10.3解二元一次方程组1
10.3解二元一次方程组(1)

用12-X代替方程②中的y-这样就有2X+12-x=20•这个方程不含y,是一元一次方程 了.
(2)请同学们尝试用课本例1提供的方法解这个方程组.
(2)
根据篮球比赛规则:赢一场得2分,输一场得1分,在某次中学生篮球联赛中,某
+
;2x+ y
球队赛了12场,赢了x场,输了y场,积20分•我们可以列出方程组:
如何解这个二元一次方程组?
四•图式共建一一展评基础性学习内容后,完成理解性学习内容。
「
1•尝试解二元一次方程组亠CC金
2"
(1)◎式中的y等于12-X,你知道是怎样得到的吗?
课题
班级
姓名
审核:七年级数学组
授课时间
一.学习目标:
1•会用代入法解二元一次方程组.
2•从解方程的过程中体会转化的思想方法.
二.学习重难点:
重点:
难点:
用代入消元法解二元一次方程组.用含有Βιβλιοθήκη 个未知数的代数式表示另一个未知数.
图式自构一一个体自主学习,完成基础性学习内容
二元一次方程组概念;
二元一次方程组的解的概念.
数学七年级下册苏教版第十章《二元一次方程组》全章教案

第十章二元一次方程组10.1 二元一次方程(一课时)一、教学目标:1、经历分析实际问题中数量关系的过程,进一步体会方程是刻画现实世界的有效数学模型。
2、了解二元一次方程的概念,并会判断一组数据是否是某个二元一次方程的解。
3、培养学生主动探索、敢于实践、勇于发现、合作交流的精神。
二、教学重难点:重点:二元一次方程的认识。
难点:探求二元一次方程的解。
三、教学方法:引导探索法,讲练结合,探索交流。
四、教学过程:(一)创设情境,感悟新知情境一根据篮球的比赛规则,赢一场得2分,输一场得1分,在某次中学生比赛中,一支球队赛了若干场后积20分,问该队赢了多少场?输了多少场?情境二某球员在一场篮球比赛中共得了35分(其中罚球得10分),问他分别投中了多少个两分球?多少个三分球?情境三小亮在“智力快车”竞赛中回答10个问题,小亮能答对几题、答错几题?(学生自己先思考5分钟后,再讨论。
最后由4个人一小组中的一位同学说出讨论结果.)(二)探索活动,揭示新知1、如果设该队赢了x场,输了y场,那么可得方程:()2、你能列出所有输赢的所有可能情况吗?3、如果设投中了()个两分球,()个三分球,根据题意可列方程:()4、请你设计一个表格,列出这名球员投中两分球和三分球的各种情况,根据你所列的表格回答下列问题:(1)这名球员最多投中了()个三分球(2)这名球员最多投中了()个球(3)如果这名球员投中了10个球,那么他投中了()个三分球,()个两分球列出上面三小题的方程:(1)设该队赢了x场,输了y场,2x+y=20(2)设赢了x场,输了y场,2x+3y=35-10(3)设答对x题,答错y题,x+y=10观察方程:(1)这三个方程有哪些共同的特点?(2)你能根据这些特点给它们起一个名称吗?引导学生和以前学过的一元一次方程相联系,观察方程中有几个未知数,未知数的次数是几次?含有未知数的项的次数是几次?得出结论:像这含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程。
解二元一次方程组 重难点专项练习【八大题型】-七年级数学下册同步精品课堂(苏科版)(解析版)

10.3解二元一次方程组重难点题型专项练习考察题型一代入消元法解二元一次方程组典例1-1.用代入消元法解关于x 、y 的方程组43231x y x y =-⎧⎨-=-⎩时,代入正确的是()A .2(43)31y y --=-B .4331y y --=-C .4331y y --=D .2(43)31y y --=【详解】解:43231x y x y =-⎧⎨-=-⎩①②,把①代入②得:2(43)31y y --=-.故本题选:A .变式1-1.用代入法解方程组124y xx y =-⎧⎨-=⎩时,代入正确的是()A .24x x --=B .224x x --=C .224x x -+=D .24x x -+=【详解】解:124y x x y =-⎧⎨-=⎩①②,把①代入②得:2(1)4x x --=,去括号得:224x x -+=.