小学中级奥数第25讲-余数问题
小学奥数----余数问题

余数问题例1:被除数、除数、商和余数之和是2143,已知商事33,余数是52,求被除数和除数。
拓展1:有一个自然数,用它去除63、91、129得到3个余数和是25,这个自然数是多少?例2:一个自然数除以3余1,除以5余3,加上2就能被7整除,这个自然数最小是多少?拓展2:在1~200这200个自然数中,被3除或被7除都余2的数有多少个?例3:自然数a除以7余3,自然数b除以7余4,a加b的和除以7余几?拓展3:自然数a除以7余3,自然数b除以7余3,已知a 大于b,那么a减b的差除以7,余数是多少?例4:有一个整数,除300、262、205得到的余数相同,这个数是多少?例5:整数11111----111(2004个1)被6除余数是几?1、2100除以一个两位数得到的余数是56,那么这个两位数是()。
2、在整数除法里,余数比除数小,那么从4到50的各整数除以4,余数是2的整数有()个。
3、一个数被2除余1,被3除余2,被4除余3,被5除余4,这个数至少是()。
4、清照小学鼓号队同学在操场上列队,已知人数在90~110人之间,排成3列没有剩余,排成5列不足2人,排成7列不足4人,共用()人参加列队。
5、一个四位数2a75除以11后所得余数是1,那么a=()。
6、用一个整数去除312、231、123、得到的3个余数之和是41,这个数是()。
7、在1~400整数中,被3、5、7除都余2的数有()个。
8、100个7组成一个一百位数,被13除后余数是(),商的各位数字之和是()。
9、71427和19的积被7除余()。
10、小刚在一次计算除法时,把被除数171错写成117,结果商少了3,而余数恰好相同,原题中的除数是()。
11、69、90、125被某个自然数除时,余数相同,这个自然数最大是()。
12、1991和1769除以某一个自然数n,余数分别是2和1,那么n最小是()。
13、一个十几岁的男孩,把自己的岁数写在父亲之后,组成一个四位数,从这个四位数中减去他们父子两人岁数的差得4289,男孩()岁,父亲()岁。
小学奥数余数问题口诀及解题方法

【导语】马克思曾经说过:“⼀门学科只有成功的应⽤了数学,才能真正达到了完善的地步。
”这句话充分显⽰了数学知识的⼴泛应⽤及学习数学的必要性和重要性。
因此,数学作为认识世界的基础性学科,它可以在思想上⽀持不同学科的深⼊发展。
以下是整理的相关资料,希望对您有所帮助。
【篇⼀】 【⼝诀】: 余数有(N-1)个,最⼩的是1,的是(N-1)。
周期性变化时,不要看商,只要看余。
例: 如果时钟现在表⽰的时间是18点整,那么分针旋转1990圈后是⼏点钟? 分针旋转⼀圈是1⼩时,旋转24圈就是时针转1圈,也就是时针回到原位。
1980/24的余数是22,所以相当于分针向前旋转22个圈, 分针向前旋转22个圈相当于时针向前⾛22个⼩时, 时针向前⾛22⼩时,也相当于向后24-22=2个⼩时,即相当于时针向后拔了2⼩时。
即时针相当于是18-2=16(点)。
【篇⼆】 除法运算中,被除数和除数之间的关系有两种:⼀种是整除,即被除数÷除数=商,这个商就叫做完全商;另⼀种是有余数的除法,即被除数÷除数=商……余数(余数 同余,是指a,b两个⾃然数,除以⾃然数n所得的余数如果相同,我们就称a、b对于除数n同余,在同余问题中常⽤的结论有: (1)如果a,b除以n的余数相同,那么a与b的差能被n整除; (2)如果a与b除以m的余数相同,那么a+b与a×b除以m的余数也相同。
求⼀个算式的结果除以⼀个数的余数有以下⽅法: (1)a与b的乘积除以c的余数,等于a、b分别除以c的余数之积(或这个积除以c的余数); (2)a与b的和除以c的余数,等于a、b分别除以c的余数之和(或这个和除以c的余数); (3)a与b的差除以c的余数,等于a、b分别除以c的余数之差(或这个差除以c的余数); 不同余,⼜称为“中国剩余定理”,也叫“孙⼦定理”,解题时常⽤列举法。
【篇三】 余数问题 ⼏个数相乘求余数时,把每个因数分别除以除数,然后将所得的余数相乘的积再除以余数,所得的余数就是原来的余数;当求⼏个乘积的和或差除以某⼀个数的余数时,先分别求出每个乘积除以某⼀个数,再将所得的余数相加减,然后除以某⼀个数,所得余数就是原来的余数。
小学奥数之带余除法解题(完整版)

