二项式定理通项公式
二项式定理(通项公式)

⑶ a o+a2+a4+a6=f(1) f(-1)2 二项式定理二项式知识回顾1. 二项式定理(a b)n二C:a n Caf1"「C:b n,以上展开式共n+1项,其中c k叫做二项式系数,T k d-C k a n J"b k叫做二项展开式的通项•(请同学完成下列二项展开式)(a-b)n =C:a n-叭叫1+||片(-1)k C n k a n±b k+"|+(-1)n C:b n,T“ = (-1)k C:a n」b k(i+x)n=c:+c n x+in+c:x k+“i+c n x n①(2x+1)n=C:(2x)n+C;(2x)n r |||+C:(2x)n」+H|C n」(2x)+1二a n X n• a n」x nJ Jll a n±x nA■ Hla1x - a。
① 式中分别令x=1和x=-1,则可以得到c° ■ c n JU Cn =2n,即二项式系数和等于2n;偶数项二项式系数和等于奇数项二项式系数和,即C:+ C;+111 = C:+ C; +| 11 = 2心② 式中令x=1则可以得到二项展开式的各项系数和.2. 二项式系数的性质(1 )对称性:与首末两端等距离的两个二项式系数相等,即C:二C:」.1 2 113 3】(2)二项式系数C:增减性与最大值:;1 10 10 5 1, , 1 (5 15 20 15 ^_?1 n+1 n+1 ■■ i-t i吗壮■当k 时,二项式系数是递增的;当k 时,二项式系数是递减的. 12 2 .................................................................................................................... ..... ….. ...... ....n n V n T当n是偶数时,中间一项C n2取得最大值.当n是奇数时,中间两项C n2和C n2相等,且同时取得最大值.3. 二项展开式的系数a o, a1, ............................ a2, a s,…,a n 的性质:f( x)= a o+a1X+a2X2+a3X3+a n x n(1) 80+81 + 82+33 ....... +a n=f(1)⑵ a。
二项式定理通项公式

例3:计算0.99710 的近似值。精确到0.001
解:0.99710 1 0.00310
c100 110 c110 19 0.003 c120 18 0.003 2
根据精确度的要求,从第三项起的各项都可以省去,所以
0.997 10 110 0.003 45 1 0.000009
a b0 1
a b1 1 1
a b2 1 2 1 a b3 1 3 3 1 a b4 1 4 6 4 1 a b5 1 5 10 10 5 1 a b6 1 6 15 20 15 6 1
表中每行两端都是1,而且除1以外的每 一个数都等于它肩上两数的和.
通项公式的应用:Tk+1=Cnkan-kbk
3
(2) 求展开式中含x2 的项。
(3) 求展开式中系数最大的项和系数
最小的项。
例 的系5. 数已与知第( 三x -项x的22 )系n (数n∈的N比)的为展10开:1。式(中1)第求五展项开
3
式各项系数的和;(2) 求展开式中含 x 2的项。 (3) 求展开式中系数最大的项和系数最小的项。
分析:要灵活、正确的应用二项展开 式的 通项公式。 (1) 先根据通项公式得到第五项与第 三项 的系数,再由已知条件求出n的 值。由“赋值法”求各项系数的和。
通项公式:TK+1=Cnkan-kbk
2.二项展开式的特点 (1) 项数: 展开式有共n+1项 (2) 系数 : 都是组合数,
依次为Cn0,Cn1,Cn2,Cn3,…Cnn (3) 指数的特点 :
1) a的指数 由n 0 (降幂) 2) b的指数由0 n (升幂) 3) a和b的指数和为n
3.二项式定理的几个变式:
二项式定理

在展开式C中 15x(x只 3)有 24才存x的 在项 , 其系数 C15为 324 240
方法3 (x2+3x+2)5=[x2+(3x+2)]5
在展开式C 中50(3只 x有 2)5才存x的 在项 , 其系数 C15为 324 240
( x1)6(2x1)5 的通项是
CC(1)2 x s r 56
s
5s
16r2s 2
5、 的系数.
