八年级下册数学期考试卷02

合集下载

八年级下期数学试卷及答案

八年级下期数学试卷及答案

一、选择题(每题4分,共40分)1. 下列数中,绝对值最小的是:A. -2B. -1.5C. 0D. 12. 如果 |a| = 5,那么 a 的值为:A. 5B. -5C. ±5D. 无法确定3. 已知x² = 9,那么 x 的值为:A. 3B. -3C. ±3D. 无法确定4. 在平面直角坐标系中,点 P(-2, 3) 关于 y 轴的对称点是:A. (2, 3)B. (-2, -3)C. (2, -3)D. (-2, 3)5. 如果 a > b,那么下列不等式中正确的是:A. a + 1 > b + 1B. a - 1 < b - 1C. a + 1 < b + 1D. a - 1 > b - 16. 下列方程中,x = 2 是它的解的是:A. 2x + 1 = 5B. 2x - 1 = 5C. 2x + 1 = 3D. 2x - 1 = 37. 一个等腰三角形的底边长为 6,腰长为 8,那么这个三角形的周长是:A. 18B. 22C. 24D. 268. 如果a² = b²,那么下列说法正确的是:A. a = bB. a = -bC. a = ±bD. 无法确定9. 在直角坐标系中,点 A(1, 2) 和点 B(4, 6) 之间的距离是:A. 3B. 4C. 5D. 610. 下列函数中,y = 2x + 1 是一次函数的是:A. y = x² + 1B. y = 3x - 2C. y = 4x³ + 1D. y = 5x - 3二、填空题(每题5分,共25分)11. -(-3) 的值是 _______。