小学奥数之带余除法解题1. 能够根据除法性质调整余数进行解题2. 能够利用余数性质进行相应估算3. 学会多位数的除法计算4.根据简单操作进行找规律计算带余除法的定义及性质1、定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我们称上面的除法算式为一个带余除法算式。
这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商 (2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商 一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
2、余数的性质⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑴ 余数小于除数. 3、解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.除法公式的应用【例 1】 某数被13除,商是9,余数是8,则某数等于 。
【考点】除法公式的应用 【难度】1星 【题型】填空 【关键词】希望杯,四年级,复赛,第2题,5分 【解析】 125 【答案】125【例 2】 一个三位数除以36,得余数8,这样的三位数中,最大的是__________。
5-5-1.带余除法(一)教学目标知识点拨例题精讲【考点】除法公式的应用【难度】1星【题型】填空【关键词】希望杯,四年级,复赛,第3题【解析】因为最大的三位数为999,999362727÷=,所以满足题意的三位数最大为:36278980⨯+=【答案】980【巩固】计算口÷△,结果是:商为10,余数为▲。
奥数余数问题知识点(一)

奥数余数问题知识点(一)奥数余数问题什么是奥数余数问题?奥数余数问题是奥数或数学中常见的一个问题类型,要求计算一个数除以另一个数的余数。
通常给定两个整数,求它们相除的余数。
如何计算余数?余数是一个剩余部分,当一个数不能整除另一个数时,所剩下的部分就是余数。
例如,10除以3的余数是1,因为10可以被3整除3次,余下1。
奥数余数问题的常见类型在奥数中,有一些常见的余数问题类型,包括但不限于:1.除数为2或10的倍数的情况:当除数是2的倍数时,余数只能是0或1;当除数是10的倍数时,余数只能是0。
2.关于两个整数除法结果的关系:例如,给定两个整数a和b,求a和b相除的余数。
如果a除以b的余数是r,那么可以得出结论:(a + n * b)除以b的余数也是r,其中n是任意整数。
3.求余数的特殊方法:例如,假设我们要计算一个较大的数除以10的余数,我们可以观察这个数的个位数是多少,因为一个整数除以10的余数就是它的个位数。
奥数余数问题的解决方法解决奥数余数问题通常需要一些数学技巧和观察力,以下是一些常见的解决方法:1.利用除法原理:根据除法原理,我们可以将一个数的余数变为0,然后再加上余数,得到原问题的答案。
例如,计算123除以7的余数,我们可以先将123减去它除以7的余数,得到116,再加上余数4,得到120,即为所求余数。
2.利用模运算性质:模运算是一种求余数的方法,可以用符号%表示。
利用模运算的一些性质,如(a + b) % n = ((a % n) + (b % n)) % n,我们可以在求余数的过程中简化计算。
3.利用数的性质:例如,当一个数末尾有0时,它必然可以被10整除,所以余数为0;当一个数的各个位上的数字之和能被3整除时,它也能被3整除,所以余数为0。
总结奥数余数问题是奥数或数学中常见的问题类型之一,在解决这类问题时,我们可以利用除法原理、模运算性质和数的性质等方法进行求解。
通过掌握这些解决方法,我们可以更好地应对奥数余数问题的挑战。
小学奥数 数论 余数问题 同余问题.题库版

1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;知识点拨教学目标5-5-3.同余问题⑷整数N被3或9除的余数等于其各位数字之和被3或9除的余数;⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】2003年,人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
小学奥数 余数问题 完整版教案带解析和答案

数论问题之余数问题教学目标余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
三大余数定理:1、余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2.2、余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a同余于b,模m。
由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)三、弃九法原理而我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”。
二年级奥数(第25-26讲)《举一反三》 巧用余数(二)

第25讲拆数游戏【专题简析】按要求把一些数分解成几个数相加的形式,这不仅可以提高运算能力,更能促进你积极地去思考问题,分析问题,使你的头脑更聪明。
怎样才能找到全部答案,不出现差错呢?分析数的时候,一定要弄懂题中要求,使分析的过程按一定的顺序进行,如果要拆成规定的个数,可以按从大到小的顺序拆;如果没有规定个数,可以按从少到多的顺序拆。
只有这样,才能的找到符合题意的所有分拆方式。
【例题1】像15+51=66这样十位数字和个位数字顺序颠倒的一对两位数相加,而和是66的两位数一共有多少对?思路导航:个位与十位两个数相加是6,即()+()=6,不难得出这样的情况:1+5=6,2+4=6,如果是3+3=6,则个位数与十位数相同,不合要求。
解:这样的两位数有两对:15+51=66,24+42=66。
练习11.十位数字与个位数字顺序颠倒的一对两位数相加,各是55,问这样的两位数有多少对?2.十位数字与个位数字顺序颠倒的一对两位数叫做倒序数,像这样的和是88的倒序数共有多少对?3.有这样一道算式,16+61=77,把16和61这样的两个数叫做倒序数,像这样的和在100以内的倒序数有多少对?【例题2】五个连续自然数的和是40,这五个数按从小到大排列的顺序是怎样的?思路导航:五个连续自然数的和是40,应该先找到五个数中间的一个数,用40÷5=8,8是中间数,比8小的两个数是6、7,比8大的两个数是9、10。
解:这五个连续自然数按从小到大的顺序排列是:6,7,8,9,10。
练习21.四个连续自然数的和是18,这四个数按从小到大排列的顺序是怎样的?2.小明用5天时间做了25道数学题,他每天都比前一天多做一道,这五天里,小明每天各做几道题?3.15个网球分成数量不同的4堆,数量最多的一堆至少有多少个球?【例题3】把10分拆成三个不同的数相加的形式(0除外),共有多少种不同的分拆方法?思路导航:分拆时,可以按从大到小顺序排列,由题意可知,所拆的三个数必须不同,因此最大数为7,最小数为1。
奥数数论问题之余数问题