故本题选:C .典例1-2.用代入法解方程组2521,38x y x y +=⎧⎨+=⋅⎩①②,下列解法中最简便的是()A .由①得21522x y =-代入②B .由①得21255y x =-代入②C .由②得83x y =-代入①D .由②得833xy =-代入①【详解】解:由于两方程中只有②中未知数的系数最小,故可把②变形为用y 表示x 的形式,再代入①求解.故本题选:C .变式1-2.用代入法解方程组34225x y x y -=⎧⎨-=⎩①②,使得代入后化简比较容易的变形是()A .由①得243yx -=B .由①得234x y -=C .由②得52y x +=D .由②得25y x =-【详解】解:观察可知,由②得25y x =-代入后化简比较容易.故本题选:D .典例1-3.解方程组:(1)415y x y x =⎧⎨+=⎩;(2)2451x y x y +=⎧⎨=-⎩.变式1-3-1.若25b =,且218a b +=,则a 的值为.(1)3759x y x y =-⎧⎨+=⎩;(2)23328y x x y =-⎧⎨+=⎩.考察题型二利用代入元法求式典例2.现有方程组2331x y mx y m -=⎧⎨+=+⎩,消去m ,得x 与y 的关系式为()A .321x y +=B .41x y +=C .561x y +=D .61x y -=-【详解】解:方程组2331x y m x y m -=⎧⎨+=+⎩①②,把①代入②得:233()1x y x y +=-+,整理得:61x y -=-.故本题选:D .变式2-1.已知423x ty t =-⎧⎨=-⎩,写成用含x 的代数式表示y 的形式,得.【详解】解:4x t =- ,4t x ∴=-,2323(4)310y t x x ∴=-=--=-.故本题答案为:310y x=-.变式2-2.若方程组232x my m-=⎧⎨+=⎩,则y=.(用含x的代数式表示)考察题型三加减消元法解二元一次方程组典例3-1.用加减法解方程组368323x yx y-=⎧⎨+=⎩①②时,②-①得()A.89y-=B.6411x y-=C.85y=-D.25y-=【详解】解:②-①得:2(6)5y y--=-,整理得:85y=-.故本题选:C.变式3-1.已知二元一次方程组522048x yx y+=⎧⎨-=⎩①②,若用加减法消去y,则正确的是()A.①1⨯+②1⨯B.①1⨯+②2⨯C.①1⨯-②1⨯D.①1⨯-②2⨯【解答】解:用加减法消去y,需①1⨯+②2⨯.故本题选:B.典例3-2.解下列二元一次方程组:(1)524 21x yx y-=⎧⎨-=⎩;(2)111 23 3210yxx y+⎧-=⎪⎨⎪+=⎩;(3)0.80.92 63 2.5x yx y-=⎧⎨-=⎩.(1)224 x yx y+=-⎧⎨+=⎩;(2)13 52 3432 x yx y+-⎧=⎪⎨⎪+=⎩;(3)0.60.4 1.1 0.20.4 2.3x yx y-=⎧⎨-=⎩.变式3-2-2.解方程组321x y -=-⎧⎨-=-⎩①②时,两位同学的解法如下:解法一:由①-②得:22x -=;解法二:由②得:2(2)1x x y +-=-③;把①代入③得:2(3)1x +-=-.(1)上述两种消元过程是否正确?你的判定是.A .两种解法都正确B .解法一错误,解法二正确C .解法一正确,解法二错误D .两种解法都错误(2)解这个方程组.【详解】解:(1)由①-②得:22x -=-,即解法一错误,由②得:221x x y +-=-③,把①代入③得:2(3)1x +-=-,即解法二正确,故本题选:B ;(2)23321x y x y -=-⎧⎨-=-⎩①②,由②得:2(2)1x x y +-=-③,把①代入③得:2(3)1x +-=-,解得:1x =,把1x =代入①得:123y -=-,解得:2y =,所以原方程组的解是12x y =⎧⎨=⎩.考察题型四利用加减消元法求式、求参典例4-1.