12. 若 a > b,则 a - b 的值 _______。

13. 在直角坐标系中,点 (3, -2) 关于原点的对称点是 _______。

14. 2x - 5 = 3 的解是 _______。

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。

()2. 平行四边形的对角线互相平分。

()3. 正方形的对角线相等且互相垂直。

()4. 圆的半径是圆心到圆上任意一点的距离。

()5. 圆的直径是圆上任意两点之间的距离。

()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。

2. 平行四边形的对角线互相平分,所以它的对角线长度是______。

3. 正方形的四个角都是______度。

4. 圆的半径是圆心到圆上______的距离。

5. 圆的直径是圆上______点之间的距离。

四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述平行四边形的性质。

3. 简述正方形的性质。

4. 简述圆的性质。

5. 简述圆的直径和半径之间的关系。

五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。

2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。

人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,1523. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.5. 关于x一元二次方程x2-kx-6=0根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 57. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB=米,则点到直线AB距离PC为().A. 米B. 3米C. 米D. 米8. 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为( )A. 18B. 20C. 22D. 249. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角四边形是菱形10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二.填空题(每小题3分,共30分)11. 函数x–1的自变量x的取值范围是_____.12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.18. 如图,在正方形ABCD 中,AC=62,E是BC边的中点,F是AB边上一动点,则FB+FE 的最小值为_________.19. 在ABCD 中,AB=10,BC边上的高为6,AC=5则▭ABCD 的面积为_________.20. 如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=5CD=5,则线段AC长度为_________.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程 (1)(3x -1)2=2(3x -1) (2)3x 2-23 x +1=022. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合. (1)画一个面积为10的等腰直角三角形; (2)画一个周长为20,面积为15菱形.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |cd =ad-bc ,上述记号就叫做2阶行列式. (1)若249|x13|x=0,求x 的值; (2)若11|x x +-11|x x -+=6,求x 的值.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC . (1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=34,求EG的长.27. 已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.答案与解析一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)[答案]A[解析][分析]本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.[详解]A.该方程符合一元二次方程的定义,故本选项符合题意;B.x=1x,不是整式方程,故本选项不符合题意;C.x2+3x-2y=0,含有两个未知数,故不是一元二次方程,故本选项错误;D.x2+2=(x-1)(x+2),方程整理后是一元一次方程,故本选项错误;故选:A.[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,152[答案]B[解析][分析]根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.[详解]A、因为32=9,42=16,52=25,92+162≠252,不能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项正确;C、因为(13)2+(14)2(15)2,不故能构成直角三角形,此选项错误.D、因为222111345222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能构成直角三角形,此选项错误.故选:B.[点睛]本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.3. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等[答案]A[解析][分析]根据菱形性质和平行四边形的性质逐一判断即可.[详解]解:A.菱形对角线互相垂直,而平行四边形的对角线不一定垂直,故本选项符合题意;B.菱形和平行四边形的对角线都不一定相等,故本选项不符合题意;C.菱形和平行四边形的对角线都互相平分,故本选项不符合题意;D.菱形和平行四边形的对角都相等,故本选项不符合题意.故选A.[点睛]此题考查的是菱形的性质和平行四边形的性质,掌握菱形的性质和平行四边形的性质是解决此题的关键.4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.[答案]D[解析]根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5. 关于x一元二次方程x2-kx-6=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况[答案]A[解析][分析]先计算△=(-k)2-4×1×(-6)=k2+24>0,即可判断方程根的情况.[详解]∵△=(-k)2-4×1×(-6)=k2+24>0,∴一元二次方程x2-kx-6=0有两个不相等的实数,故选:A.[点睛]本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 5[答案]B[解析][分析]根据勾股定理求出BC,根据三角形中位线定理计算即可.[详解]∵∠C=90°,AC=8,AB=10,∴22AB AC,∵D、E分别为AC、AB中点,∴DE=12BC=3,故选:B.[点睛]本题考查的是三角形中位线定理和勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB =米,则点到直线AB 距离PC 为( ).A. 米B. 3米C. 米D. 米[答案]B [解析] [分析]设点到直线AB 距离PC 为米,根据正切的定义用表示出AC 、BC ,根据题意列出方程,解方程即可. [详解]解:设点到直线AB 距离PC 为米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan 3PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:.[点睛]本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 8. 