求 ( x1)6(2x1)5的展开式中 x 6 项
解:( x 1)6 的通项是 C 6 r( x)6rC 6 rx6 2r
(2 x 1)5 的通项是
C 5 s ( 2 x ) 5 s ( 1 ) s C 5 s ( 1 ) s 2 5 s x 5 s
( x1 )6(2x1 )5 的通项是
CC(1)2 x s r 56
s
5s
16r2s 2
课堂小结:
1、二项式定理、通项公式及二项式系数的性 质。
2、要区分二项式系数与展开式项的系数的异 同。
3、熟练求算二项展开式的Tr+1项、常数项、x 的r次方项等题型。
二项式定理的复习
1.二项展开式:
a bn
c n 0 a n c 1 n a n 1 b c n ra n rb r c n n b n
这个公式叫做二项式定理,等号后面的 式子叫做(a+b)n的二项展开式,其中 Cnk(k=0,1,2,…,n)叫做二项式系数。
二项展开式中的第k+1项为Cnkan-kbk
用(1-x)3 展开式中的一次项乘以(1+x)10 展开式中 的x4项可得到(-3x)(C104x4)=-3C104x5;
二项式定理

二项式定理一、基础知识1.二项式定理(1)二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *)❶;(2)通项公式:T k +1=C k n an -k b k ,它表示第k +1项; (3)二项式系数:二项展开式中各项的系数为C 0n ,C 1n ,…,C n n ❷.2.二项式系数的性质(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .二项式系数与项的系数的区别二项式系数是指C 0n ,C 1n ,…,C n n ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.如(a +bx )n 的二项展开式中,第k +1项的二项式系数是C k n ,而该项的系数是C k n an -k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.考点一 二项展开式中特定项或系数问题考法(一) 求解形如(a +b )n (n ∈N *)的展开式中与特定项相关的量 [例1] (1)(2018·全国卷Ⅲ)⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( ) A.10 B.20 C.40D.80(2)(2019·合肥调研)若(2x -a )5的二项展开式中x 3的系数为720,则a =________. (3)(2019·甘肃检测)已知⎝⎛⎭⎫x -a x 5的展开式中x 5的系数为A ,x 2的系数为B ,若A +B =11,则a =________.[解析] (1)⎝⎛⎭⎫x 2+2x 5的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·⎝⎛⎭⎫2x r =C r 5·2r ·x 10-3r ,令10-3r =4,得r =2.故展开式中x 4的系数为C 25·22=40. (2)(2x -a )5的展开式的通项公式为T r +1=(-1)r ·C r 5·(2x )5-r ·a r =(-1)r ·C r 5·25-r ·a r ·x 5-r ,令5-r =3,解得r =2,由(-1)2·C 25·25-2·a 2=720,解得a =±3.(3)⎝⎛⎭⎫x -a x 5的展开式的通项公式为T r +1=C r 5x 5-r ·⎝⎛⎭⎫-a x r =C r 5(-a )rx 5-32r .由5-32r =5,得r =0,由5-32r =2,得r =2,所以A =C 05×(-a )0=1,B =C 25×(-a )2=10a 2,则由1+10a 2=11,解得a =±1.[答案] (1)C (2)±3 (3)±1 [解题技法]求形如(a +b )n (n ∈N *)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r +1=C r n an -r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r ;第三步,把r 代入通项公式中,即可求出T r +1,有时还需要先求n ,再求r ,才能求出T r +1或者其他量.考法(二) 求解形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量 [例2] (1)(1-x )6(1+x )4的展开式中x 的系数是( ) A.-4 B.-3 C.3D.4(2)(2019·南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.[解析] (1)法一:(1-x )6的展开式的通项为C m 6·(-x )m =C m 6(-1)m x m 2,(1+x )4的展开式的通项为C n 4·(x )n =C n 4x n 2,其中m =0,1,2,…,6,n =0,1,2,3,4. 令m 2+n2=1,得m +n =2, 于是(1-x )6(1+x )4的展开式中x 的系数等于C 06·(-1)0·C 24+C 16·(-1)1·C 14+C 26·(-1)2·C 04=-3.法二:(1-x )6(1+x )4=[(1-x )(1+x )]4(1-x )2=(1-x )4(1-2x +x ).