2017年_全国III卷理科数学(原卷+答案)
2017高考全国3卷理科数学试题及答案

2017年普通高等学校招生全国统一考试(全国)理科数学(试题及答案解析)一、选择题:(本题共12小题,每小题5分,共60分)1.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则AB 中元素的个数为()A .3B .2C .1D .0 【答案】B【解析】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故A B 表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2,故选B.2.设复数z 满足(1i)2i z +=,则z =() A .12B .22C .2D .2【答案】C【解析】由题,()()()2i 1i 2i 2i 2i 11i 1i 1i 2z -+====+++-,则22112z =+=,故选C.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【答案】A【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,故选A.4.5()(2)x y x y +-的展开式中33x y 的系数为()A .-80B .-40C .40D .80 【答案】C【解析】由二项式定理可得,原式展开中含33x y 的项为()()()()2332233355C 2C 240x x y y x y x y ⋅-+⋅-=,则33x y 的系数为40,故选C.5.已知双曲线22221x y C a b -=:(0a >,0b >)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为() A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 【答案】B【解析】∵双曲线的一条渐近线方程为52y x =,则52b a =① 又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==② 由①②解得2,5a b ==,则双曲线C 的方程为22145x y -=,故选B.6.设函数π()cos()3f x x =+,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减【答案】D【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误,故选D.π23π53-π36πxy O7.执行右图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为() A .5 B .4 C .3 D .2【答案】D【解析】程序运行过程如下表所示:S Mt 初始状态 0 100 1第1次循环结束 100 10- 2第2次循环结束 90 1 3此时9091S =<首次满足条件,程序需在3t =时跳出循环,即2N =为满足条件的最小值,故选D.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径r =则圆柱体体积23ππ4V r h ==,故选B.9.等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为()A .24-B .3-C .3D .8 【答案】A【解析】∵{}n a 为等差数列,且236,,a a a 成等比数列,设公差为d . 则2326a a a =⋅,即()()()211125a d a d a d +=++ 又∵11a =,代入上式可得220d d += 又∵0d ≠,则2d =-∴()61656561622422S a d ⨯⨯=+=⨯+⨯-=-,故选A.10.已知椭圆2222:1x y C a b+=(0a b >>)的左、右顶点分别为1A ,2A ,且以线段1A 2A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为()ABC.3D .13【答案】A【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴d a ==又∵0,0a b >>,则上式可化简为223a b =∵222b ac =-,可得()2223a a c =-,即2223c a =∴c e a ==A11.已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12D .1【答案】C【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴, 由题意,()f x 有唯一零点, ∴()f x 的零点只能为1x =, 即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.12.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为()A .3 B. CD .2【答案】A【解析】由题意,画出右图.设BD 与C 切于点E ,连接CE .以A 为原点,AD 为x 轴正半轴, AB 为y 轴正半轴建立直角坐标系, 则C 点坐标为(2,1). ∵||1CD =,||2BC =.∴BD = ∵BD 切C 于点E . ∴CE ⊥BD .∴CE 是Rt BCD △中斜边BD 上的高.12||||22||||||BCD BC CD S EC BD BD ⋅⋅⋅====△即C. ∵P 在C 上.∴P 点的轨迹方程为224(2)(1)5x y -+-=. 设P 点坐标00(,)x y ,可以设出P 点坐标满足的参数方程如下:()A O D x yB P CE0021x y θθ⎧=⎪⎪⎨⎪=⎪⎩而00(,)AP x y =,(0,1)AB =,(2,0)AD =.∵(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=∴0112x μθ==+,01y λθ==+. 两式相加得:112)2sin()3λμθθθϕθϕ+=+++=++=++≤(其中sin ϕ,cos ϕ=) 当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3.二、填空题:(本题共4小题,每小题5分,共20分)13.若x ,y 满足约束条件0,20,0,-⎧⎪+-⎨⎪⎩x y x y y ≥≤≥则34z x y =-的最小值为________.【答案】1-【解析】由题,画出可行域如图:目标函数为34z x y =-,则直线344zy x =-纵截距越大,z 值越小. 由图可知:z 在()1,1A 处取最小值,故min 31411z =⨯-⨯=-.14.设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =________. 【答案】8-【解析】{}n a 为等比数列,设公比为q .121313a a a a +=-⎧⎨-=-⎩,即1121113a a q a a q +=-⎧⎪⎨-=-⎪⎩①②, 显然1q ≠,10a ≠,②①得13q -=,即2q =-,代入①式可得11a =,()3341128a a q ∴==⨯-=-.15.设函数1,0,()2,0,+⎧=⎨>⎩xx x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________. 【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解析】()1,02 ,0+⎧=⎨>⎩x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:12-1211(,)44-1()2y f x =-1()y f x =-yx由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60︒角时,AB 与b 成30︒角; ②当直线AB 与a 成60︒角时,AB 与b 成60︒角; ③直线AB 与a 所成角的最小值为45︒; ④直线AB 与a 所成角的最大值为60︒.其中正确的是________(填写所有正确结论的编号) 【答案】②③【解析】由题意知,a b AC 、、三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体边长为1, 故||1AC =,2AB =,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变, B 点的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD 为x 轴正方向,CB 为y 轴正方向, CA 为z 轴正方向建立空间直角坐标系. 则(1,0,0)D ,(0,0,1)A ,直线a 的方向单位向量(0,1,0)a =,||1a =. B 点起始坐标为(0,1,0),直线b 的方向单位向量(1,0,0)b =,||1b =. 设B 点在运动过程中的坐标(cos ,sin ,0)B θθ', 其中θ为B C '与CD 的夹角,[0,2π)θ∈.那么'AB 在运动过程中的向量(cos ,sin ,1)AB θθ'=--,||2AB '=.设AB '与a 所成夹角为π[0,]2α∈,则(cos ,sin ,1)(0,1,0)cos sin |a AB θθαθ--⋅=∈'. 故ππ[,]42α∈,所以③正确,④错误.设AB '与b 所成夹角为π[0,]2β∈,cos (cos ,sin ,1)(1,0,0)cos |AB bb AB b AB βθθθ'⋅='-⋅='.当AB '与a 夹角为60︒时,即π3α=, sin3πθα=. ∵22cos sin 1θθ+=,∴|cos |θ=∴1cos cos |2βθ==.