如图,在矩形ABCD 中,AE 平分∠BAD 交BC 于点E ,ED =5,EC =3,则矩形的周长为( )A. 18B. 20C. 22D. 24 [答案]C[解析][分析]根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.[详解]∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2-CE2=25-9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选:C.[点睛]该题主要考查了矩形的性质及其应用问题;解题的关键是灵活运用矩形的性质.9. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角的四边形是菱形[答案]C[解析][分析]利用平行四边形及特殊的平行四边形的判定方法判定后即可确定正确的选项.[详解]A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故选项A错误;B.两条对角线相等且有一个角是直角的平行四边形是矩形,故选项B错误;C.如图,作AE⊥BC于点E,DF⊥BC交BC的延长线于F,则∠AEB=∠DFC=90°.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠ABE=∠DCF,∴△ABE≌△DCF,∴AE=DF,BE=CF.在Rt△ACE和Rt△BDF中,由勾股定理得,AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.又∵AE2+BE2=AB2,故AC2+BD2=2(AB2+BC2);即平行四边形两条对角线的平方和等于四条边的平方和,正确;D.有两条对角线平分一组对角的四边形是菱形,故选项D错误.故答案为:C[点睛]考查了命题与定理的知识,解题的关键是了解平行四边形的判定及特殊的平行四边形的判定方法,难度不大.10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;②由FH⊥AE,AF=FH,可得:∠HAE=45°;③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;④作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长.[详解]①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.[点睛]解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.二.填空题(每小题3分,共30分)11. 函数–1的自变量x的取值范围是_____.[答案]x≥0[解析]试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.[答案]50°[解析]在四边形ABCD中,AB∥CD,AD∥BC,根据两组对边分别平行的四边形为平行四边形,可得四边形ABCD为平行四边形,根据平行四边形的对角相等即可得∠B=∠D=50°.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.[答案]﹣1.[解析][分析]根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.[详解]解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.[点睛]本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____[答案]16[解析][分析]边AB的长是方程x2-7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.[详解]∵解方程x2-7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.[点睛]本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.[答案]20%[解析][分析]本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.[详解]解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%[点睛]此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________[答案]63[解析]分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行,即AB∥CD,AD∥BC ,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3 ,∴S四边形ABCD=AB×3=BC×3 ,∴AB=BC ,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60∘ ,∴∠BAE=90°−60°=30°,∴AB=2BE ,在△ABE中,AB2=BE2+AE2 ,即AB2=14AB2+32 ,解得AB=23,∴S四边形ABCD=BC⋅AE=23×3=63.故答案是:63.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.[答案]210[解析][分析]过G作GM⊥AB于M,连接AE,则MG=AD=AB,根据折叠的性质得到AE⊥GF,根据全等三角形的性质得到MF=BE=2,根据勾股定理即可得到结论.[详解]过G作GM⊥AB于M,连接AE,则MG=AD=AB,∵将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,∴AE⊥GF,∴∠FAE+∠AFG=∠AFG+∠MGF ,∴∠BAE=∠MGF ,在△ABE 与△MGF 中B GMF AB GMMGF BAM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABE ≌△GMF ,∴MF=BE=2,∵MG=AD=BC=6,∴FG=22=210FM MG +, 故答案为:210.[点睛]此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.18. 如图,在正方形ABCD 中,AC =62,E 是BC 边的中点,F 是AB 边上一动点,则FB +FE 的最小值为_________.[答案]35[解析][分析]首先确定ED=EF+FD=EF+BF 的值最小.然后根据勾股定理计算.[详解]连接BD ,ED 交AC 于O ,F ,连接BF ,此时EF+BF= EF+FD =ED 的值最小.在正方形ABCD 中,AC =62, ∴BC=CD=6, ∵E 是BC 边的中点,∴CE=3在Rt △CDE 中,根据勾股定理可得DE=2263635CE CD +=+=. ∴FB +FE 的最小值为35故答案为:35.[点睛]此题考查了线路最短的问题,确定动点F 的位置时,使EC+ED 的值最小是关键. 19. 在ABCD 中,AB =10,BC 边上的高为6,AC =35,则▭ABCD的面积为_________.[答案]66[解析][分析]解直角三角形得到BC 的长,根据平行四边形的面积计算公式可得到结论.[详解]如图,∵AE ⊥BC ,在Rt △ABE 中,∵AB=10,AE=6,∴22AB AE -=8,在Rt △AEC 中,∵AC=35,AE=6,∴CE=22AC AE -=3,∴BC=BE+CE=11,∴平行四边形ABCD 的面积=11×6=66, 故答案为:66.[点睛]本题考查了平行四边形的面积,勾股定理,熟练掌握平行四边形的性质是解题的关键.20. 如图,在△ABC 中,∠ABC =90°,D 为AB 边上一点(BD <BC ),AE ⊥AB ,AE =BD ,连接DE 交AC 于F ,若∠AFE =45°,AD =35,CD =5,则线段AC 的长度为_________.[答案]10[解析][分析]延长BC 到G ,使BG=AD ,连接DG 、EG ,证明ACGE 是平行四边形,可得CG=AE=BD ,在直角三角形DBC 中运用勾股定理求出BD 、BC 的长,最后运用勾股定理求出AC 的长即可.