于是(1-x )6(1+x )4的展开式中x 的系数为C 04·1+C 14·(-1)1·1=-3. (2)(ax +1)6的展开式中含x 2项的系数为C 46a 2,含x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25. [答案] (1)B (2)25[解题技法]求形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量的步骤 第一步,根据二项式定理把(a +b )m 与(c +d )n 分别展开,并写出其通项公式; 第二步,根据特定项的次数,分析特定项可由(a +b )m 与(c +d )n 的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量. 考法(三) 求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量 [例3] (1)(x 2+x +y )5的展开式中x 5y 2的系数为( ) A.10 B.20 C.30D.60(2)将⎝⎛⎭⎫x +4x -43展开后,常数项是________. [解析] (1)(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x2+x )3y 2,又(x 2+x )3的展开式的通项为T k +1=C k 3(x 2)3-k ·x k =C k 3x6-k,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30.(2)⎝⎛⎭⎫x +4x -43=⎝⎛⎭⎫x -2x 6展开式的通项是C k 6(x )6-k ·⎝⎛⎭⎫-2x k =(-2)k ·C k 6x 3-k. 令3-k =0,得k =3.所以常数项是C 36(-2)3=-160.[解析] (1)C (2)-160 [解题技法]求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量的步骤 第一步,把三项的和a +b +c 看成是(a +b )与c 两项的和; 第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项; 第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n-r的展开式中的哪些项和c r 相乘得到的;第四步,把相乘后的项合并即可得到所求特定项或相关量.[题组训练]1.(2018·洛阳第一次统考)若a =∫π0 sin x d x ,则二项式⎝⎛⎭⎫a x -1x 6的展开式中的常数项为( )A.-15B.15C.-240D.240解析:选D 由a =∫π0 sin x d x =(-cos x )|π0=(-cos π)-(-cos 0)=1-(-1)=2,得⎝⎛⎭⎫2x -1x 6的展开式的通项公式为T r +1=C r6(2x )6-r ⎝⎛⎭⎫-1x r =(-1)r C r 6·26-r ·x 3-32r ,令3-32r =0,得r =2,故常数项为C 26·24=240. 2.(2019·福州四校联考)在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)解析:二项展开式中,含x 5的项是C 562x 5-x 3C 2624x 2=-228x 5,所以x 5的系数是-228.答案:-2283.⎝⎛⎭⎫x 2+1x +25(x >0)的展开式中的常数项为________. 解析:⎝⎛⎭⎫x 2+1x +25(x >0)可化为⎝ ⎛⎭⎪⎫x 2+1x 10,因而T r +1=C r 10⎝⎛⎭⎫1210-r (x )10-2r ,令10-2r =0,得r =5,故展开式中的常数项为C 510·⎝⎛⎭⎫125=6322.答案:6322考点二 二项式系数的性质及各项系数和[典例精析](1)若⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( )A.63x B.4x C.4x 6xD.4x或4x 6x (2)若⎝⎛⎭⎫x 2-1x n 的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解析] (1)令x =1,可得⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和为2n ,即8<2n<32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )2⎝ ⎛⎭⎪⎫13x 2=63x . (2)⎝⎛⎭⎫x 2-1x n 的展开式的通项公式为T r +1=C r n (x 2)n -r ·⎝⎛⎭⎫-1x r =C r n (-1)r x 2n -3r , 因为含x 的项为第6项,所以r =5,2n -3r =1,解得n =8, 在(1-3x )n 中,令x =1,得a 0+a 1+…+a 8=(1-3)8=28, 又a 0=1,所以a 1+…+a 8=28-1=255.(3)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5,② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂项的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3.[答案] (1)A (2)255 (3)3[解题技法]1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[题组训练]1.