∵π[0,]2β∈.∴π=3β,此时AB '与b 夹角为60︒.∴②正确,①错误.三、解答题:(共70分.第17-20题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答) (一)必考题:共60分. 17.(12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 0A A +=,a =,2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.【解析】(1)由sin 0A A =得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈,∴ππ3A+=,得2π3A =.由余弦定理2222cos a b c bc A =+-⋅.又∵12,cos2a b A ===-代入并整理得()2125c +=,故4c =.(2)∵2,4AC BC AB ===,由余弦定理222cos 2a b c C ab +-==. ∵AC AD ⊥,即ACD △为直角三角形,则cos AC CD C =⋅,得CD =由勾股定理AD =又2π3A =,则2πππ326DAB ∠=-=, 1πsin 26ABDS AD AB =⋅⋅=△18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)2025,,需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值? 【解析】⑴易知需求量x 可取200,300,500()21612003035P X +===⨯()3623003035P X ===⨯()257425003035P X ++===⨯.⑵①当200n ≤时:,此时max 400Y =,当200n =时取到.②当200300n <≤时:()()4122002200255Y n n =⋅+⨯+-⋅-⎡⎤⎣⎦ 880026800555n n n -+=+= 此时max 520Y =,当300n =时取到. ③当300500n <≤时,()()()()12220022002300230022555Y n n n =⨯+-⋅-+⨯+-⋅-+⋅⋅⎡⎤⎡⎤⎣⎦⎣⎦ 320025n -=此时520Y <.④当500n ≥时,易知Y 一定小于③的情况.综上所述:当300n =时,Y 取到最大值为520.19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形.ABDCBD ,AB BD . (1)证明:平面ACD 平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分.求二面角D AE C 的余弦值.【解析】⑴取AC 中点为O ,连接BO ,DO ; ABC ∆为等边三角形 ∴BO AC ⊥ ∴AB BC =AB BC BD BDABD DBC =⎧⎪=⎨⎪∠=∠⎩ABD CBD ∴∆≅∆. ∴AD CD =,即ACD ∆为等腰直角三角形,ADC ∠ 为直角又O 为底边AC 中点 ∴DO AC ⊥令AB a =,则AB AC BC BD a ====易得:OD =,OB = ∴222OD OB BD +=由勾股定理的逆定理可得2DOB π∠=即OD OB ⊥ OD AC OD OB AC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩平面平面OD ABC ∴⊥平面 又∵OD ADC ⊂平面由面面垂直的判定定理可得ADC ABC ⊥平面平面 ⑵由题意可知V V D ACE B ACE --= 即B ,D 到平面ACE 的距离相等 即E 为BD 中点以O 为原点,OA 为x 轴正方向,OB 为y 轴正方向,OD 为z 轴正方向,设AC a =,建立空间直角坐标系,则()0,0,0O ,,0,02a A ⎛⎫ ⎪⎝⎭,0,0,2a D ⎛⎫ ⎪⎝⎭,,0B ⎛⎫ ⎪ ⎪⎝⎭,,4a E ⎛⎫ ⎪ ⎪⎝⎭易得:,24a a AE ⎛⎫=- ⎪ ⎪⎝⎭,,0,22a a AD ⎛⎫=- ⎪⎝⎭,,0,02a OA ⎛⎫= ⎪⎝⎭ 设平面AED 的法向量为1n ,平面AEC 的法向量为2n ,DB C ED A BC EO则1100AE n AD n ⎧⋅=⎪⎨⋅=⎪⎩,解得(13,1,n =220AE n OA n ⎧⋅=⎪⎨⋅=⎪⎩,解得(20,1,n = 若二面角D AE C --为θ,易知θ为锐角,则12127cos 7n n n n θ⋅==⋅20.(12分)已知抛物线2:2C y x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,2),求直线l 与圆M 的方程.【解析】⑴显然,当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立:222y xx my ⎧=⎨=+⎩得2240y my --=,2416m ∆=+恒大于0,122y y m +=,124y y =-.1212OA OBx x y y ⋅=+ 12(2)(2)my my =++21212(1)2()4m y y m y y =++++ 24(1)2(2)4m m m =-+++0=∴OA OB ⊥,即O 在圆M 上. ⑵若圆M 过点P ,则0AP BP ⋅= 1212(4)(4)(2)(2)0x x y y --+++= 1212(2)(2)(2)(2)0my my y y --+++=21212(1)(22)()80m y y m y y +--++=化简得2210m m --=解得12m =-或1①当12m =-时,:240l x y +-=圆心为00(,)Q x y ,120122y y y +==-,0019224x y =-+=,半径||r OQ ==则圆229185:()()4216M x y -++=②当1m =时,:20l x y --=圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径||r OQ ==则圆22:(3)(1)10M x y -+-=21.(12分)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm ,求m 的最小值.【解析】⑴ ()1ln f x x a x =--,0x >则()1a x af x x x-'=-=,且(1)0f =当0a ≤时,()0f x '>,()f x 在()0+∞,上单调增,所以01x <<时,()0f x <,不满足题意; 当0a >时,当0x a <<时,()0f x '<,则()f x 在(0,)a 上单调递减; 当x a >时,()0f x '>,则()f x 在(,)a +∞上单调递增.①若1a <,()f x 在(,1)a 上单调递增∴当(,1)x a ∈时()(1)0f x f <=矛盾 ②若1a >,()f x 在(1,)a 上单调递减∴当(1,)x a ∈时()(1)0f x f <=矛盾③若1a =,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增∴()(1)0f x f =≥满足题意综上所述1a =.⑵ 当1a =时()1ln 0f x x x =--≥即ln 1x x -≤则有ln(1)x x +≤当且仅当0x =时等号成立∴11ln(1)22k k +<,*k ∈N一方面:221111111ln(1)ln(1)...ln(1) (112222222)n n n ++++++<+++=-<,即2111(1)(1)...(1)e 222n +++<.另一方面:223111111135(1)(1)...(1)(1)(1)(1)222222264n +++>+++=>当3n ≥时,2111(1)(1)...(1)(2,e)222n +++∈∵*m ∈N ,2111(1)(1)...(1)222n m +++<,∴m 的最小值为3.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为,,x t y kt =2+⎧⎨=⎩(t 为参数),直线l 2的参数方程为,,x m my k =-2+⎧⎪⎨=⎪⎩(m 为参数),设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设:(cos sin )l ρθθ3+=0,M 为l 3与C 的交点,求M 的极径.【解析】⑴将参数方程转化为一般方程()1:2l y k x =- ……①()21:2l y x k=+ ……②①⨯②消k 可得:224x y -=即P 的轨迹方程为224x y -=; ⑵将参数方程转化为一般方程3:0l x y += ……③联立曲线C 和3l 224x y x y ⎧+=⎪⎨-=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩ 由cos sin x y ρθρθ=⎧⎨=⎩解得ρ=即M.23.[选修4-5:不等式选讲](10分)已知函数()||||f x x x =+1--2. (1)求不等式()f x ≥1的解集;(2)若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.【解析】⑴()|1||2|f x x x =+--可等价为()3,121,123,2--⎧⎪=--<<⎨⎪⎩x f x x x x ≤≥.由()1f x ≥可得:①当1-x ≤时显然不满足题意;②当12x -<<时,211-x ≥,解得1x ≥;③当2x ≥时,()31=f x ≥恒成立.综上,()1f x ≥的解集为{}|1x x ≥.⑵不等式()2-+f x x x m ≥等价为()2-+f x x x m ≥,令()()2g x f x x x =-+,则()g x m ≥解集非空只需要()max ⎡⎤⎣⎦g x m ≥.而()2223,131,123,2⎧-+--⎪=-+--<<⎨⎪-++⎩x x x g x x x x x x x ≤≥.①当1-x ≤时,()()max 13115g x g =-=---=-⎡⎤⎣⎦;②当12x -<<时,()2max3335312224g x g ⎛⎫⎛⎫==-+⋅-=⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭; ③当2x ≥时,()()2max 22231g x g ==-++=⎡⎤⎣⎦. 综上,()max 54g x =⎡⎤⎣⎦,故54m ≤.。