[详解]延长BC 到G ,使BG=AD ,连接DG 、EG ,90,ABC AE AB ︒∠=⊥90EAD DBG ∴∠=∠=︒180EAD DBG ∴∠+∠=︒90AED ADE ∠+∠=︒//AE BG ∴,AE BD AD BG ==()AED BDG SAS ∴≅∆,DE DG AED BDG ∴=∠=∠90ADE BDG ∴∠+∠=︒1809090EDG ︒∴-︒∠==︒DEG ∴是等腰直角三角形,45DEG ∴∠=︒45AFE =︒∠AFE FEG ∴∠=∠AC EG ∴//∴四边形ACGE 是平行四边形,AE CG ∴=∵AE=BDBD CG ∴=∵AD =∴设BD=x ,则,在Rt △BCD 中,∵CD=5,∴222CD BD BC =+,即2225=)x x +,解得,1x =,2x当x =,即BD =此时BC =,BD BC >, 不合题意,∴x =即∴在直角三角形ABC 中,10==故答案为:10.[点睛]此题主要考查了平行四边形的判定与性质,以及勾股定理,作辅助线构造平行四边形以及证明CG=AE=BD 是解题的关键.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程(1)(3x -1)2=2(3x -1)(2)3x 2-x +1=0[答案](1)113x =,21x =;(2)12x x == [解析][分析](1)原方程移项后进行因式分解,变形为两个一元一次方程求出方程的解即可;(2)原方程运用公式法求解即可.[详解](1)(3x -1)2=2(3x -1)(3x -1)2-2(3x -1)=0(3x -1)[(3x -1)-2]=0(3x -1)(3x -3)=0∴3x -1=0,3x -3=0解得,113x =,21x =;(2)3x 2-x +1=0这里a=3,b=-c=1∴△=b 2-4ac=(-2-4×3×1=0∴x ==∴12x x ==. [点睛]此题主要考查了解一元二次方程的方法灵活运用,熟练掌握解一元二次方程的方法是解题的关键.22. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合.(1)画一个面积为10的等腰直角三角形;(2)画一个周长为20,面积为15的菱形.[答案](1)见解析;(2)见解析[解析]分析](1)利用数形结合的思想画出直角边为25的等腰三角形即可.(2)利用数形结合的思想画出边长5,高为3的菱形即可.[详解](1)如图1中,平行四边形ABCD即为所求.(2)如图2中,菱形ABCD即为所求.[点睛]本题考查作图-应用与设计,等腰直角三角形的判定,菱形的判定等知识,解题的关键是学会利用数形结合的思想思考问题.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |c d =ad-bc ,上述记号就叫做2阶行列式.(1)若249|x13|x =0,求x 的值; (2)若11|x x +- 11|x x -+=6,求x 的值.[答案](1)1x =2x =(2)1x =,2x =[解析][分析] (1)根据2阶行列式公式列出方程26490x -=,运用直接开平方法即可求得答案;(2)根据2阶行列式公式列出方程2(1)(1)(1)6x x x +---=,即可求得答案.[详解](1)由题意可得:26490x -=∴26=49x 249=6x∴1x =2x = (2)由题意可得:2(1)(1)(1)6x x x +---=,整理得,22x =,解得,1x =,2x =.[点睛]考查了解一元二次方程-直接开平方法,本题根据2阶行列式的公式来解一元二次方程,比较简单,容易掌握.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.[答案](1)证明见解析;(2)S△ABC,S四边形ABDE,S矩形ADCE[解析][分析](1)首先得到四边形ADCE是平行四边形,然后利用有一个角是直角的平行四边形是矩形判断矩形即可;(2)根据四边形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到结论.[详解](1)证明:∵点D、点O别是BC、AC的中点,∴OD∥AB,∴DE∥AB,又∵AE∥BD,∴四边形ABDE是平行四边形,∵点D是BC的中点,∴AE平行且等于DC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.[点睛]本题考查了矩形判定和性质,平行线的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? [答案](1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克[解析][分析](1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.[详解](1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.[点睛]本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,求EG的长.[答案](1)证明见解析;(2)证明见解析;(3)7105[解析][分析](1)如图1中,证明Rt△CBE≌△Rt△DCF(HL),即可解决问题.(2)如图2中,连接OC.想办法证明△OBE≌△OCF(SAS),即可解决问题.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,首先证明△OMN是等腰直角三角形,利用勾股定理求出a即可解决问题.[详解](1)如图1中,∵四边形ABCD是正方形,∴BC=CD,∠B=∠DCF=90°,∵DE=CE,∴Rt△CBE≌△Rt△DCF(HL),∴BE=CF,∠ECB=∠CDF,∵∠ECB+∠DCE=90°,∴∠CDF+∠DCE=90°,∴∠CGD=90°,∴EC⊥DF.(2)如图2中,连接OC.∵CB=CD,∠BCD=90°,OB=OD,∴OC=OB=OD,OC⊥BD,∴∠OCB=45°,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠OBE=∠OCF,∵BE=CF,OB=OC,∴△OBE≌△OCF(SAS),∴OE=OF,∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△EOF是等腰直角三角形.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,∵BE=BM,CF=CN,BE=CF,∴BM=CN,∵OB=OC,∠OBM=∠OCN=135°,BM=CN,∴△OBM≌△OCN(SAS),∴∠BOM=∠COM,∴∠MON=∠BOC=90°,∴△MON是等腰直角三角形,∵34∴MN=217, 在Rt △MBN 中,a 2+16a 2=68,∴a=2(负根已经舍弃),BE=2,BC=6,EC=210,∵△CGF ∽△CBE ,CG CF CB CE∴=, 26210CG ∴=, 3105CG ∴=, 31071021055EG EC CG ∴=-=-=. [点睛]本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.27. 已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.[答案](1)证明见解析;(2)BE=AF+3DF ;(3)31[解析][分析](1)利用等角的补角判断出∠DCE=∠E即可;(2)先判断出四边形CFDN是矩形,再判断出CN=NE=FD,即可得出结论;(3)先判断出∠ABG=∠BGC,进而得出四边形BCFM是正方形,即可判断出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出结论.AD BC AB DC[详解](1)∵//,//四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵▱ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α, ∵∠MBC=90°,∴∠MBA=90°-2α,∴∠KBA=90°-α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,=15,∴AD=BC=BM=15,∴AF=AD-DF=15-8=7,∴BE=AF+3DF=7+3×8=31.[点睛]此题是四边形综合题,主要考查了平行四边形的性质,矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理,解本题的关键是(2)判断出四边形CFDN是矩形,(3)求出AB=17.。