(2019·包头模拟)已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( )A.1B.243C.121D.122解析:选B 令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,①令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.2.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =0,则(2+m )9=a 0+a 1+a 2+…+a 9, 令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9, 又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39, ∴(2+m )9·m 9=39,∴m (2+m )=3, ∴m =-3或m =1. 答案:-3或13.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n -2n +C n -1n +C n n =121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项为T 8=C 715(3x )7和T 9=C 815(3x )8.答案:C 715(3x )7和C 815(3x )8考点三 二项展开式的应用[典例精析]设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( ) A.0 B.1 C.11D.12[解析] 由于51=52-1,512 018=(52-1)2 018=C 02 018522 018-C 12 018522 017+…-C 2 0172 018521+1,又13整除52, 所以只需13整除1+a , 又0≤a <13,a ∈Z , 所以a =12. [答案] D[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a =cr +b ,其中余数b ∈[0,r ),r 是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.[题组训练]1.使得多项式81x 4+108x 3+54x 2+12x +1能被5整除的最小自然数x 为( ) A.1 B.2 C.3D.4解析:选C ∵81x 4+108x 3+54x 2+12x +1=(3x +1)4,∴上式能被5整除的最小自然数为3.2.1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数为________. 解析:∵1-90C 110+902C 210+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910, ∴8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数为1. 答案:1[课时跟踪检测]A 级1.(2019·河北“五个一名校联盟”模拟)⎝⎛⎭⎫2x2-x 43的展开式中的常数项为( )A.-32B.3 2C.6D.-6解析:选D 通项T r +1=C r 3⎝⎛⎭⎫2x 23-r·(-x 4)r =C r 3(2)3-r·(-1)r x -6+6r,当-6+6r =0,即r=1时为常数项,T 2=-6,故选D.2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-90121解析:选C 由二项式定理,得a 1=-C 1524=-80,a 2=C 2523=80,a 3=-C 3522=-40,a 4=C 452=10,所以a 2+a 4a 1+a 3=-34. 3.若二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为-1,则含x 2项的系数为( ) A.560 B.-560 C.280D.-280解析:选A 取x =1,得二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为(1+a )7,即(1+a )7=-1,1+a =-1,a =-2.二项式⎝⎛⎭⎫x 2-2x 7的展开式的通项T r +1=C r 7·(x 2)7-r ·⎝⎛⎭⎫-2x r =C r 7·(-2)r ·x 14-3r.令14-3r =2,得r =4.因此,二项式⎝⎛⎭⎫x 2-2x 7的展开式中含x 2项的系数为C 47·(-2)4=560.4.(2018·山西八校第一次联考)已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( )A.29B.210C.211D.212解析:选A 由题意得C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29.5.二项式⎝⎛⎭⎫1x -2x 29的展开式中,除常数项外,各项系数的和为( ) A.-671 B.671 C.672D.673解析:选B 令x =1,可得该二项式各项系数之和为-1.因为该二项展开式的通项公式为T r +1=C r 9⎝⎛⎭⎫1x 9-r ·(-2x 2)r =C r 9(-2)r ·x 3r -9,令3r -9=0,得r =3,所以该二项展开式中的常数项为C 39(-2)3=-672,所以除常数项外,各项系数的和为-1-(-672)=671.6.