2017高考全国3卷理科数学试题以与答案

2017年普通高等学校招生全国统一考试(全国)理科数学 (试题)一、选择题:(本题共12小题,每小题 5分,共 60分)1.已知集合 A( x, y) x 2 y 2 1 , B( x, y) y x ,则 AB 中元素的个数为()A . 3B . 2C . 1D . 02.设复数 z 满足(1 i) z2i ,则 z()12C . 2D . 2A .B .223.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年 1 月至2016 年 12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8 月份D .各年 1 月至 6 月的月接待游客量相对7 月至 12 月,波动性更小,变化比较平稳4. ( x y)(2x y)5 的展开式中 x 3 y 3 的系数为()A .B .C . 40D . 802255.已知双曲线C :x2y 2 1( a 0 , b 0 )的一条渐近线方程为y x ,且与椭圆x2y2ab21 有公共焦点.则 C的方程为()123A .x 2 y 2x 2 y 2 x2y2x2y281B . 1C .1D .1104 5 54436.设函数 f ( x)cos(x π3 ) ,则下列结论错误的是()8πA . f (x) 的一个周期为2πB . yf ( x) 的图像关于直线 x对称C. f ( x ) 的一个零点为 xπD. f (x) 在 ( π, π) 单调递减627.执行右图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为()A . 5B.4C.3D. 28.已知圆柱的高为1,它的两个底面的圆周在直径为 2的同一个球的球面上,则该圆柱的体积为()A .π3πC.ππB.D.4249.等差数列a n的首项为 1,公差不为 0.若 a2, a3, a6成等比数列,则a n前 6项的和为()A.24B.3C. 3D. 810x2y21(a b 0A1A2A1 A2b2.已知椭圆 C : a2)的左、右顶点分别为,,且以线段为直径的圆与直线 bx ay2ab 0相切,则 C 的离心率为()6321A .3B.3C.3D.311.已知函数 f ( x)x22x a(e x 1 e x 1 ) 有唯一零点,则 a ()111A .2B.3C.2D. 1 12.在矩形ABCD中,AB1, AD 2 ,动点 P 在以点C为圆心且与 BD 相切的圆上.若APAB AD ,则的最大值为()A . 3B.2 2C. 5D. 2二、填空题:(本题共4小题,每小题 5分,共 20分)x y ≥ 0,13.若 x, y满足约束条件x y 2≤ 0, 则 z3x 4 y 的最小值为 ________.y≥ 0,14.设等比数列a n满足a1a2 1 , a1a3 3 ,则 a4________.x1,x≤ 0,116. a ,b为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b都垂直,斜边AB 以直线AC为旋转轴旋转,有下列结论:①当直线 AB 与a成60角时, AB 与b成30角;②当直线 AB 与a成60角时, AB 与b成60角;③直线 AB 与a所成角的最小值为45 ;④直线 AB 与a所成角的最大值为60 .其中正确的是________(填写所有正确结论的编号)三、解答题:(共70分.第 17-20 题为必考题,每个试题考生都必须作答.第22, 23题为选考题,考生根据要求作答)(一)必考题:共60分.17.( 12分)ABC A B C a b c b2的内角,a 2 7 ,.,,的对边分别为,,,已知 sin A 3 cos A 0( 1)求 c;( 2)设D为BC边上一点,且 AD AC ,求△ABD的面积.18.( 12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶 6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为 500瓶;如果最高气温位于区间20 ,25 ,需求量为 300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10 ,1515 ,2020 ,2525 ,3030 ,3535 ,40天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.( 1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;( 2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量 n (单位:瓶)为多少时,Y 的数学期望达到最大值?19.(12分)如图,四面体ABCD中,△ABC形.?ABD ?CBD ,AB= BD.(1)证明:平面ACD ^平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体 ABCD 分成体积相等的两部分.求二面角 D- AE- C 的余弦值.是正三角形,△ACD是直角三角DECB A20.( 12分)已知抛物线 C : y2 = 2x ,过点(2,0)的直线l交C于 A , B 两点,圆 M 是以线段AB 为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P( 4,- 2),求直线l与圆M的方程.21.( 12分)已知函数 f (x) x 1 a ln x .( 1)若 f (x) ≥ 0,求 a 的值;(2)设m为整数,且对于任意正整数111n,(1 + )(1 +22 ) 鬃?(1n ) < m ,求m的最小值.2222. [选修 4-4:坐标系与参数方程] ( 10分)x t ,l 的参数方程在直角坐标系 xOy中,直线 l 的参数方程为( t为参数),直线y kt,x m,为( m为参数),设 l 与 l 的交点为 P,当 k变化时, P的轨迹为曲线 C.y m ,k( 1)写出 C的普通方程:( 2)以坐标原点为极点, x轴正半轴为极轴建立极坐标系,设l : cos( nis ),M为 l 与 C的交点,求 M的极径.23. [选修 4-5:不等式选讲 ] (10分)已知函数 f ( x) | x| | x| .( 1)求不等式 f ( x)的解集;( 2)若不等式 f ( x) x x m 的解集非空,求m的取值范围.2017年普通高等学校招生全国统一考试(全国)理科数学(答案解析)一、选择题:(本题共12小题,每小题 5分,共 60分)1.已知集合 A ( x, y) x 2 y 2 1 , B( x, y) y x ,则 AB 中元素的个数为()A . 3B . 2C . 1D . 0【答案】 B【解析】 A 表示圆 x 2y 2 1 上所有点的集合, B 表示直线 yx 上所有点的集合,故 AB 表示两直线与圆的交点,由图可知交点的个数为2,即 A B 元素的个数为2,故选 B.2.设复数 z 满足(1 i) z2i ,则 z ()1 B .2C . 2D . 2A .22【答案】 C2i 2i 1 i 2i 2 122 ,故选 C.【解析】由题, z1 i 1 ii 1 ,则 z 121 i23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年 1 月至2016 年 12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在 7,8 月份D .各年 1 月至 6 月的月接待游客量相对 7 月至 12 月,波动性更小,变化比较平稳【答案】 A【解析】由题图可知, 2014年8月到 9月的月接待游客量在减少,则 A 选项错误,故选 A.4. ( x y)(2 x y)5 的展开式中 x 3 y 3 的系数为()A .B .C . 40D . 80【答案】 C【解析】由二项式定理可得,原式展开中含x 3 y 3 的项为x C 52 2 x 2y 33y2的系数为 40,故选 C.y C 53 2 x40x 3 y 3 ,则 x 3 y 3C :x2y 25x ,且与椭圆5.已知双曲线221( a 0 , b 0 )的一条渐近线方程为 yx 2 y 2ab21 有公共焦点.则 C 的方程为()123A . x 2 y 21B . x 2y 2 1 C . x 2 y 21D . x 2y 2 1810455443【答案】 B【解析】 ∵双曲线的一条渐近线方程为y5x ,则b5 ①2a2又∵ 椭圆x 2y 21 与双曲线有公共焦点,易知c3 ,则 a 2 b 2c 2 9 ②12 3x2y2由①② 解得 a 2,b5 ,则双曲线C的方程为1,故选 B.456.设函数 f ( x)cos(xπ) ,则下列结论错误的是()3A . f (x) 的一个周期为2πB . yf ( x) 的图像关于直线 x8π对称3C . f ( x) 的一个零点为 xπD . f (x) 在π π) 单调递减6( ,【答案】 D2【解析】函数 f xcos xπ的图象可由 ycosx 向左平移π个单位得到,33如图可知, f x 在π, π 上先递减后递增, D 选项错误,故选 D.2y- O6 x7.