2022学年初二数学第二学期考试卷(含答案)

2022学年初二数学第二学期考试卷(含答案)

2022学年初二数学第二学期考试卷(含答案)考生须知:1.全卷共三大题,24小题,满分为120分.2.考试时间为120分钟,本次考试采用闭卷形式,不允许使用计算器. 3.全卷答案必须做在答题卷的相应位置上,做在试题卷上无效.4.请用钢笔或黑色墨迹签字笔将学校、姓名、准考证号、座位号分别填在答题卷的相应位置上.一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.估计5的值在………………………………………………………………………( ▲ ) A. 0~1之间B. 1~2之间C. 2~3之间D. 3~4之间2.下列方程中,关于x 的一元二次方程是……………………………………………( ▲ ) A.y x =-23B.x x =-2C.11+=x xD. 322=+x x3.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数x 与方差s 2如下表:甲 乙 丙 丁 平均数x (环)11.1 11.1 10.9 10.9 方差s 21.11.21.31.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择……………………( ▲ ) A. 甲B. 乙C. 丙D. 丁4.围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史. 2017年5月,世界围棋冠军柯洁与人工智能机器人AlphaGo 进行围棋人机大战.截取首局对战棋谱中的四个部分,由黑白棋子摆成的图案是中心对称的是………………………………………( ▲ )A. B. C. D.5.如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为………………( ▲ ) A. 20°B. 30°C. 35°D. 55°6.关于x 的一元二次方程x 2+4x +k =0有两个实数根,则k 的取值范 围是………………………………………………………( ▲ )A. k ≤-4B. k <-4C. k ≤4D. k <47.已知菱形的周长为56,则菱形的面积为………………( ▲ )A. 25C. 3D. 48.如图是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪 线长度所标的数据(单位:cm )不正确的是………………………………………( ▲ )A. B. C. D.9.如图,A 、B 两点在双曲线y =上,分别经过A 、B 两点向轴作 垂线段,已知S 阴影=1,则S 1+S 2的值等于…………( ▲ ) A. 3 B. 4 C. 5D. 610.如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC相交于点F ,连接BF ,下列结论:①S △ABF =S △ADF ; ②S △CDF =4S △CEF ; ③S △ADF =2S △CEF ; ④S △ADF =2S △CDF , 其中正确的是 ………………………………………( ▲ ) A. ①③B. ②③C. ①④D. ②④二、填空题(本题有6小题,每小题4分,共24分)11.式子2 x 在实数范围内有意义,则x 的取值范围是 ▲ . 12.正方形对称轴的条数为 ▲ .13.已知一个正n 边形的内角和为1080°,则n = ▲ .DCA EBC ′21108 1510 1013 9116A BS 1S 2y xOFBEC14.若一元二次方程ax 2=b (ab >0)的两个根分别是m +1与2m ﹣4,则ab= ▲ . 15.如图,在平面直角坐标系中,四边形 ABCD 是菱形,BC ∥x轴. AD 与y 轴交于点E ,反比例函数 y =xk(x >0)的图象 经过顶点 C 、D . 已知点 C 的横坐标为5,BE =2DE ,则k 的值为 ▲ .16.如图,矩形ABCD 中,AB =4,BC =2,E 是AB 的中点,直 线l 平行于直线EC ,且直线l 与直线EC 之间的距离为2, 点F 在矩形ABCD 边上,将矩形ABCD 沿直线EF 折叠, 使点A 恰好落在直线l 上,则DF 的长为 ▲ .三、解答题(本题有8小题,共66分) 17.(本题6分)解方程:x 2-3x =018.(本题6分)已知:x =1-2,y =1+2,求x 2+y 2-2x -2y 的值.y AE DCBOxDCA E B为了解市民对“垃圾分类知识”的了解程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A .非常了解”、“B .了解”、“C .基本了解”、“D .不太了解”四个等级进行统计,并将统计结果绘制成了如下两幅不完整的统计图(图1、图2),请根据图中的信息解答下列问题.(1)这次调查的市民人数为 ▲ 人,图2中,m = ▲ . (2)补全图1中的条形统计图;(3)据统计,该市有市民140万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的了解程度为“B .了解”的市民约有多少万人?20.