变换
适应度函数的作用
适应度函数设计不当有可能出现欺骗问题:
(1)进化初期,个别超常个体控制选择过程; (2)进化末期,个体差异太小导致陷入局部极值。
智能优化计算
数学与统计学院 2013年
4.2 基本遗传算法
4.2.3 适应度函数及其尺度变换
智能优化计算
数学与统计学院 2013年
4.2 基本遗传算法
4.2.3 适应度函数及其尺度变换
几种常见的适应度函数

界限构造法1
若目标函数为最大化问题:
f ( x) cmin , f ( x) cmin Fit( f ( x)) 0, 其他 式中,cmin为f ( x)的最小估计值。
一般而言,适应度函数是由目标函数变换而成的, 对目标函数值域的某种映射变换称为适应度的尺度 变换(fitness scaling)。
智能优化计算
数学与统计学院 2013年
4.2 基本遗传算法
4.2.3 适应度函数及其尺度变换
几种常见的适应度函数

直接转换
若目标函数为最大化问题:Fit ( f (x) )= f (x) 若目标函数为最小化问题:Fit ( f (x) )= - f (x)
智能优化计算
数学与统计学院 2013年
4.2 基本遗传算法
4.2.1 简单函数优化的实例
产生初始种群
产生的方式:随机
产生的结果:长度为22的二进制串 产生的数量:种群的大小(规模),如30,50,…
1111010011100001011000 1100110011101010101110 1010100011110010000100 1011110010011100111001 0001100101001100000011 0000011010010000000000 ……
若目标函数为最大化问题:
1 Fit( f ( x)) 1 c f ( x) 1 1 c f ( x) c 0, c f ( x) 0
若目标函数为最小化问题:
Fit( f ( x)) c 0, c f ( x) 0
c为目标函数的保守估计值。
智能优化计算


智能优化计算
数学与统计学院 2013年
4.2 基本遗传算法
4.2.2 遗传基因型
多种编码方式

二进制编码;
相关文档
最新文档