执行右图的程序框图,为使输出S 的值小于 91,则输入的正整数N的最小值为()A . 5B .4C . 3D . 2【答案】 D【解析】程序运行过程如下表所示:SM t初始状态 0 100 1 第1次循环结束 100 10 2 第2次循环结束 90 1 3此时S 90 91 首次满足条件,程序需在 t 3 时跳出循环,即 N2 为满足条件的最小值,故选 D.8.已知圆柱的高为 1,它的两个底面的圆周在直径为 2的同一个球的球面上,则该圆柱的体积为()A . πB .3π ππ4C .D .【答案】 B241 2【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径23 ,r122则圆柱体体积 Vπ2 3πr h,故选 B.49.等差数列 a n 的首项为 1,公差不为 0.若 a 2 , a 3 , a 6 成等比数列,则a n前 6项的和为()A . 24B . 3C . 3D . 8【答案】 A【解析】 ∵ a n为等差数列,且 a 2 ,a 3, a6成等比数列,设公差为d .则 a 32 a 2 a 6 ,即 a 12d 2a 1 d a 1 5d又∵ a 1 1 ,代入上式可得 d 22d又∵ d 0 ,则 d2∴ S 66a 16 5d 16 6 5224 ,故选 A.222210.已知椭圆 C :x2y 2 1( a b 0 )的左、右顶点分别为 A 1 , A 2 ,且以线段 A 1 A 2 为直ab径的圆与直线 bxay 2ab0 相切,则 C 的离心率为()632 1A . 3B . 3C . 3D . 3【答案】 A【解析】 ∵ 以 A 1 A 2 为直径为圆与直线bx ay 2ab0 相切,∴圆心到直线距离d 等于半径,2ab又∵ a 0,b0 ,则上式可化简为 a 2 3b 2∵ b2a2c 2 ,可得 a 23 a2c2,即 c 2 2a 2 3∴ ec 6,故选Aa311.已知函数 f ( x) x 2 2xa(e x 1e x 1 ) 有唯一零点,则 a()1 1 1A . 2B . 3C . 2【答案】 C【解析】由条件,f ( x) x 2 2x a (e x 1 e x 1 ) ,得:f (2x) (2 x) 2 2(2 x) a (e 2 x 1e (2 x ) 1 )x 2 4 x4 4 2x a(e 1 x e x 1 )x 2 2 x a(e x 1 e x 1 )∴ f (2 x) f ( x) ,即 x 1 为 f (x) 的对称轴, 由题意, f (x) 有唯一零点, ∴ f ( x) 的零点只能为 x1 ,即 f (1) 12 2 1 a(e 1 1 e 1 1) 0 ,解得 a 1.212.在矩形 ABCD 中, AB1, AD2 ,动点 P 在以点 C为圆心且与 AP AB AD ,则的最大值为()y A . 3B . 2 2C . 5D . 2B【答案】 A【解析】由题意,画出右图.设 BD 与 C 切于点 E ,连接 CE .以 A 为原点, AD 为 x 轴正半轴, A(O)AB 为 y轴正半轴建立直角坐标系,则 C 点坐标为 (2,1) .∵|CD| 1,|BC| 2. ∴ BD 2 2 5 . 1 2 ∵ BD 切 C 于点 E . ∴CE ⊥BD . ∴ CE 是 Rt △ BCD 中斜边 BD 上的高 .2 12 S △ BCD |BC| |CD| 2 2|EC | 2|BD | |BD |55 5即 C 的半径为 25 . 5∵ P 在C上.( x 2)2( y 1)24∴ P 点的轨迹方程为 5 .设 P 点坐标(x 0, y 0),可以设出 P 点坐标满足的参数方程如下:D . 1BD 相切的圆上.若P gCEDxx22 5 cos5y 0 125 sin5而 AP (x 0 , y 0 ) , AB (0,1) , AD (2,0) .∵ AP AB AD (0,1) (2,0) (2 , )∴15,y 01 2 5 sin .x 01 cos525两式相加得:1 2 5sin15cos552( 2 5 )2 ( 5 )2 sin()5 52 sin( ) ≤ 3(其中 sin5, cos2 5 )55当且仅当 π,kZ 时,取得最大值 3.2k π2二、填空题:(本题共 4小题,每小题 5分,共 20分)x y ≥ 0,13.若 x , y 满足约束条件x y 2 ≤ 0, 则 z 3x 4 y 的最小值为 ________. y ≥ 0,【答案】 1【解析】由题,画出可行域如图:目标函数为 z3x4y ,则直线 y3zz 值越小.x纵截距越大,由图可知: z 在 A 1,14 4处取最小值,故 z min 3 1 4 11 .x y 2 0yA (1,1)B x(2,0)x y 014.设等比数列 a n 满足 a 1a 21 , a 1 a 33 ,则 a4 ________.【答案】 8【解析】a n 为等比数列,设公比为q . a 1 a 2 1a 1 a 1q 1 ①a 1 a 33,即2,a 1 a 1 q 3 ②显然 q 1, a 10 ,②得 1q 3 ,即 q2 ,代入 ① 式可得 a 1 1 ,①a4a1 q3138.215.设函数 f ( x)x1,x≤ 0,f ( x12 x, x0,则满足 f (x)) 1 的 x的取值范围是 ________.2【答案】 1 ,4【解析】f x x1,x≤0x f11 ,即 f x12 x, x, f x 1 f x 022由图象变换可画出y f x 1与y1 f x 的图象如下:2yy f ( x1)2(1,1)44x1122f (x)y 1由图可知,满足 f x 11f x的解为1. 2,416. a ,b为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边 AC 所在直线与a ,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线 AB 与a成60角时, AB 与b成30角;②当直线AB与 a 成 60角时, AB 与b成60角;③直线 AB 与a所成角的最小值为45;④直线 AB 与a所成角的最大值为60.其中正确的是 ________(填写所有正确结论的编号)【答案】②③【解析】由题意知, a、b、AC 三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体边长为1,故|AC| 1, AB 2 ,斜边 AB 以直线AC为旋转轴旋转,则 A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆.以 C 为坐标原点,以CD 为 x 轴正方向, CB 为y轴正方向,CA为 z 轴正方向建立空间直角坐标系.则 D(1,0,0) , A(0,0,1) ,直线 a 的方向单位向量 a(0,1,0), | a | 1 .B 点起始坐标为(0,1,0),直线 b 的方向单位向量b(1,0,0), | b |1.设 B 点在运动过程中的坐标 B (cos,sin,0),其中为 BC与CD 的夹角,[0,2 π) .那么 AB '在运动过程中的向量AB( cos ,sin,1),|AB | 2.设 AB 与 a 所成夹角为[0,π] ,211则cos 故设AB cos当AB sin( cos , sin ,1) (0,1,0)2|sin| [0,2] .a AB22π π[ ,] ,所以③正确,④错误.42与 b 所成夹角为π[0, ],2AB bb AB( cos ,sin ,1) (1,0,0) .b AB2|| cos2与 a 夹角为60时,即π,32cos2cos 212 .322∵ cos2sin 21,∴ | cos| 2 .2∴ cos 21 | cos| .22∵[0,π] .2π∴=,此时 AB 与 b 夹角为60.3∴② 正确,①错误.三、解答题:(共70分.第 17-20 题为必考题,每个试题考生都必须作答.第22, 23题为选考题,考生根据要求作答)(一)必考题:共60分.17.( 12分)ABC 的内角 A,B,C的对边分别为 a,b,c,已知 sin A 3 cos A 0 ,a 2 7 , b 2 .( 1)求 c;( 2)设D为BC边上一点,且AD AC ,求△ABD的面积.【解析】(1)由 sin A 3 cos Aπ0 ,0 得 2sin A3即 A πkπk Z,又 A0, π,3∴ A ππ,得2π3A.32222 bc cos A.又∵a 27, b 2, cosA1由余弦定理a b c 2 代入并整理2得 c 125,故c 4 .(2)∵AC 2,BC 2 7, AB 4,12由余弦定理 a 2 b 2 c 22 7cosC2ab.7∵ AC AD ,即 △ ACD 为直角三角形,则 ACCD cosC ,得 CD7 .由勾股定理 ADCD 2AC 23 .又 A2π DAB2π π π,则3 2 ,36S△ ABD1AD ABsinπ3 .2618.( 12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4元,售价每瓶 6元,未售出的酸奶降价处理, 以每瓶 2元的价格当天全部处理完. 根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为 500 瓶;如果最高气温位于区间 20 ,25 ,需求量为 300瓶;如果最高气温低于 20,需求量为 200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10 ,1515 ,2020 ,25 25 ,3030 ,3535 ,40天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.