已知x ,y 满足方程组2425x y x y +=⎧⎨+=⎩,则x y +等于.【详解】解:2425x y x y +=⎧⎨+=⎩①②,①+②得:3()9x y +=,则3x y +=.故本题答案为:3.变式4-1.已知方程组2321x y x y +=⎧⎨-=⎩,则3x y +的值是()A .2-B .2C .4-D .4【详解】解:2321x y x y +=⎧⎨-=⎩①②,①+②得:34x y +=.故本题选:D .典例4-2.已知x ,y 满足方程组2425x y x y +=⎧⎨+=⎩,则x y -等于()A .9B .3C .1D .1-【详解】解:在方程组2425x y x y +=⎧⎨+=⎩①②中,①-②得:1x y -=-.故本题选:D .变式4-2.若28a b +=,3418a b +=,则a b +的值为()A .10B .26C .5D .13【详解】解:28a b += ,3418a b +=,a b∴+[(34)(2)]2a b a b =+-+÷(188)2=-÷102=÷5=.故本题选:C .典例4-3.由方程组3234x y m x y m -=+⎧⎨+=+⎩消去m ,可得x 与y 的关系式是()A .255x y -=B .251x y +=-C .255x y -+=D .413x y -=【详解】解:3234x y m x y m -=+⎧⎨+=+⎩①②,①3⨯-②得:255x y -=.故本题选:A .变式4-3.已知3235352x y ax y a-=-⎧⎨-=-⎩,则x y -的值为()A .1B .3C .5D .7【详解】解:3235352x y a x y a -=-⎧⎨-=-⎩①②,①2⨯可得:6462x y a -=-③,③-②可得:(64)(53)(62)(52)x y x y a a ---=---,1x y ∴-=.故本题选:A .典例4-4.关于x ,y 的二元一次方程组59x y kx y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值是()A .34-B .34C .43D .43-变式4-4-1.已知关于x 、y 的方程组28x y m ⎧⎨-=⎩的解满足423x y +=,求m 的值.【详解】解:方程组528x y mx y m +=⎧⎨-=⎩,两方程相减得:33y m =-,解得:y m =-,将y m =-代入5x y m +=,56x m m m =+=,将x ,y 代入423x y +=得:2423m m -=,解得:1m =.变式4-4-2.若关于x 、y 的二元一次方程组5323x y x y p +=⎧⎨+=⎩的解满足1x y -=-,则p 的值为.典例4-5.若方程组312323x y ax y a +=+⎧⎨+=--⎩的解满足1x y -=-,则a 的值为.变式4-5-1.已知方程组321x y +=⎧⎨+=-⎩的解满足42x y a -=+,则a 的值为.【详解】解:239321x y x y +=⎧⎨+=-⎩①②,②-①得:10x y -=-,方程组的解满足42x y a -=+,4210a ∴+=-,解得:3a =-.故本题答案为:3-.变式4-5-2.关于xy 的二元一次方程组3565163x y m x y m +=+⎧⎨+=-⎩的解,满足23x y -=-,则m 的值是.考察题型五利用整体法求方程组的解典例5.已知方程组23124x y x y +=⎧⎨-=⎩的解是21x y =⎧⎨=-⎩,则出方程组2(1)3(2)1(1)2(2)4x y x y ++-=⎧⎨+--=⎩的解是.【详解】解: 方程组23124x y x y +=⎧⎨-=⎩的解是21x y =⎧⎨=-⎩,∴方程组2(1)3(2)1(1)2(2)4x y x y ++-=⎧⎨+--=⎩的解满足关系式1221x y +=⎧⎨-=-⎩,解得:11x y =⎧⎨=⎩.故本题答案为:11x y =⎧⎨=⎩.变式5.