(2018·石家庄二模)在(1-x )5(2x +1)的展开式中,含x 4项的系数为( ) A.-5 B.-15 C.-25D.25解析:选B 由题意含x 4项的系数为-2C 35+C 45=-15.7.(2018·枣庄二模)若(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为30,则a 等于( ) A.13 B.12 C.1D.2解析:选D ⎝⎛⎭⎫x +1x 10的展开式的通项公式为T r +1=C r 10·x 10-r ·⎝⎛⎭⎫1x r =C r 10·x 10-2r ,令10-2r =4,解得r =3,所以x 4项的系数为C 310.令10-2r =6,解得r =2,所以x 6项的系数为C 210.所以(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为C 310-a C 210=30,解得a =2. 8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( ) A.1或3 B.-3 C.1D.1或-3解析:选D 令x =0,得a 0=(1+0)6=1.令x =1,得(1+m )6=a 0+a 1+a 2+…+a 6.∵a 1+a 2+a 3+…+a 6=63,∴(1+m )6=64=26,∴m =1或m =-3.9.(2019·唐山模拟)(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)解析:(2x -1)6的展开式中,二项式系数最大的项是第四项,系数是C 3623(-1)3=-160.答案:-16010.(2019·贵阳模拟)⎝⎛⎭⎫x +ax 9的展开式中x 3的系数为-84,则展开式的各项系数之和为________.解析:二项展开式的通项T r +1=C r 9x 9-r ⎝⎛⎭⎫a x r =a r C r 9x 9-2r ,令9-2r =3,得r =3,所以a 3C 39=-84,解得a =-1,所以二项式为⎝⎛⎭⎫x -1x 9,令x =1,则(1-1)9=0,所以展开式的各项系数之和为0.答案:011.⎝⎛⎭⎫x +1x +15展开式中的常数项为________. 解析:⎝⎛⎭⎫x +1x +15展开式的通项公式为T r +1=C r 5·⎝⎛⎭⎫x +1x 5-r .令r =5,得常数项为C 55=1,令r =3,得常数项为C 35·2=20,令r =1,得常数项为C 15·C 24=30,所以展开式中的常数项为1+20+30=51.答案:5112.已知⎝⎛⎭⎪⎫x +124x n的展开式中,前三项的系数成等差数列.(1)求n ;(2)求展开式中的有理项; (3)求展开式中系数最大的项.解:(1)由二项展开式知,前三项的系数分别为C 0n ,12C 1n ,14C 2n ,由已知得2×12C 1n =C 0n +14C 2n ,解得n =8(n =1舍去). (2)⎝ ⎛⎭⎪⎫x +124x 8的展开式的通项T r +1=C r 8(x )8-r ·⎝ ⎛⎭⎪⎫124x r =2-r C r 8x 4-3r 4(r =0,1,…,8), 要求有理项,则4-3r 4必为整数,即r =0,4,8,共3项,这3项分别是T 1=x 4,T 5=358x ,T 9=1256x 2.(3)设第r +1项的系数a r +1最大,则a r +1=2-r C r 8,则a r +1a r =2-r C r82-(r -1)C r -18=9-r 2r ≥1, a r +1a r +2=2-r C r 82-(r +1)C r +18=2(r +1)8-r≥1, 解得2≤r ≤3.当r =2时,a 3=2-2C 28=7,当r =3时,a 4=2-3C 38=7,因此,第3项和第4项的系数最大,B 级1.在二项式⎝⎛⎭⎫x -1x n 的展开式中恰好第五项的二项式系数最大,则展开式中含有x 2项的系数是( )A.35B.-35C.-56D.56解析:选C 由于第五项的二项式系数最大,所以n =8.所以二项式⎝⎛⎭⎫x -1x 8展开式的通项公式为T r +1=C r 8x 8-r (-x -1)r =(-1)r C r 8x8-2r,令8-2r =2,得r =3,故展开式中含有x 2项的系数是(-1)3C 38=-56.2.已知C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,则C 1n +C 2n +…+C nn 的值等于( )A.64B.32C.63D.31解析:选C 因为C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,所以(1-4)n =36,所以n =6,因此C 1n +C 2n +…+C n n =2n -1=26-1=63.3.(2019·济南模拟)⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中含x 4项的系数为________.解析:令x =1,可得⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为1-a =2,得a =-1,则⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5展开式中含x 4项的系数即是⎝⎛⎭⎫2x -1x 5展开式中的含x 3项与含x 5项系数的和.