(本题8分)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,过点E 作EF ∥AB ,交BC 于点F . (1)求证:四边形DBFE 是平行四边形;(2)当△ABC 满足什么条件时,四边形DBEF 是菱形?为什么?AD EB F CAm% B n% C 20%D17% 图2市民对“垃圾分类知识”了解程度的条形统计图和扇形统计图图1已知关于x 的方程(k ﹣1)x 2﹣(k ﹣1)x +41=0有两个相等的实数根,求k 的值.22.(本题10分)如图,平行四边形ABCD 的对角线交于点O ,以OD ,CD 为邻边作平行四边形 DOEC ,OE 交BC 于点F ,连结BE . (1)求证:F 为BC 中点;(2)若OB ⊥AC ,OF =2,求平行四边形ABCD 的周长.23.(本题10分)平面直角坐标系xOy 中,点A 、B 分别在函数y =x 4(x >0)与y =-x4(x <0)的图象上,A 、B 的横坐标分别为a 、b .(1)若AB ∥x 轴,求△OAB 的面积;(2)若△OAB 是以AB 为底边的等腰三角形,且a +b ≠0,求ab 的值;(3)作边长为3的正方形ACDE ,使AC ∥x 轴,点D 在点A 的左上方,那么,对大于或 等于4的任意实数a ,CD 边与函数y =x4(x >0)的图象都有交点,请说明理由.ADOBFCOyx(备用图)Oyx如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.(1)求AD的长;(2)设CP=x,△PDQ的面积为y,求y关于x的函数表达式,并求自变量的取值范围;(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.参考答案及评分意见一、选择题(本题共10小题,每小题3分,共30分)题号1 2 3 4 5 6 7 8 9 10 答案C D A B A C D A DC评分标准 选对一题给3分,不选,多选,错选均不给分二、填空题(本题有6小题,每小题4分,共24分)11.x ≥2; 12.4 13.8 ;14.4 ; 15.5 ; 16.22 或22-4三、解答题(本题有8小题,共52分) 17.(本题6分)解:原方程可化为x (x ﹣3)=0,所以原方程的根为01=x ,32=x …………………………………6分18.(本题6分)解:原式=(x -1)2 +(y -1)2 -2 …………………………………4分∵x =1-2,y =1+2, ∴原式=2)2-(+2)2+(-2=2+2-2=2 …………………………………2分 19.(本题6分)(1)1000, 28% …………………………………2分 (2)图略; …………………………………2分 (3)140×35%=49(万人) …………………………………2分 20.(本题8分)(1)证明:∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,又∵EF ∥AB ,∴四边形DBFE 是平行四边形; ……………4分(2)AB =BC 或∠A =∠ C ………………………………2分∵D 是AB 的中点,∴BD =AB ,∵DE 是△ABC 的中位线, ∴DE =BC ,∵AB =BC ,∴BD =DE ,又∵四边形DBFE 是平行四边形,∴四边形DBFE 是菱形.…………2分21.(本题8分)解:∵关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,∴△=0,∴[﹣(k﹣1)]2﹣4(k﹣1)=0,整理得,k2﹣3k+2=0,即(k﹣1)(k﹣2)=0,…………………………………4分解得:k=1(不符合一元二次方程定义,舍去)或k=2.………………2分∴k=2.…………………………………2分22.(本题10分)(1)证明略;…………………………………5分(2)平行四边形ABCD的周长为16.…………………………………5分23.(本题8分)解:(1)如图1,AB交y轴于P,∵AB∥x轴,∴S△OAC=×|4|=2,S△OBC=×|﹣4|=2,∴S△OAB=S△OAC+S△OBC=4;…………………………………4分(2)∵A、B的横坐标分别为a、b,∴A、B的纵坐标分别为、﹣,∴OA2=a2+()2,OB2=b2+(﹣)2,∵△OAB是以AB为底边的等腰三角形,∴OA=OB,∴a2+()2=b2+(﹣)2,∴a2﹣b2+()2﹣()2=0,∴a2﹣b2+=0,∴(a+b)(a﹣b)(1﹣)=0,∵a+b≠0,a>0,b<0,∴1﹣=0,∴ab=﹣4;…………………4分(3)∵a≥4,而AC=3,∴直线CD在y轴的右侧,直线CD与函数y1=(x>0)的图象一定有交点,设直线CD与函数y1=(x>0)的图象交点为F,如图2,∵A点坐标为(a,),正方形ACDE的边长为3,∴C点坐标为(a﹣3,),∴F 点的坐标为(a ﹣3,),∴FC =﹣,∵3﹣FC =3﹣(﹣)=,而a ≥4,∴3﹣FC ≥0,即FC ≤3,∵CD =3,∴点F 在线段DC 上,即对大于或等于4的任意实数a ,CD 边与函数y 1=(x >0)的图象都有交点.……2分24.(本题12分)解:(1)5 …………………………………4分 (2)x x y 439432+-=,(0<x ≤5) …………………………………4分 (3)存在,BM =21…………………………………4分。