已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是49x y =⎧⎨=⎩,则与方程组111222234234a x b y c a x b y c '+'=⎧⎨'+'=⎩有关的2x y '-'的值为.考察题型六方程组的应用典例6-1.若2(2)x y -与|25|x y +-互为相反数,则2022()x y -=.【详解】解:2(2)x y - 与|25|x y +-互为相反数,2(2)|25|0x y x y ∴-++-=,20x y ∴-=,250x y +-=,∴20250x y x y -=⎧⎨+-=⎩①②,①2⨯得:420x y -=③,②+③得:550x -=,解得:1x =,把1x =代入①得:20y -=,解得:2y =,∴原方程组的解为:12x y =⎧⎨=⎩,20222022()(12)1x y ∴-=-=.故本题答案为:1.变式6-1.已知2(5)|2|0x y x y +-+-+=,x 、y 分别为小正方形和大正方形的边长,则阴影部分面积为.【详解】解:2(5)|2|0x y x y +-+-+= ,∴52x y x y +=⎧⎨-=-⎩,则阴影部分面积为:22y x -()()y x y x =+-()()x y x y =-+-5(2)=-⨯-10=.故本题答案为:10.典例6-2.在等式y kx b =+中,当1x =时,5y =,当2x =-时,11y =,则k 、b 的值为()A .72k b =⎧⎨=-⎩B .72k b =-⎧⎨=⎩C .27k b =⎧⎨=-⎩D .27k b =-⎧⎨=⎩【详解】解:由题意得:5211k b k b +=⎧⎨-+=⎩,解得:27k b =-⎧⎨=⎩.故本题选:D .变式6-2-1.在等式y kx b =+中,当1x =-时,2y =-,当2x =时,7y =,则这个等式是()A .31y x =-+B .31y x =+C .23y x =+D .31y x =-【详解】解:分别把当1x =-时,2y =-,当2x =时,7y =代入等式y kx b =+得:272k b k b -=-+⎧⎨=+⎩,①-②得:39k -=-,解得:3k =,把3k =代入①得:23b -=-+,解得:1b =,分别把3k =、1b =的值代入等式y kx b =+得:31y x =+.故本题选:B .变式6-2-2.已知(0)y kx b k =+≠中,当1x =-时,5y =,当2x =时,14y =,则k b ⋅=.【详解】解:(0)y kx b k =+≠ 中,当1x =-时,5y =,当2x =时,14y =,∴5214k b k b -+=⎧⎨+=⎩①②,②-①得:39k =,解得:3k =,把3k =代入①得:35b -+=,解得:8b =,3824k b ∴⋅=⨯=.故本题答案为:24.考察题型七同解方程组典例7.关于x 、y 的两个方程组2227ax by x y -=⎧⎨-=⎩和359311ax by x y -=⎧⎨-=⎩具有相同的解,则a b +的值是()A .1-B .5C .6D .不能确定【详解】解:由题意得:27311x y x y -=⎧⎨-=⎩①②,②-①得:4x =,把4x =代入①中得:87y -=,解得:1y =,∴原方程组的解为41x y =⎧⎨=⎩;把41x y =⎧⎨=⎩代入方程组22359ax by ax by -=⎧⎨-=⎩中可得:4221259a b a b -=⎧⎨-=⎩①②,①3⨯得:1266a b -=③,③-②得:3b -=-,解得:3b =,把3b =代入①中得:462a -=,解得:2a =,∴此方程组的解为23a b =⎧⎨=⎩,235a b ∴+=+=.故本题选:B .变式7-1.已知方程组45321x y x y +=⎧⎨-=⎩和31ax by ax by +=⎧⎨-=⎩有相同的解,求222a ab b -+的值.【详解】解:解方程组45321x y x y +=⎧⎨-=⎩得:11x y =⎧⎨=⎩,把11x y =⎧⎨=⎩代入第二个方程组得:31a b a b +=⎧⎨-=⎩,解得:21a b =⎧⎨=⎩,则22222222111a ab b -+=-⨯⨯+=.