又⎝⎛⎭⎫2x -1x 5展开式的通项为T r +1=C r 5(-1)r ·25-r ·x 5-2r ,令5-2r =3,得r =1,令5-2r =5,得r =0,将r =1与r =0分别代入通项,可得含x 3项与含x 5项的系数分别为-80与32,故原展开式中含x 4项的系数为-80+32=-48.答案:-484.设复数x =2i 1-i(i 是虚数单位),则C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=( ) A.iB.-iC.-1+iD.-i -1解析:选D 因为x =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,所以C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=(1+x )2 019-1=(1-1+i)2 019-1=i 2 019-1=-i -1.5.已知(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,则(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2的值为( )A.39B.310C.311D.312解析:选D 对(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9两边同时求导,得9(x +2)8=a 1+2a 2x +3a 3x 2+…+8a 8x 7+9a 9x 8,令x =1,得a 1+2a 2+3a 3+…+8a 8+9a 9=310,令x =-1,得a 1-2a 2+3a 3-…-8a 8+9a 9=32.所以(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2=(a 1+2a 2+3a 3+…+8a 8+9a 9)(a 1-2a 2+3a 3-…-8a 8+9a 9)=312.6.设a =⎠⎛012x d x ,则二项式⎝⎛⎭⎫ax 2-1x 6展开式中的常数项为________. 解析:a =⎠⎛01 2x d x =x 2⎪⎪⎪10=1,则二项式⎝⎛⎭⎫ax 2-1x 6=⎝⎛⎭⎫x 2-1x 6,其展开式的通项公式为T r +1=C r 6(x 2)6-r ·⎝⎛⎭⎫-1x r =(-1)r C r 6x 12-3r ,令12-3r =0,解得r =4.所以常数项为(-1)4C 46=15. 答案:15。
二项式的通项公式

二项式的通项公式二项式的通项公式,又称二项定理或二项展开式,是代数学中的一条重要公式,用于展开一个二项式的幂。
它是形如(a+b)ⁿ的二项式的展开结果。
二项式的通项公式可以用有序对的方法、二项式系数的方法或二项式定理的方法进行推导和解释。
首先我们来介绍一下二项式系数的方法。
在二项式(a+b)ⁿ中,每一项的系数都可以用二项系数来表示,记作C(n,k),其中n表示指数的次数,k表示每一项中b的幂的次数。
二项系数C(n,k)的计算方法如下所示:1.当k等于0或k等于n时,C(n,k)等于12.当k小于0或k大于n时,C(n,k)等于0。
3.当k大于0且k小于n时,C(n,k)等于C(n-1,k-1)+C(n-1,k)。
通过上述计算规则,我们可以得到二项式的通项公式 (a + b)ⁿ =C(n, 0)aⁿb⁰ + C(n, 1)aⁿ⁻¹b¹ + C(n, 2)aⁿ⁻²b² + ... + C(n, n-1)abⁿ⁻¹+ C(n, n)a⁰bⁿ。
另一种解释二项式的通项公式的方法是使用二项式定理。
二项式定理指的是(a+b)ⁿ的展开公式,其中n是一个非负整数。
二项式定理的表达式如下所示:(a + b)ⁿ = C(n, 0)aⁿb⁰ + C(n, 1)aⁿ⁻¹b¹ + C(n, 2)aⁿ⁻²b² + ... +C(n, n-1)abⁿ⁻¹ + C(n, n)a⁰bⁿ这个公式可以通过数学归纳法来证明。
当n等于1时,左边为(a + b)¹ = a + b,右边为C(1, 0)a¹b⁰ + C(1, 1)a⁰b¹ = a + b,两边相等。
假设当n=k时,公式成立,即(a + b)ᵏ = C(k, 0)aᵏb⁰ + C(k, 1)aᵏ⁻¹b¹ +C(k, 2)aᵏ⁻²b² + ... + C(k, k-1)abᵏ⁻¹ + C(k, k)a⁰bᵏ。
二项式相关公式

二项式相关公式1. 二项式定理。
- 对于(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,其中C_n^k=(n!)/(k!(n - k)!),n∈N^*。
- 例如(x + 2)^3,这里a=x,b = 2,n=3。
- 根据二项式定理(x +2)^3=C_3^0x^32^0+C_3^1x^22^1+C_3^2x^12^2+C_3^3x^02^3- 先计算组合数C_3^0=(3!)/(0!(3 - 0)!)=1,C_3^1=(3!)/(1!(3 - 1)!)=3,C_3^2=(3!)/(2!(3 - 2)!)=3,C_3^3=(3!)/(3!(3 - 3)!)=1。
- 所以(x + 2)^3=x^3+3×2x^2+3×4x + 8=x^3+6x^2+12x + 8。
2. 二项式展开式的通项公式。
- 二项式(a + b)^n展开式的第k + 1项T_k+1=C_n^ka^n - kb^k(k =0,1,·s,n)。
- 例如在(3x - y)^5中,a = 3x,b=-y,n = 5。
- 那么它的通项公式T_k + 1=C_5^k(3x)^5 - k(-y)^k。
- 当k = 2时,T_3=C_5^2(3x)^5 - 2(-y)^2。