辽宁省雅礼学校二O二0年〖苏科版〗八年级数学下册复习试卷期中考试试卷2 (2)

辽宁省雅礼学校二O二0年〖苏科版〗八年级数学下册复习试卷期中考试试卷2 (2)

辽宁省雅礼学校二O二0年【苏科版】八年级数学下册试卷复习期中考试试卷一、选择题型(本题共10小题,每小题3分,共30分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入下表相应的括号内 )1.当b a >时,下列不等式中正确的是----------------------- ( ) A .b a 22< B .33->-b a C .22a c b c +<+ D .b a ->-2.若分式242+-x x 的值为零,则x 的值为------------------------------ ( )A .2-B .2±C . 2D .03.某反比例函数的图象经过点(-1,6),则此函数图象也经过点 -------- ( )A .(23)-,B .(33)--,C .(23),D .(46)-, 4.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两 种蔬菜放在一起同时保鲜,适宜的温度是----------------------( )A. 1℃~3℃ B . 3℃~5℃ C .5℃~8℃D .1℃~8℃5.矩形面积为2,它的长y 与宽x 之间的函数关系用图象大致可表示---- ( )6. 若分式x y x +中的x 、y 均扩大为原来的5倍,则分式的值····· ( )A .扩大为原来的5倍B .不变C .扩大为原来的10倍D.扩大为原来的2倍7.如图,,DE BC //且1ADE DBCE S S ∆:=:8,四边形则:AE AC为·········( )A .1︰9B .1︰3C .1︰8D .1︰28.如图,在 △ABC 中,P 为AB 上一点,则下列四个条件中⑴∠ACP= ∠B ⑵∠APC=∠ACB⑶AC 2=AP •AB ⑷AB •CP=AP •CB ,其中能满足△APC和△ACB 相似的条件有 ········( )A 、1个B 、2个C 、3个D 、4个 9.如图,已知反比例函数(0)k y k x =<的图象经过Rt OAB ∆斜边OA第7题图第8题图D C B A 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△BOC 的面积为 -------( )A .4B .3 C. 2 D. 110.已知三个边长分别为2、3、5的正方形如图排列,则图中阴影部分的面积为--( )A. 2.5B. 3.25C. 3.75D. 4第10题图二、填空题型(本大题共8小题,每小题2分,共16分,把答案填在题目中的 横线上)11.不等式23x -≥的解集为。