变式7-2.已知关于x ,y 的方程组354522x y ax by -=⎧⎨+=-⎩和2348x y ax by +=-⎧⎨-=⎩有相同解,求()b a -值.【详解】解:因为两组方程组有相同的解,所以原方程组可化为35234x y x y -=⎧⎨+=-⎩,45228ax by ax by +=-⎧⎨-=⎩,解方程组35234x y x y -=⎧⎨+=-⎩得:12x y =⎧⎨=-⎩,代入45228ax by ax by +=-⎧⎨-=⎩得:4102228a b a b -=-⎧⎨+=⎩,解得:23a b =⎧⎨=⎩,所以3()(2)8b a -=-=-.考察题型八新定义问题典例8-1.对于有理数x ,y ,定义一种新运算:x ⊕y ax by =+,其中a ,b 为常数.已知1⊕210=,(3)-⊕22=,则a ⊕b =.【详解】解:根据题中的新定义化简得:210322a b a b +=⎧⎨-+=⎩①②,①-②得:48a =,解得:2a =,把2a =代入①得:2210b +=,解得:4b =,则原式2=⊕441620=+=.故本题答案为:20.变式8-1.定义一种新运算“⊕”,规定:x ⊕y ax bxy =+,其中a ,b 为常数,且1⊕24=,2⊕(1)5-=,则a b +=.【详解】解:x ⊕y ax bxy =+,其中a ,b 为常数,且1⊕24=,2⊕(1)5-=,∴24225a b a b +=⎧⎨-=⎩①②,①+②得:39a =,解得:3a =,把3a =代入①,解得:0.5b =,∴原方程组的解是30.5a b =⎧⎨=⎩,30.5 3.5a b ∴+=+=.故本题答案为:3.5.典例8-2.定义:数对(,)x y 经过一种运算可以得到数对(,)x y '',将该运算记作:(d x ,)(y x '=,)y ',其中(x ax by a y ax by '=+⎧⎨'=-⎩,b 为常数).例如,当1a =,1b =时,(2d -,3)(1=,5)-.(1)当2a =,1b =时,(3,1)d =;(2)若(3d -,5)(1=-,9),求a 和b 的值;(3)如果组成数对(,)x y 的两个数x ,y 满足二元一次方程30x y -=时,总有(d x ,)(y x =-,)y -,则a =,b =.【详解】解:(1)当2a =,1b =时,22x x y y x y '=+⎧⎨'=-⎩,2317x '=⨯+= ,2315y '=⨯-=,(3d ∴,1)(7=,5),故本题答案为:(7,5);中(x ax by a y ax by '=+⎧⎨'=-⎩,b 为常数).如,当1a =,1b =时,(2ϕ-,3)(1=,5)-.(1)当2a =,1b =时,(1,0)ϕ=;(2)若(2ϕ,1)(0=,4),则a =,b =;(3)如果组成数对(,)x y 的两个数x ,y 满足20x y -=,0xy ≠,且数对(,)x y 经过运算ϕ又得到数对(,)x y ,求a 和b 的值.【详解】解:(1)当2a =,1b =时,21102x '=⨯+⨯=,21102y '=⨯-⨯=,故本题答案为:(2,2);(2)根据题意得:2024a b a b +=⎧⎨-=⎩,解得:12a b =⎧⎨=-⎩,故本题答案为:1,2-;。
七下数学10.3解二元一次方程组(1)

情境创设 y=x+10 ① x+y=200 ②
(2) 能否将这个二元一次方程组 转化成为一元一次方程呢?
能,由于方程组中相同的字母表示同一个 未知数,所以由方程①可知方程②中的y 也等于x+10,可以用x+10代替方程②中 的y。这样就有x+( x+10 )=200 ③
情境创设
x=8 y=4
总结,写出方 程组的解。
一变,二代,三消,四解,五再代,六总结
探究交流
代入消元法解方程组的基本思想 是:消元。
说明:为了检验计算是否正确,可把所求得的解 分别代入原方程组中进行口算检验,可以不必 写出过程.