( 1)求六月份这种酸奶一天的需求量 X (单位:瓶)的分布列; ( 2)设六月份一天销售这种酸奶的利润为 Y (单位:元).当六月份这种酸奶一天的 进货量 n (单位:瓶)为多少时, Y 的数学期望达到最大值? 【解析】 ⑴易知需求量 x 可取 200,300,500P X 2 16 1200 3 530 P X 36 2300 3 530 P X 25 7 4 2500 3 .30 5则分布列为:X 200 300 500P1 22555⑵① 当 n ≤ 200 时: Y n 6 42n ,此时 Y max400 ,当 n 200 时取到 .②当 2004 2n 1 2 n2002n ≤ 300 时: Y200558800 2n6n 800n555此时 Y max 520,当 n 300 时取到 .③当 300n ≤ 500 时,Y 1 2002n 200223002 n 30022n 25553200 2n5此时 Y 520. ④当 n ≥ 500 时,易知 Y 一定小于 ③ 的情况 .综上所述:当 n300 时, Y 取到最大值为 520 .1319.(12分)如图,四面体 ABCD 中, △ABC形.?ABD ?CBD , AB= BD .( 1)证明:平面 ACD ^ 平面 ABC ;( 2)过 AC 的平面交 BD 于点 E ,若平面 AEC 把四面体 ABCD 分成体积相等的两部分.求二面角 D- AE- C 的余弦值.【解析】 ⑴取 AC 中点为 O ,连接 BO , DO ;ABC 为等边三角形 ∴BO AC∴ AB BC AB BC BD BD ABDCBD .ABDDBC∴ AD CD ,即 ACD 为等腰直角三角形,为直角又 O 为底边 AC 中点∴ DO AC令 ABa ,则 AB ACBC BD a易得: OD23 a , OBa22222∴ OD OBBD由勾股定理的逆定理可得 DOB即 OD OB2是正三角形,△ACD是直角三角DECBADECOBADCAOD ACOD OBzAC OB OOD 平面 ABC DAC平面 ABCOB平面 ABC又∵ OD 平面 ADC由面面垂直的判定定理可得 平面 ADC平面 ABC⑵由题意可知 V D ACE V B ACE即 B , D 到平面 ACE 的距离相等即 E 为 BD 中点以 O 为原点, OA 为 x 轴正方向, OB 为 y轴正方向, OD 为 z 轴正方向,设 AC a ,建立空间直角坐标系,则 O 0,0,0, A a,0,0, D 0,0,a,B 0,3 a ,0222COAx3 a ,E 0,a,44EBy易得: AEa , 3 a, a , AD a,0, a , OAa,0,02 4 42 22设平面 AED 的法向量为 n 1 ,平面 AEC 的法向量为 n 2 ,14AE n 1,解得 n 1 3,1, 3则AD n 1 0AE n 20,1, 3OA n 2 ,解得 n 2若二面角 D AEC 为 ,易知 为锐角,则 cosn 1 n 2 7n 1 n 2720.( 12分)已知抛物线 C : y 2 = 2 x ,过点( 2,0)的直线 l 交 C 于 A , B 两点,圆 M 是以线段 AB 为直径的圆.( 1)证明:坐标原点 O 在圆 M 上;( 2)设圆 M 过点 P ( 4, - 2 ),求直线 l 与圆 M 的方程. 【解析】 ⑴显然,当直线斜率为0 时,直线与抛物线交于一点,不符合题意.设 l : x my 2 , A( x 1 , y 1) , B( x 2 , y 2 ) ,联立:y 2 2 x得 y 22my 40 ,xmy24m 2 16 恒大于 0 , y 1y 22m , y 1 y 24 .uur uuurOA OBx 1 x 2 y 1 y 2(my 1 2)( my 2 2)(m 2 1)y 1 y 2 2m( y 1y 2 ) 4uur uuur 4( m 2 1) 2m(2 m)4∴ OA OB ,即O 在圆 M 上.uuur uur⑵若圆 M 过点 P ,则 AP BP(x 1 4)( x 2 4) ( y 1 2)( y 2 2) 0(my 12)( my 2 2) ( y 1 2)( y 22) 0 (m 2 1) y 1 y 2 (2m 2)( y 1 y 2 ) 8 0 化简得 2m2m 1 0 解得 m1 或 121①当 m时, l : 2xy 4 0 圆心为 Q(x 0 , y 0 ) ,2yy 12 y 21, x1y 29 ,20 2 049 21 2半径 r|OQ |42则圆 M : ( x 9 )2 ( y 1 )2 854 2 16②当 m 1 时, l : x y 2 0 圆心为 Q(x 0 , y 0 ) , y 0y 1y 21 , x 0y 0 2 3 ,2半径 r |OQ | 32 12 则圆 M : ( x 3)2( y 1)21021.( 12分)已知函数f (x)x 1 a ln x .15( 1)若 f (x) ≥ 0 ,求 a 的值;2n , (1 + 11 ) 鬃?(1 1 ( )设 m 为整数,且对于任意正整数)(1+2n ) < m ,求 m 的最22 2小值.【解析】 ⑴f (x) x 1 a ln x , x 0则 f ( x)1 a xa,且 f (1)xx当 a ≤ 0 时, f x0 , f x 在 0 ,上单调增, 所以 0x 1时, fx0 ,不满足题意;当 a 0 时,当 0 x a 时, f ( x)0 ,则 f (x) 在 (0, a) 上单调递减;当 xa 时, f ( x) 0 ,则 f (x) 在 (a,) 上单调递增.①若 a 1 , f (x) 在 (a,1) 上单调递增 ∴ 当 x (a,1) 时 f ( x) f (1) 0 矛盾 ②若 a 1 , f (x) 在 (1,a) 上单调递减 ∴ 当 x (1,a) 时 f ( x)f (1) 0 矛盾③若 a 1 , f ( x) 在 (0,1) 上单调递减, 在 (1, ) 上单调递增 ∴ f (x) ≥ f(1) 0 满足题意综上所述 a1 .⑵ 当 a 1 时 f ( x) x1 ln x ≥ 0 即 ln x ≤ x 1则有 ln( x 1) ≤ x 当且仅当 x 0 时等号成立∴ ln(111kN *k)k ,22一方面: ln(11 ln(1 1 ...ln(11 11 (1)11 ,)2 )n )22n 1n11 21 22222即 (1)(122 )...(1 2 n ) e . 2(1 1 11(11 11 1352另一方面:)(1 2 )...(1 2 n))(1 2 )(1 3 )642 22 2 2当 n ≥ 3时,(11 11(2,e))(12 2 )...(12 n)2∵ m N * (11 11 m ,,)(1 2 )...(12 n)2 2∴ m 的最小值为 3 .22. [选修 4-4:坐标系与参数方程 ] ( 10分)在直角坐标系 xOy 中,直线 l 的参数方程为x t ,l 的参数方程y kt,( t 为参数),直线xm,为m( m 为参数),设 l 与 l 的交点为 P ,当 k 变化时, P 的轨迹为曲线 C .y,k( 1)写出 C 的普通方程:( 2)以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 设 l : cos( nis ) ,M 为 l 与 C 的交点,求 M 的极径.【解析】 ⑴将参数方程转化为一般方程l 1 : y k x2⋯⋯ ① l 2 : y1 x 2⋯⋯ ②k① ② 消 k 可得: x 2y 2416即 P 的轨迹方程为 x 2 y 2 4 ; ⑵将参数方程转化为一般方程l 3 : x y2 0⋯⋯ ③ 联立曲线 C 和 l 3x y 2 0224xyx3 22解得2y2x cos5由解得y sin即 M 的极半径是5 .23. [选修 4-5:不等式选讲 ](10分)已知函数 f ( x) | x | | x | .( 1)求不等式 f ( x) 的解集;( 2)若不等式 f ( x)xx m的解集非空,求 m 的取值范围.3,x ≤ 1【解析】 ⑴ f x| x 1| | x 2| 可等价为 f x2x 1, 1 x 2 .由 f x ≥ 1 可得:3,x ≥ 2①当 x ≤ 1 时显然不满足题意;②当 1 x 2 时, 2x 1≥ 1 ,解得 x ≥ 1 ;③当 x ≥ 2 时, f x 3 ≥ 1 恒成立 .综上, f x 1 的解集为 x | x ≥ 1 .⑵不等式 f x ≥ x 2x m 等价为 f xx 2 x ≥ m ,令 g xf xx 2 x ,则 g x ≥ m 解集非空只需要g xmax ≥ m .x 2 x 3, x ≤1而 g xx 2 3 x 1, 1 x 2 .x 2 x 3, x ≥ 2①当 x ≤ 1 时, g xg 13 1 1 5 ;max2②当 1x2 时, g xmaxg 33331 5 ;2 22 4③当 x ≥ 2 时, g x maxg 222 2 31 .综上, g x max5,故 m 5 .4417。
2017高考全国3卷理科数学试题与答案