奥数数论问题之余数问题奥数数论问题之余数问题1.数11…1(2007个1),被13除余多少分析:根据整除性质知:13能整除111111,而2007÷6后余3,所以答案为7.2.求下列各式的余数:(1)2461×135×6047÷11(2)2123÷6分析:(1)5;(2)6443÷19=339……2,212=4096,4096÷19余11,所以余数是11.3.1013除以一个两位数,余数是12.求出符合条件的所有的两位数.分析:1013-12=1001,1001=7×11×13,那么符合条件的所有的两位数有13,77,91有的可能会粗心的认为11也是.11小于12,所以不行.大家做题时要仔细认真.4.学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个,那么这三种物品剩下的数量相同.请问学校共有多少个班分析:所求班级数是除以118,67,33余数相同的`数.那么可知该数应该为118-67=51和67-33=34的公约数,所求答案为17.5.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.6.求下列各式的余数:(1)2461×135×6047÷11(2)2123÷6分析:(1)5;(2)找规律,2的n次方被6除的余数依次是(n=1,2,3,4……):2,4,2,4,2,4……因为要求的是2的123次方是奇数,所以被6除的余数是2.7.(数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313—7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240—2=238(个),313—7=306(个),(238,306)=34(人).8.(第十三届迎春杯决赛)已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是.分析:1477-49=1428是这两位数的倍数,又1428=2×2×3×7×17=51×28=68×21=84×17,因此所求的两位数51或68或84.9.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.10.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.【奥数数论问题之余数问题】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23、16除以5的余数分别是3 和1,所以(23X16)除以5 的余数等于3X1=3。
23、19除以5的余数分别是3 和1,所以(23X19)除以5 的余数等于(3X4)除以5的 余数2。
某数被13除,商是9,余数是8,则某数等于
。
一个三位数除以36,得余数8,这样的三位数中,最大的是__________。
用自然数n去除63,91,129得到的三个余数之和为25,那么n=________.
求 478 296351 除以17的余数。
求 4373091993 被7除的余数。
22003 与 20032 的和除以7的余数是_______。
22008 20082 除以7的余数是多少?
有一个整数,除39,51,147所得的余数都是3,求这个数。
甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数。
用某自然a去除1992,得到商是46,余数是r,求a和r。
当1991和1769除以某个自然数n,余数分别为2和1.那么,n最小是多少?
有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个 整数是______。
课后作业 <作业2> 3782除以某个整数后所得的商恰好是余数的21倍,那么除数最小可能是_______。
课后作业 <作业3>
在大于2009的自然数中,被57除后,商与余数相等的数共有______个。
<作业4>
求 478 2569352 除以9的余数。
课后作业
<作业5>
求 3406 的个位数字。
除法算式 □□= 20 8 中,被除数最小等于________。
71427和19的积被7除,余数是几?
1013除以一个两位数,余数是12。求出符合条件的所有两位数。
一个两位数除310,余数是37,求这样的两位数。
一个两位奇数除1477,余数是49,那么,这个两位奇数是多少?
大于35的所有数中,有多少个数除以7的余数和商相等?
课后作业
课后作业
<作业6>
ห้องสมุดไป่ตู้
三个数:23,51,72,各除以大于1的同一个自然数,得到同一个余数,则
这个除数是
。
课后作业 <作业7>
一个小于200的数,它除以11余8,除以13余10,这个数是几?
课后作业
<作业8>
某个自然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最小
是
。
某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个 两位数是______。
有一个大于1的整数,除45,59,101所得的余数相同,求这个数。
有一个整数,除300、262、205得到相同的余数。问这个整数是几?
课后作业 <作业1>
用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余 数的和是933,求这2个自然数各是多少?
精讲1
解法精讲
对任意自然数a、b、q、r,如果使得 a÷b=q……r,且0<r<b,那么r叫做a除以b 的余数,q叫做a除以b的不完全商。
精讲2
1、余数小于除数。
2、被除数=除数×商+余数 除数=(被除数-余数) ÷商 商=(被除数-余数) ÷除数
精讲3
如果a、b除以c的余数相同, 就称a、b对于余数来说是同余 的。且有a与b的差能被c整除。 (a、b、c均为自然数)
a与b的和除以c的余数,等于a、 b分别除以c的余数之和(或这 个和除以c的余数)。
23、16除以5的余数分别是3和1, 所以(23+16)除以5的余数等 于3+1=4。
23、19除以5的余数分别为3和4, 所以(23+19)除以5的余数等 于(3+4)除以5的余数2。
a与b的乘积除以c的余数,等 于a、b分别除以c的余数之积 (或这个积除以c的余数)。