解二元一次方程组的步骤: 第一步:在已知方程组的两个方程中选择一个适
当的方程,将它的某个未知数用含有另一个未知数的代 数式表示出来.
点拨矫正
3.解下列方程组:
3x 6y 2 ① 3x 4y 2 ②
⑴解方程组的基本思路是什么?
二元一次方程
消元 转化
一元一次方程
⑵你准备消去哪一个未知数? ⑶解方程组的主要步骤有哪些?
点拨矫正
4. 用代入法解下列方程组:
(1)
x x
5 9
y y
0 8
①
(2)
0②
2m 2m
3n 4n
天平告诉我们: y
y=x+10
x+y=200
10 x
yx
200 梨换成 x1y0x
200
苹果
y=x+10
x+y=200
(二元)
用(x+10)代替y
消元
x+(x+10)=200
【教育资料】10.3(1)日日清学习专用

10.3解二元一次方程组(1)班级 姓名 完成时间:19︰30——20︰10一、选择题:1.已知0)2(2|2|52=-+-x y ,则x ,y 的值分别为 ( ) A .⎩⎨⎧==01y x B .⎩⎨⎧==22y x C .⎩⎨⎧==00y x D .⎩⎨⎧==11y x 2.已知方程组⎩⎨⎧=+=-31y ax by x 的解是⎩⎨⎧-==12y x ,那么a 、b 的值分别为 ( ) A .1,2a b =-= B .1,2a b ==- C .2,1a b ==- D .2,1a b =-=3.已知一个方程组的解是⎩⎨⎧-=-=21y x ,则这个方程组可能是 ( )A .32x y x y ì+=-ïí-=-ïîB .321x y x y ì+=-ïí-=ïîC .23x y x y ì=ïí+=-ïîD .035x y x y ì+=ïí-=ïî二、填空题:4.在方程7x+3y=5中,写成用含x 的代数式表示y 的形式是 ;写成用含y 的代数式表示x 的形式是 .5.方程组⎩⎨⎧=-=1-2y y x x 的解是 ;方程组⎩⎨⎧=-=-0235y x y x 的解是 .6.在代数式q px x ++2中,当x=1时它的值是0;当x=2时,它的值是6,则p = q = .7.已知ax+by=10的解为⎩⎨⎧-==12y x 和⎩⎨⎧=-=21y x ,则a+b 的值为 .三、解答题:8.解下列方程组:(1)⎩⎨⎧=-=3-2-x y y x (2)128x y x y -=⎧⎨+=⎩ (3)⎩⎨⎧=+=+3-21y x y x (4)⎩⎨⎧=-=+134954x y x y(5)⎩⎨⎧+==8y 5x 35y -x 4 (6)⎩⎨⎧=-=+1n m 28n 5m 39.已知方程组515 4 2 ax y x by ì+=ïí-=-ïî①②,由于甲看错了方程①中的a 得到方程组的解为⎩⎨⎧=-=13y x ,乙看错了方程②中的b 得到方程组的解为⎩⎨⎧==41y x 若按正确的a .b 计算,求原方程组的解. 10.已知关于x 、y 的二元一次方程组⎩⎨⎧=-=+my x m y x 22362的解满足二元一次方程2x-y=4,求m 的值. 书写评价 优 良 中 差 成绩评价 优 良 中 差 批改时间。
10.3解二元一次方程组数学教案

10.3解二元一次方程组数学教案
标题:以10.3解二元一次方程组为主题的教学教案
一、教学目标:
1. 理解二元一次方程组的概念和性质
2. 掌握代入消元法和加减消元法两种求解二元一次方程组的方法
3. 能够熟练应用这两种方法解决实际问题
二、教学重点和难点:
1. 重点:理解二元一次方程组的概念和性质,掌握代入消元法和加减消元法。
2. 难点:如何选择合适的消元方法,以及在解题过程中可能出现的各种情况的处理。
三、教学过程:
1. 导入新课:通过生活中的实例引入二元一次方程组的概念和性质。
2. 新知识讲解:
a. 解释什么是二元一次方程组,包括其定义、表示形式等;
b. 讲解代入消元法和加减消元法的原理和步骤;
c. 对比两种方法的特点,使学生了解何时使用哪种方法更合适。
3. 实例分析:展示几个具体的例子,引导学生运用所学的知识进行解答。
4. 学生实践:让学生自己尝试解决一些二元一次方程组的问题,教师在旁指导。
5. 总结与回顾:对本节课的内容进行总结,强调重要的知识点和方法。
四、教学策略:
1. 引导式教学:引导学生思考,激发他们的学习兴趣。
2. 案例教学:通过实例帮助学生理解和掌握知识。
3. 分层教学:对于不同水平的学生,采用不同的教学方法和要求。
五、教学评估:
1. 过程评估:观察学生在课堂上的表现,如是否积极参与、是否能够独立解决问题等。
2. 结果评估:通过测试或作业的方式,检查学生对知识的理解和掌握程度。
六、教学反思:
对本次教学进行反思,总结成功和不足之处,为以后的教学提供参考。
苏科版七年级下10.3解二元一次方程组【课时训练二】含答案

10.3二元一次方程组一、选择题(每题5分,共25分)1.若二元一次方程73=-y x ,132=+y x ,9-=kx y 有公共解,则k 的取值为( )A.3B.-3C.-4D.42.若992213y x y x y x n n m m =⋅++-,则n m 43-的值为( )A.3B.4C.5D. 63.二元一次方程组⎩⎨⎧-=-=+13243y x y x 的解是( ) ⎩⎨⎧==11.y x A ⎩⎨⎧-=-=11.y x B ⎩⎨⎧=-=22.y x C D. ⎩⎨⎧-==22y x4.若0=+y x ,且2=x 则y 的值为( ) A.0 B. 2 C. 1 D. 2±5.如果773+y x b a 和 x y b a 2427--是同类项,则x 、y 的值是( )A.x =-3,y =2B.x =2,y =-3C.x =-2,y =3D.x =3,y =-2二、填空题(每题5分,共25分)[来源:Zx k .C o m ] 6.如果方程10=+by ax 的两组解为⎩⎨⎧==⎩⎨⎧=-=51,01y x y x ,则a = ,b = 。
7.如果关于x 的方程2324+=-x m x 和m x x 32-=的解相同,则m = 。
8.若方程组()4x 3y 1kx k 1y 3+=⎧⎪⎨+-=⎪⎩ 的解x 和y 的值相等, 那么k 的值等于_______。
9.小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发现“⊗”“ ⊕”处被墨水污损了,请你帮他找出⊗、⊕ 处的值分别是 。
10.写出 一个 以 ⎩⎨⎧-==32y x 为解的二元一次方程组 。
三、解答题(每题10分,共50分)11.解方程组(1)⎩⎨⎧=+=+825y x y x (2)⎩⎨⎧=+=-7332y x y x12.已知二元一次方程组 ⎩⎨⎧=++=9129by ax x y 的解也是二元一次方程组 ⎩⎨⎧=-=+-133201418y ax y x 的解,求b a ,的值。
苏教版七下10.3 解二元一次方程组(1)

10.3 解二元一次方程组 (1)
【课后作业】
1.《数学补充习题》 10.3 解二元一次方 程组(1); 2.已知二元一次方程 ax by 5 的两个解
x 1, x 2, 为 和 y 1 y 3,
求a、b的值;
3 x 2 y 21, 3 x 4 y 3.
x y 3, 2.用代入法解方程组 3 x 8 y 14 .
10.3 解二元一次方程组 (1)
【能力检测】
x y 12, 用代入法解二元一次方程组 2 x y 20 .
10.3 解二元一次方程组 (1)
【小结】
通过今天的学习,你有什么收获? 说出来告诉大家.