2017年普通高等学校招生全国统一考试(全国)理科数学(试题及答案解析)一、选择题:(本题共12小题,每小题 5分,共 60分)1.已知集合 A ( x, y) x 2 y 2 1 , B( x, y) y x ,则 AB 中元素的个数为()A . 3B . 2C . 1D . 0【答案】 B221 上所有点的集合, B 表示直线 yx 上所有点的集合,【解析】 A 表示圆 x y 故 A B 表示两直线与圆的交点,由图可知交点的个数为2,即 A B 元素的个数为2,故选 B.2.设复数 z 满足 (1 i) z 2i ,则 z ()1 B .2 C . 2D . 2A .22【答案】 C2i 2i 1 i 2i 2 122 ,故选 C.【解析】由题, z1 i 1 ii 1 ,则 z 121 i23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年 1 月至2016 年 12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在 7,8 月份D .各年 1 月至 6 月的月接待游客量相对 7 月至 12 月,波动性更小,变化比较平稳【答案】 A【解析】由题图可知, 2014年8月到 9月的月接待游客量在减少,则 A 选项错误,故选 A.4. ( x y)(2 x y)5 的展开式中 x 3 y 3 的系数为()A .B .C . 40D . 80【答案】 C【解析】由二项式定理可得,原式展开中含x 3 y3的项为x 22 x 23y 33240x 333 3C 5y C 5 2xyy,则 x y 的系数为 40,故选 C.225x ,且与椭圆5.已知双曲线C :x2y 2 1( a 0 , b 0 )的一条渐近线方程为 yx 2 y 2ab21 有公共焦点.则 C 的方程为()123A . x 2 y 2 1B . x 2 y 21C . x 2 y 21D . x 2 y 218104 55443【答案】 B【解析】 ∵双曲线的一条渐近线方程为y5 x ,则 b5 ① 又∵ 椭圆x 2y 22 a21 与双曲线有公共焦点,易知 c 3 ,则 a 2b 2 c29 ②123x2y2由①② 解得 a 2,b5 ,则双曲线 C 的方程为1,故选 B.456.设函数 f ( x)πcos(x) ,则下列结论错误的是()38πA . f (x) 的一个周期为2πB . y f ( x) 的图像关于直线 x对称3C . f ( xπ π ) 的一个零点为 xD . f (x) 在 ( , π) 单调递减【答案】 D 62【解析】函数 fx cos xπ的图象可由 y cosx 向左平移π个单位得到,3 3 如图可知, f x在 π, π 上先递减后递增, D 选项错误,故选 D.2y- Ox67.执行右图的程序框图,为使输出S 的值小于 91,则输入的正整数N的最小值为() A . 5 B .4 C .3 D . 2【答案】 D【解析】程序运行过程如下表所示:SM t 初始状态 0 100 1 第1次循环结束 100 10 2 第2次循环结束 90 1 3此时 S 90 91 首次满足条件,程序需在 t 3 时跳出循环,即 N2 为满足条件的最小值,故选 D.8.已知圆柱的高为 1,它的两个底面的圆周在直径为 2的同一个球的球面上,则该圆柱的体积为()A .πB .3π ππ4C .D .【答案】 B241 2【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径23 , r122则圆柱体体积 Vπ 23πrh,故选 B.49.等差数列 a n 的首项为 1,公差不为 0.若 a 2 , a 3 , a 6 成等比数列,则a n前 6项的和为()A . 24B . 3C . 3D . 8【答案】 A【解析】 ∵ a n为等差数列,且 a 2 , a 3 , a 6 成等比数列,设公差为 d .则 a 32 a 2 a 6 ,即 a 12d 2a 1 d a 15d又∵ a 1 1 ,代入上式可得 d 2 2d 0又∵ d 0 ,则 d 2∴ S 66a 1 6 5 d 1 6 6 5 224 ,故选 A.2 222xya b 0A 1A 2A 1 A 210.已知椭圆 C : a 2 b 21( )的左、右顶点分别为, ,且以线段 为直径的圆与直线 bx ay 2ab 0 相切,则 C 的离心率为()A .6B .3C .21 33D .33【答案】 A【解析】 ∵ 以 A 1 A 2 为直径为圆与直线 bx ay2ab 0 相切,∴圆心到直线距离d 等于半径,∴ d2aba22又∵ a0,b0 ,则上式可化简为 a 2 3b 2 ∵ b 2 a 2c 2,可得 a 23 a2c2,即 c22a 23∴ ec 6,故选Aa311.已知函数 f ( x) x 2 2xa(e x 1e x 1 ) 有唯一零点,则a()1 1 1A . 2B . 3C . 2D . 1【答案】 C【解析】由条件,f ( x) 22xx 1e x 1x a(e) ,得:f (2x) (2 x) 2 2(2x) a(e 2 x 1e (2 x ) 1 )x 2 4 x 4 42x a(e 1 x e x 1 )22 x x 1e x 1x a(e ) ∴ f (2x) f (x) ,即 x 1 为 f (x) 的对称轴,由题意, f (x) 有唯一零点,∴ f ( x) 的零点只能为 x 1 ,即 f (1) 12 2 1 a(e 1 1e 1 1) 0 ,解得 a 1.212.在矩形 ABCD 中, AB 1, AD2 ,动点 P 在以点 C 为圆心且与 BD 相切的圆上.若APABAD ,则的最大值为()yA . 3B . 2 2P gC . 5D . 2BC【答案】 A【解析】由题意,画出右图.设 BD 与 C 切于点 E ,连接 CE .E以 A 为原点, AD 为 x 轴正半轴,xA(O)DAB 为y轴正半轴建立直角坐标系,则 C 点坐标为 (2,1) . ∵|CD| 1,|BC | 2.22.∴BD 1 25 ∵ BD 切 C 于点 E .∴CE ⊥BD .∴ CE 是 Rt △ BCD 中斜边 BD 上的高 .1 |BC| |CD|2 S △ BCD 22 2 2|EC ||BD | 5 5|BD |5即 C 的半径为 25 .5∵P 在 C 上.∴ P 点的轨迹方程为 ( x 2)2( y 1)245 .设 P 点坐标(x 0, y 0),可以设出 P 点坐标满足的参数方程如下:2x 0 2 5 cos 2y 0 15 sin而 AP (x 0 , y 0 ) , AB (0,1) , AD (2,0) .∵ AP AB AD (0,1) (2,0) (2 , )∴115,y 01 2 5 sin .x 05cos52两式相加得:1 2 5sin15cos552( 2 5 )2 ( 5 )2 sin( )5 5 2 sin( ) ≤ 3(其中 sin5, cos2 5 )55当且仅当π2 k π, kZ 时,取得最大值 3.2二、填空题:(本题共4小题,每小题 5分,共 20分)x y ≥ 0,13.若 x , y 满足约束条件xy 2 ≤ 0, 则 z 3x 4 y 的最小值为 ________.y ≥ 0,【答案】 1【解析】由题,画出可行域如图:目标函数为 z 3 x 4 y ,则直线 3 zz 值越小.yx 纵截距越大, 由图可知: z 在 A 1,1 4 4处取最小值,故 z min 3 1 4 1 1 .x y 2 0yA(1,1)B x(2,0)x y 014.设等比数列 a n满足 a 1 a 21 , a 1 a 33 ,则 a4 ________.【答案】 8【解析】a n 为等比数列,设公比为 q .a 1 a 2 1a 1 a 1 q 1 ① a 1 a 33 ,即 a 1 a 1 q 2 3 ② , 显然 q 1, a 1 0 ,②得 1 q3 ,即 q2 ,代入 ① 式可得 a 1 1 ,①a 4 a 1q 3 138 .2f (x)x 1,x ≤ 0, f ( x1115.设函数 2x , x 0,则满足 f (x))的 x 的取值范围是 ________.2【答案】1 ,4【解析】fxx 1,x ≤ 0, f x f x1 1 1 1 f x2 x , x 02,即 f x2由图象变换可画出yf x1 与 y1 fx的图象如下:2yyf (x 1)2( 1,1)4 4x1 122y 1 f (x)由图可知,满足 f x1 1 1 f x 的解为,.2416. a , b 为空间中两条互相垂直的直线,等腰直角三角形 ABC 的直角边 AC 所在直线与a ,b 都垂直,斜边①当直线 AB 与 a 成②当直线 AB 与 a 成AB 以直线 AC 为旋转轴旋转,有下列结论: 60 角时, AB 与 b 成 30 角;60 角时, AB 与 b 成 60 角;③直线 AB 与 a 所成角的最小值为45 ; ④直线 AB 与 a 所成角的最大值为60 .其中正确的是 ________(填写所有正确结论的编号)【答案】 ②③【解析】由题意知, a 、 b 、AC 三条直线两两相互垂直,画出图 形如图 .不妨设图中所示正方体边长为 1,故|AC| 1, AB2,斜边 AB 以直线 AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心, 1为半径的圆 .以 C 为坐标原点,以 CD 为 x 轴正方向, CB 为 y 轴正方向,CA 为 z 轴正方向建立空间直角坐标系.则 D(1,0,0) , A(0,0,1) ,直线 a 的方向单位向量 a(0,1,0) , | a | 1 .B 点起始坐标为 (0,1,0) ,直线 b 的方向单位向量 b (1,0,0) , | b | 1 .设 B 点在运动过程中的坐标B (cos ,sin,0) , 其中 为 BC 与CD 的夹角, [0,2 π) . 那么 AB '在运动过程中的向量 AB ( cos, sin ,1) , | AB | 2 .设 AB 与 a 所成夹角为[0, π] ,2则cos 故设AB( cos , sin ,1) (0,1,0)2| sin| [0,2] .a AB22π π[ ,] ,所以③正确,④错误.4 2与 b 所成夹角为π[0, ],2AB bcosb AB(cos,sin,1) (1,0,0) .b AB2| cos |2当AB与 a 夹角为60π时,即3,sin2cos 2 cos 2 12 .∵ cos2sin 2322 1,∴ | cos| 2 .2∴ cos2| cos| 1 .22π∵[0, ]. 2π∴=,此时AB与b夹角为60.3∴② 正确,①错误.三、解答题:(共70分.第 17-20题为必考题,每个试题考生都必须作答.第22, 23题为选考题,考生根据要求作答)(一)必考题:共60分.17.