- 计算C_5^2=(5!)/(2!(5 - 2)!)=10。
- 所以T_3=10×(3x)^3y^2=10×27x^3y^2=270x^3y^2。
3. 二项式系数的性质。
- 对称性:与首末两端“等距离”的两个二项式系数相等,即C_n^k=C_n^n - k。
- 例如在(a + b)^6中,C_6^2=(6!)/(2!(6 - 2)!)=15,C_6^4=(6!)/(4!(6 - 4)!)=15,所以C_6^2 = C_6^4。
- 增减性与最大值。
- 当n是偶数时,中间一项(第(n)/(2)+1项)的二项式系数最大;当n是奇数时,中间两项(第(n + 1)/(2)项和第(n+3)/(2)项)的二项式系数相等且最大。
二项式各项公式

二项式各项公式一、二项式定理对于二项式(a + b)^n,其展开式的二项式定理为(a + b)^n=∑_{k =0}^nC_{n}^ka^n - kb^k,其中n∈ N^。
二、二项式展开式的通项公式1. 通项公式- 二项式(a + b)^n展开式的第k + 1项T_{k+1}=C_{n}^ka^n - kb^k(k = 0,1,·s,n)。
这就是二项式展开式的通项公式。
- 例如,在(x + 2)^5中,n = 5,根据通项公式T_{k + 1}=C_{5}^kx^5 -k2^k。
当k = 2时,T_{3}=C_{5}^2x^5 - 22^2=(5!)/(2!(5 - 2)!)x^3×4 = 10×4x^3=40x^3。
2. 二项式系数- 在通项公式T_{k+1}=C_{n}^ka^n - kb^k中,C_{n}^k=(n!)/(k!(n - k)!)称为二项式系数。
- 二项式系数具有对称性,即C_{n}^k = C_{n}^n - k。
例如,C_{6}^2=(6!)/(2!(6 - 2)!)=(6×5)/(2×1)=15,C_{6}^4=(6!)/(4!(6 - 4)!)=(6×5)/(2×1)=15,所以C_{6}^2 = C_{6}^4。
三、二项式展开式的性质1. 项数- 二项式(a + b)^n展开式共有n + 1项。
例如,(a + b)^3=a^3 +3a^2b+3ab^2 + b^3,共有3 + 1 = 4项。
2. 二项式系数之和- 二项式(a + b)^n的二项式系数之和为2^n,即∑_{k = 0}^nC_{n}^k=2^n。
例如,在(a + b)^4中,n = 4,C_{4}^0+C_{4}^1+C_{4}^2+C_{4}^3+C_{4}^4 = 1 + 4+6 + 4+1=16 = 2^4。
3. 奇数项与偶数项的二项式系数之和- 二项式(a + b)^n中,奇数项的二项式系数之和等于偶数项的二项式系数之和,且都等于2^n - 1。
二项式定理十五大考点

二项式定理十五大考点二项式定理可是高中数学里超有趣的一个部分呢,它的考点也是多种多样的。
一、二项式展开式的通项公式。
这可是二项式定理的核心内容哦。
通项公式就是T_r + 1=C_n^r a^n - rb^r。
这里的n是二项式的指数,r呢,表示第几项(要注意这里是从0开始计数的哦)。
比如说(a + b)^5,当我们要求第3项的时候,n = 5,r = 2(因为第3项对应的r是2),然后代入通项公式就能求出这一项啦。
这个公式就像是一把万能钥匙,能帮我们打开二项式展开式中每一项的大门呢。
二、二项式系数与项的系数。
这两个概念可不能混淆哦。
二项式系数就是C_n^r,它只跟n和r有关,就像是一个固定的身份标识。
而项的系数呢,是包括前面的符号以及数字的,是在二项式展开式中该项实际的系数。
比如说在(2x - 3y)^4的展开式中,某一项的二项式系数是C_4^2,但是这一项的系数可就不是单纯的C_4^2啦,要把2和- 3这些数字也考虑进去计算才行呢。
这就像二项式系数是一个人的名字,项的系数是这个人穿上了各种衣服鞋子之后的整体形象。
三、二项式展开式的性质。
1. 对称性。
二项式展开式的系数是对称的哦。
比如说(a + b)^n,与首末两端“等距离”的两项的二项式系数相等。
就像照镜子一样,两边是对称的呢。
这让我们在计算一些系数的时候,如果知道了前面的系数,后面对称位置的系数就不用再重新计算啦,多方便呀。
2. 增减性与最大值。
当n是偶数的时候,中间一项(也就是第(n)/(2)+ 1项)的二项式系数最大;当n是奇数的时候,中间两项(第(n + 1)/(2)项和第(n + 3)/(2)项)的二项式系数相等且最大。
这就像是在一群小伙伴里找最突出的那个或者那几个,很有趣吧。
四、求特定项。
1. 求常数项。
我们就根据通项公式,令a和b的指数满足一定条件来求出常数项。
比如在(x+(1)/(x))^6中,我们要让x的指数和(1)/(x)的指数相互抵消,也就是令6 - 2r = 0(这里a=x,b = (1)/(x),根据通项公式得到x的指数为6 - r,(1)/(x)的指数为r,相乘为x^6 - 2r),解得r = 3,然后再代入通项公式求出常数项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项式定理通项公式 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】
二项式定理
二项式知识回顾
1. 二项式定理
0111
()n n n k n k k
n n
n n n n a b C a C a b C a b C b --+=++
++
+,
以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项.