初中数学 七年级(下册)
10.3
作Leabharlann 解二元一次方程组(1)者:周进荣(无锡市蠡园中学)
10.3 解二元一次方程组 (1)
根据篮球比赛规则:每场比赛都要分出胜 负,每队胜一场得2与 分,负一场得1分.如果某队 为了争取较好名次,想在全部12场比赛中得20 分,那么这个队胜、负场数应分别是多少 ? 它们之间有何内在联系?
用代入消元法解二元一次方程组的步骤:
(1)变形(用代数式表示一个未知数); (2)代入(消元); (3)解一元一次方程(求一个未知数值); (4)(代入求另一个未知数的值)确定方程 组的解.
10.3 解二元一次方程组 (1)
【练习】1.你能把下列方程写成用含x
的式子表示y的形式吗? (1)2x-y=3; (2)3x+y-1=0.
3.思考题(选做):解方程组
【例2】
2 x y 5, ① 用代入法解方程组 3 x 4 y 2. ②
解:由①,得 y=2x-5.③ 把③代入② ,得 3x+4(2x-5) =2, 解得,x=2. 把x=2 代入③, 解得,y=-1, x 2, 所以这个方程组的解是 y 1 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.3解二元一次方程组(1)
一、亮标导学:
学习目标: 1.会用代入法解二元一次方程组.
2.从解方程的过程中体会转化的思想方法.
学习重点:用代入消元法解二元一次方程组.
学习难点:用含有一个未知数的代数式表示另一个未知数.
预习内容:请认真阅读....
课本P89内容,解答下列问题: 1.已知12=+y x ,若用含y 的代数式表示x 得,x= ,
若用含x 的代数式表示y 得,y= .
2.已知623=-y x ,若用含y 的代数式表示x 得,x= ,
若用含x 的代数式表示y 得,y= .
3. 解二元一次方程组⎩
⎨⎧=+=+.2022,1y x y x 解:由①得 y =12-x ,③(你知道是怎样得到的吗? ) 将③代入②得20122=-+x x
(备注:由于方程组中相同的字母表示同一个未知数,所以方程②中的y 也等于
12-x ,可以用12-x 代替方程②中的y .这样就有2x +12-x =20.这个方程不含y ,是一元一次方程了.)
解这个一元一次方程得,x =8
将x =8代入③得 y=4 ( 将x =8代入③中可得 y=4,是否可以将x =8代入①或②中得到y 的值呢?哪一个更好呢,为什么? )
所以原方程组的解是{4,8==y x (备注:二元一次方程组的解是一对..数值..
,因此用这种固定的形式来表示原方程组的解,请同学们要记住,不可随意地乱写!算出结果后要做心算检验,即将这一对值代入原方程组中,看是否满足每一个方程,要养成习惯.)
4.试一试:将上述方程组.....
中的①变形为x =12 – y ,代入②解方程组 解:
5.代入消元法:将方程组中的一个方程中的某个 用含有 的代数式表示,并 另一个方程,从而消去 ,把解二元一次方程组转化为解 。
这种解方程组的方法称为代入消元法,简称代入法。
6、用代入法解下列方程组:
① ②
①{53=+=-y x y x ②{154=+=x y x y
二、解疑助学
【基础训练】 解方程组⎩⎨
⎧=+=+.1223,113y x y x
【合作探究】 已知⎩⎨⎧==1
2y x 是方程组⎩⎨⎧-=+=+25ay bx by ax 的解,求a b +的值.
【拓展延伸】 一个两位数加上45恰好等于把这个两位数的个位数字与十位数字对调后组成的新两位数,这个两位数的十位数字和个位数字的和是7,你能知道这个两位数吗?
【总结提高】 用代入法解二元一次方程组主要步骤有哪些?
(1) ;
(2) ;
(3) ;
(4) .
三、精练促学
1、课堂检测:
2、课后作业:《数学补充习题》P55解二元一次方程组(1)
思考题:1、解方程组
① 2(2)421x x y x y ++=⎧⎨+=⎩ ②2320,23529.7x y x y y --=⎧⎪-+⎨+=⎪⎩。