( 12分)ABC 的内角A,B,C的对边分别为a,b,c,已知sin A 3 cos A 0 ,a 2 7 ,b 2.( 1)求 c;( 2)设D为 BC 边上一点,且AD AC ,求△ ABD 的面积.【解析】(1)由 sin A 3 cos A0 得2sin A π0 ,3即 A πkπk Z ,又A0, π,3∴ A ππ,得A2π33.1由余弦定理222.又∵a 27, b 2,cosAa b c 2 bc cos A代入并整理22得 c25 ,故c 4 .1(2)∵ AC2, BC27, AB 4 ,2 2 22 7 .由余弦定理 cosCab c2ab 7∵ AC AD ,即 △ACD 为直角三角形,则 ACCD cosC ,得 CD 7 .由勾股定理 AD CD 223 .AC 又 A2π DAB2π π π,则32 ,36 S △ ABD1AD AB sinπ3 .2618.( 12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4元,售价每瓶 6元,未售出的酸奶降价处理, 以每瓶 2元的价格当天全部处理完. 根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为 500 瓶;如果最高气温位于区间 20 ,25 ,需求量为 300瓶;如果最高气温低于 20,需求量为 200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温 10 ,1515 ,2020 ,25 25 ,3030 ,3535 ,40天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.( 1)求六月份这种酸奶一天的需求量 X (单位:瓶)的分布列; ( 2)设六月份一天销售这种酸奶的利润为 Y (单位:元).当六月份这种酸奶一天的进货量 n (单位:瓶)为多少时, Y 的数学期望达到最大值?【解析】 ⑴易知需求量 x 可取 200,300,500P X 2 16 1200 3 530 P X 36 2300 3 530 P X 25 7 4 2500 3 .30 5则分布列为:X 200 300 500P122555⑵① 当 n ≤ 200 时: Y n 6 4 2n ,此时 Y max 400 ,当 n 200 时取到 .②当 2004 2n 1 2 n 200 2 n ≤ 300 时: Y 2005 58 800 2n 6n 800n5 55此时 Y max 520 ,当 n 300 时取到 .③当 300n ≤ 500 时,Y1200 2n200223002n 30022n 25553200 2n5此时 Y 520.④当 n ≥ 500 时,易知 Y 一定小于 ③ 的情况 .综上所述:当 n 300 时, Y 取到最大值为 520 .19.(12分)如图,四面体 ABCD 中,△ABC 形.?ABD ?CBD ,AB= BD.(1)证明:平面 ACD ^ 平面 ABC ;(2)过 AC 的平面交BD于点E,若平面 AEC 把四面体 ABCD 分成体积相等的两部分.求二面角D- AE- C的余弦值.是正三角形,△ACD 是直角三角DECB【解析】⑴取 AC 中点为 O ,连接 BO , DO ;A DABC 为等边三角形∴ BO AC E∴ AB BC CAB BCOBD BD ABDCBD .B ABDDBC∴ AD CD ,即ACD 为等腰直角三角形,ADC A为直角又 O 为底边 AC 中点∴DO AC令 AB a ,则 AB AC BC BD a易得:OD 2, OB3 a a22222∴ OD OB BD由勾股定理的逆定理可得DOB2即OD OBOD ACOD OB z AC OBO OD平面 ABC D AC平面 ABCOB平面 ABC又∵OD 平面ADC平面 ADC C E由面面垂直的判定定理可得平面 ABC ⑵由题意可知V D ACE V B ACE即B , D 到平面ACE的距离相等即E为 BD中点以 O 为原点, OA 为x轴正方向,OB 为y轴正方向, OD 为 z 轴正方向,设 AC a ,建立空间直角坐标系,则O 0,0,0 , Aa a3,0,0 , D 0,0,,B 0,a,0222OB yAx3 a,E 0, a,44a3a a a a易得: AE,a,, AD,0, , OA,0,0244222设平面 AED的法向量为 n1,平面 AEC 的法向量为n2,AE n 1 03,1, 3则n 1 ,解得 n 1 ADAE n 2 0 0,1, 3OA n 2,解得 n 2若二面角 D AE C 为,易知为锐角,则 cosn 1 n 27n 1 n 272lC于 A ,B 两点,圆 M 是以2012分)已知抛物线 C : y = 2x2 0)的直线 交 .(,过点( , 线段 AB 为直径的圆.( 1)证明:坐标原点 O 在圆 M 上;( 2)设圆 M 过点 P ( 4, - 2 ),求直线 l 与圆 M 的方程.【解析】 ⑴显然,当直线斜率为 0 时,直线与抛物线交于一点,不符合题意.设 l : x my 2 , A( x 1 , y 1 ) , B( x 2 , y 2 ) , 联立:y 22 x得 y 22my 40 ,x my24 m216 恒大于 0 , y 1 y 22m , y 1 y 24 .uuruuurOA OBx 1 x 2 y 1 y 2(my 1 2)( my 2 2)(m 2 1)y 1 y 2 2m( y 1 y 2 ) 4 uur uuur 4( m 2 1) 2 m(2 m) 4∴ OA OB ,即O 在圆 M 上.uuur uur⑵若圆 M 过点 P ,则 AP BP(x 1 4)( x 2 4) ( y 1 2)( y 2 2) 0(my 1 2)( my 2 2) ( y 1 2)( y 2 2) 0(m 2 1)y 1 y 2 (2 m 2)( y 1y 2 ) 8 02m 10 解得 m 1或 1化简得 2m21①当 m时, l : 2xy4 0 圆心为 Q(x 0 , y 0 ) ,2y 0y 1y 2 1, x 01y 0 29 ,22249 22半径 r|OQ |142则圆 M : ( x 9 )2 ( y 1 )2 854 2 16②当 m 1 时, l : x y 2 0 圆心为 Q(x 0 , y 0 ) ,y 0 y 1 y 2 1 , x 0 y 0 2 3 , 2半径 r|OQ |32 12则圆 M : ( x 3)2 ( y 1)21021.( 12分)已知函数 f (x)x 1 a ln x .( 1)若 f (x) ≥ 0 ,求 a 的值;( 2)设 m 为整数,且对于任意正整数 n , (1 + 1 1 1m ,求 m 的最)(1 + 2 ) 鬃?(1 n ) <2 2 2小值.【解析】 ⑴ f (x) x 1 a ln x , x 0则 f ( x)1 a xa,且 f (1) 0当 a ≤ 0 x x上单调增, 所以 0x 1时, f x 0 , f x 在 0 , 时, f x0 ,不满足题意;当 a 0 时,当 0 x a 时, f (x) 0 ,则 f (x) 在 (0, a) 上单调递减;当 x a 时, f ( x) 0 ,则 f (x) 在 (a,) 上单调递增.①若 a 1 , f (x) 在 (a,1) 上单调递增 ∴ 当 x (a,1) 时 f ( x) f (1) 0 矛盾 ②若 a 1 , f (x) 在 (1,a) 上单调递减 ∴ 当 x (1,a) 时 f ( x)f (1) 0 矛盾③若 a1 , f ( x) 在 (0,1) 上单调递减, 在 (1,) 上单调递增 ∴ f (x) ≥ f (1)0 满足题意综上所述 a 1 .⑵ 当 a 1 时 f ( x) x 1 ln x ≥ 0 即 ln x ≤ x 1则有 ln( x 1) ≤ x 当且仅当 x0 时等号成立∴ ln(11 1 , kN *k)k22一方面: ln(11 ) ln(11 ... ln(11 1 1 ...1 1 ,2 2 )n )22n 1n 122222即 (111 1e .)(122 )...(12 n)2另一方面: (11 11 (1 1 1 )(1 1 1352)(1 2 )...(1 2 n ) )(1 2 2 3 ) 642 2 2 2 当 n ≥3 时, (1 1 1 1 (2,e))(1 2 2 )...(12 n )2 ∵ m *(1 1 1 1 m ,N , )(1 2 )...(1 2 n )2 2∴ m 的最小值为 3 .22. [选修 4-4:坐标系与参数方程 ] ( 10分)在直角坐标系 xOy 中,直线 l的参数方程为x t ,( t 为参数),直线l的参数方程ykt,xm,为m( m 为参数),设 l 与 l 的交点为 P ,当 k 变化时, P 的轨迹为曲线 C .y,k( 1)写出 C 的普通方程:( 2)以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 设 l : cos( nis ) ,M 为 l 与 C 的交点,求 M 的极径.【解析】 ⑴将参数方程转化为一般方程l 1 : y k x 2⋯⋯ ① l 2 : y1 x2 ⋯⋯ ②k① ② 消 k 可得: x 2y 24即 P 的轨迹方程为 x 2 y 2 4 ; ⑵将参数方程转化为一般方程l 3 : x y 2 0⋯⋯ ③联立曲线 C 和 l 3x y2x2y24x3 22解得2y2x cos5 由sin 解得y即 M 的极半径是 5 .23. [选修 4-5:不等式选讲 ](10分)已知函数 f ( x) | x | | x | .( 1)求不等式 f ( x) 的解集;( 2)若不等式 f ( x) x x m 的解集非空,求 m 的取值范围.3, x ≤ 1【解析】 ⑴ f x| x1| | x2| 可等价为 f x2x 1, 1x 2 .由 f x ≥ 1 可得:3,x ≥ 2①当 x ≤ 1 时显然不满足题意; ②当 1 x 2时, 2x 1≥1 ,解得 x ≥1 ;③当 x ≥ 2 时, f x 3 ≥ 1 恒成立 .综上, f x1的解集为 x | x ≥ 1 .⑵不等式 f x ≥ x 2x m 等价为 f xx 2x ≥ m ,令 g xf xx 2 x ,则 g x ≥ m 解集非空只需要g xmax ≥ m .x 2 x 3, x ≤ 1而 g xx 2 3 x 1, 1 x 2 .2x 3, x ≥ 2x①当 x ≤ 1 时, gxmaxg13 1 15 ;2②当 1 x 2 时, g xmaxg 333 3 1 5 ;222 4③当 x ≥ 2 时, g x maxg 22 22 3 1 .综上, g xmax5,故 m5 .44。