(请同学完成下列二项展开式)
0111
()(1)(1)n n n k k n k k
n n n
n n n n a b C a C a b C a b C b ---=-++-+
+-,
1(1)k k n k k k n T C a b -+=- 01(1)n k k
n n
n n n n x C C x C x C x +=++
++
+ ①
1110n n n k n n n k a x a x a x a x a ----=++
++
+
②
① 式中分别令x=1和x=-1,则可以得到 012n
n n
n n C C C +++=,即二项式系数
和等于2n ;
偶数项二项式系数和等于奇数项二项式系数和,即
02
13
12n n n n n C C C C -++
=++
=
② 式中令x=1则可以得到二项展开式的各项系数和.
2. 二项式系数的性质
(1)对称性:与首末两端等距离的两个二项式系数相等,即
m n m n n C C -=.
(2)二项式系数k n C 增减性与最大值:
当12n k +<
时,二项式系数是递增的;当1
2
n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2n n
C 取得最大值.当n 是奇数时,中间两项12n n
C
-和12n n
C
+相等,且同时取得最大值.
3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n
⑴ a 0+a 1+a 2+a 3……+a n =f(1)
⑵ a 0-a 1+a 2-a 3......+(-1)n a n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2)
1()1(-+f f ⑷ a 1+a 3+a 5+a 7……=
2
)
1()1(--f f 经典例题
1、“n b a )(+展开式:
例1.求4)13(x
x +
的展开式; 【练习1】求4)13(x
x -的展开式
2.求展开式中的项
例2.已知在
n 的展开式中,第6项为常数项.
(1) 求n ; (2)求含2x 的项的系数;(3)求展开式中所有的有理项. 【练习2】若
n 展开式中前三项系数成等差数列.求:
(1)展开式中含x 的一次幂的项;(2)展开式中所有x 的有理项. 3.二项展开式中的系数
例3.已知22)n x 的展开式的二项式系数和比(31)n x -的展开式的二项式系数
和大992,求21
(2)n x x
-的展开式中:(1)二项式系数最大的项;(2)系数的
绝对值最大的项
[练习3]已知*22
)()n n N x
∈的展开式中的第五项的系数与第三项的系数之
比是10:1.
(1)求展开式中含3
2
x 的项;(2)求展开式中系数最大的项和二项式系数最大的项. 4、求两个二项式乘积的展开式指定幂的系数
例4.
72)2)(1-+x x (的展开式中,3x 项的系数是 ; 5、求可化为二项式的三项展开式中指定幂的系数
例5(04安徽改编)3)21(-+x
x 的展开式中,常数项是 ; 6、求中间项
例6求(103
)1x
x -的展开式的中间项;
例7 103)1(x x -的展开式中有理项共有 项;
8、求系数最大或最小项
(1) 特殊的系数最大或最小问题
例8(00上海)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ;
(2) 一般的系数最大或最小问题 例9求84)21(x
x +
展开式中系数最大的项;
(3) 系数绝对值最大的项
例10在(7)y x -的展开式中,系数绝对值最大项是 ; 9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和 例11.若443322104)32(x a x a x a x a a x ++++=+, 则2312420)()(a a a a a +-++的值为 ;
【练习1】若2004221020042004...)21(x x a x a a x ++++=-, 则=++++++)(...)()(200402010a a a a a a ; 【练习2】设0155666...)12(a x a x a x a x ++++=-, 则
=++++6210...a a a a ;
【练习3】9
2)21(x
x -
展开式中9x 的系数是 ;。