2017全国三卷理科数学高考真题及答案

2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A =,B =,则A B 中元素的个数为{}22(,)1x y x y +=│{}(,)x y y x =│ A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .B C D .2123.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(+)(2-)5的展开式中33的系数为x y x y x y A .-80B .-40C .40D .805.已知双曲线C :(a >0,b >0)的一条渐近线方程为,且与椭圆22221x y a b-=y x =有公共焦点,则C 的方程为221123x y +=A .B .C .D .221810x y -=22145x y -=22154x y -=22143x y -=6.设函数f (x )=cos(x +),则下列结论错误的是3πA .f (x )的一个周期为−2πB .y =f (x)的图像关于直线x =对称83πC .f (x +π)的一个零点为x =D .f (x )在(,π)单调递减6π2π7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .B .C .D .π3π4π2π49.等差数列的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则前6项的和{}n a {}n a 为A .-24B .-3C .3D .810.已知椭圆C :,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为22221x y a b+=直径的圆与直线相切,则C 的离心率为20bx ay ab -+=A B C D .1311.已知函数有唯一零点,则a =211()2()x x f x x x a e e --+=-++A .B .C .D .112-131212.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若= +,则+的最大值为APλAB μAD λμA .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
2017年全国卷3理科数学试题及答案解析

A B
游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是
的最小值为
19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD=∠CBD ,AB=BD .
(1)证明:平面ACD ⊥平面ABC ; (2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值. 20.(12分)已知抛物线C :y2=2x ,过点(2,0)的直线l 交C 与A,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上; (2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.
21.(12分)已知函数()f x =x ﹣1﹣alnx . (1)若()0f x ,求a 的值;
(2)设m 为整数,且对于任意正整数n ,
2111
1++1+)
222n ()(1)(﹤m ,求m 的最小值.
=sin 6AB AD AC AD
OA
-(1,0,0),(0,3,0),(1,0,0),(0,0,1)
A B C D
0,即0,AD AE ⎧=⎪=n n 0,
0,AC AE ==同理可得)
13,,-7
7
=n m n m 所以二面角)(11x ,y ,B x 122==-14
x
0 BP=,故
) 12200
y+=。
2017全国三卷理科数学高考真题及答案

2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则AB 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B CD .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -=B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为?2πB .y =f (x )的图像关于直线x =83π对称C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A.BCD .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为A .3B .C.D .2二、填空题:本题共4小题,每小题5分,共20分。
2017全国三卷理科数学高考真题及答案

2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为5y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A 6B 3C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A.12-B.13C.12D.112.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若AP=λAB+μAD,则λ+μ的最大值为A.3 B.CD.2二、填空题:本题共4小题,每小题5分,共20分。
2017全国三卷理科数学高考真题及答案

2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B .2C D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为y =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为AB C D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A.12-B.13C.12D.112.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若AP=λAB+μAD,则λ+μ的最大值为A.3 B.CD.2二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据该折线图,下列结论错误的是
.月接待游客量逐月增加
.年接待游客量逐年增加
.各年的月接待游客量高峰期大致在7,8月
月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角
目标函数即,易知直线3144y x z =
-y 小值,数形结合可得目标函数3z
x =-14.设等比数列满足a 1 + a 2 = –1, {}n a 【答案】
8-()
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)
的内角A ,B ,C 的对边分别为a ,b ,c .已知ABC △sin 3A +
当时,300500n ≤≤
若最高气温不低于25,则;642Y n n n =-=若最高气温位于区间
,则;
[)20,25()63002300412002Y n n n =⨯+--=-若最高气温低于20,则;
()6200220048002Y n n n
=⨯+--=-因此
.
()()20.4120020.480020.26400.4EY n n n n
=⨯+-⨯+-⨯=-当时,
200300n <≤若最高气温不低于20,则;642Y n n n =-=若最高气温低于20,则;
()6200220048002Y n n n
=⨯+--=-因此
.
()()20.40.480020.2160 1.2EY n n n
=⨯++-⨯=+所以n =300时,Y 的数学期望达到最大值,最大值为520元.19.(12分)
如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .
(1)证明:平面ACD ⊥平面ABC ;
(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值.
【解析】(1)由题设可得,,从而.
ABD CBD △≌△
AD DC =又是直角三角形,所以.ACD △=90ADC ∠︒取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO .又由于是正三角形,故.ABC △BO AC ⊥所以为二面角的平面角.DOB ∠D AC B --在中,.
Rt AOB △2
2
2
BO AO AB +=又,所以,AB BD =2
2
2
2
BO DO BO AO AB BD 2
2
+=+==故.90DOB ∠=o
所以平面ACD ⊥平面ABC .。