人教版数学八年级下册《期中考试试卷》附答案

人教版数学八年级下册《期中考试试卷》附答案

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题1. 如下图是一次函数y=kx+b图象,当y<-2时,x的取值范围是( )A. x<3B. x>3C. x<-1D. x>-12. 正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )A. B. C. D.3. 直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A. B. C. D.4. 若点(x1,y1),(x2,y2),(x3,y3)都是一次函数y=﹣x﹣1图象上的点,并且y1<y2<y3,则下列各式中正确的是( )A. x1<x2<x3B. x1<x3<x2C. x2<x1<x3D. x3<x2<x15. 某一次函数的图象经过点()1,2,且y随x的增大而减小,则这个函数的表达式可能是()A 24y x =+ B. 24y x =-+ C. 31y x D. 31y x -=-6. 一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m,n 的值为( )A. m≠2,n=2B. m=2,n=2C. m≠2,n=1D. m=2,n=17. 一组数据:1,2,4,2,2,5,这组数据的众数是( )A. 1B. 2C. 4D. 58. 某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选( )A. 丁B. 丙C. 乙D. 甲9. 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是( )A. 10和7B. 5和7C. 6和7D. 5和610. 在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A. 中位数是90B. 平均数是90C. 众数是87D. 极差是911. 某车间20名工人每天加工零件数如下表所示:这些工人每天加工零件数的众数、中位数分别是( ).A. 5,5B. 5,6C. 6,6D. 6,512. 下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A. 甲队员成绩平均数比乙队员的大B. 乙队员成绩的平均数比甲队员的大C. 甲队员成绩的中位数比乙队员的大D. 甲队员成绩的方差比乙队员的大二.填空题13. 对于正比例函数23m y mx -=,y 的值随x 的值减小而减小,则m 的值为_______.14. 甲、乙二人沿相同的路线由A 到B 匀速行进,A B ,两地间的路程为20km.他们行进的路程()s km 与甲出发后的时间()t h 之间的函数图象如图所示根据图象信息,填空()1乙的速度是______ km /h()2从A 地到达B 地,甲比乙多用了______ h .15. 如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.16. 若二元一次方程组41,2x y y x m -=⎧⎨=-⎩的解是2,7,x y =⎧⎨=⎩则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为________.17. 一组数据1,2,a 的平均数为2,另一组数据﹣1,a ,1,2,b 的唯一众数为﹣l ,则数据﹣1,a ,1,2,b 的中位数为___________.18. 某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:植树棵数 3 4 5 6人数20 15 10 5那么这50名学生平均每人植树__________棵.19. 一组数据:﹣1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是__.20. 小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.三.解答题21. 已知一次函数图象经过(-2,1)和(1,3)两点.(1)求这个一次函数的解析式;x 时,求y的值.(2)当322. 如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.23. 一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).(1)由图可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求点B的坐标;②求a的值.24. 某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第1次第2次第3次第4次第5次第6次甲10 9 8 8 10 9乙10 10 8 10 7 9根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.25. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.平均数中位数众数九()1班85 85九()2班80()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.26. 某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?答案与解析一.选择题1. 如下图是一次函数y=kx+b的图象,当y<-2时,x的取值范围是( )A. x<3B. x>3C. x<-1D. x>-1[答案]C[解析]分析:本题利用一次函数的图像和性质得出结论即可.解析:通过图像,可知函数经过( -1,-2 ),( 3,1),图像的性质可以看出y随x的增大而增大∴当y<-2时,x<-1. 故选C.点睛:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.2. 正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )A. B. C. D.[答案]B[解析][分析]根据图象分别确定的取值范围,若有公共部分,则有可能;否则不可能.[详解]根据图象知:A、k<0,﹣k<0.解集没有公共部分,所以不可能;B、k<0,﹣k>0.解集有公共部分,所以有可能;C、k>0,﹣k>0.解集没有公共部分,所以不可能;D、正比例函数的图象不对,所以不可能.故选:B.[点睛]本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b的图象的四种情况是解题的关键.3. 直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A. B. C. D.[答案]B[解析]试题分析:已知直线y=ax+b经过第一、二、四象限,所以a<0,b>0,即可得直线y=bx﹣a的图象经过第一、二、三象限,故答案选B.考点:一次函数图象与系数的关系.4. 若点(x1,y1),(x2,y2),(x3,y3)都是一次函数y=﹣x﹣1图象上的点,并且y1<y2<y3,则下列各式中正确的是( )A. x1<x2<x3B. x1<x3<x2C. x2<x1<x3D. x3<x2<x1[答案]D[解析][分析]由k=-1<0,可得出y随x的增大而减小,再根据y1<y2<y3,即可得出x1>x2>x3.[详解]解:∵一次函数y=﹣x﹣1中k=﹣1<0,∴y随x的增大而减小,又∵y1<y2<y3,∴x1>x2>x3.故选:D .[点睛]本题考查了一次函数的性质,根据k <0找出y 随x 的增大而减小是解题的关键.5. 某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )A. 24y x =+B. 24y x =-+C. 31y xD. 31y x -=-[答案]B[解析][分析]设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.[详解]设一次函数关系式为y kx b =+,∵图象经过点()1,2, 2k b ∴+=;∵y 随x 增大而减小,∴0k <,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B .[点睛]本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.6. 一次函数y=(m ﹣2)x n ﹣1+3是关于x 一次函数,则m,n 的值为( )A. m≠2,n=2B. m=2,n=2C. m≠2,n=1D. m=2,n=1[答案]A[解析][分析]直接利用一次函数的定义分析得出答案.[详解]解:∵一次函数y=(m-2)x n-1+3是关于x的一次函数,∴n-1=1,m-2≠0,解得:n=2,m≠2.故选A.[点睛]此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.7. 一组数据:1,2,4,2,2,5,这组数据的众数是( )A. 1B. 2C. 4D. 5[答案]B[解析][分析]此题涉及的知识点是众数,根据众数的定义就可以判断得出结果[详解]一组数据中出现次数最多的那个数值,就是众数,根据题意,数据中出现最多的是2,所以众数是2,故选B[点睛]此题重点考察学生对于众数的理解和应用,掌握众数就是数据中出现次数最多的数是解题的最佳方法.8. 某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A. 丁B. 丙C. 乙D. 甲[答案]B[解析][分析]先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.[详解]∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.[点睛]本题考查了方差:一组数据中各数据与它们平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9. 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A. 10和7B. 5和7C. 6和7D. 5和6[答案]D[解析]分析:将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.详解:将这组数据按从小到大排列为:5,5,5,6, 7,7,10,∵数据5出现3次,次数最多,∴众数为:5;∵第四个数为6,∴中位数为6,故选D.点睛:本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.10. 在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A. 中位数是90B. 平均数是90C. 众数是87D. 极差是9 [答案]C[解析][分析]根据中位数、平均数、众数、极差的概念求解.[详解]解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=915 6 ,众数是87,极差是97﹣87=10.故选C.[点睛]本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.11. 某车间20名工人每天加工零件数如下表所示:这些工人每天加工零件数的众数、中位数分别是().A. 5,5B. 5,6C. 6,6D. 6,5[答案]B[解析][分析]根据众数、中位数的定义分别进行解答即可.[详解]解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662=6,故选:B.[点睛]本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12. 下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A. 甲队员成绩的平均数比乙队员的大B. 乙队员成绩的平均数比甲队员的大C. 甲队员成绩的中位数比乙队员的大D. 甲队员成绩的方差比乙队员的大[答案]D[解析][分析]根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.[详解]甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8, 乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.[点睛]本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二.填空题13. 对于正比例函数23my mx -=,y 的值随x 的值减小而减小,则m 的值为_______.[答案]-2[解析][分析] 根据正比例函数的意义,可得答案.[详解]解:∵y 的值随x 的值减小而减小,∴m <0,∵正比例函数23my mx -=,∴m 2-3=1,∴m=-2,故答案为:-2[点睛]本题考查正比例函数的定义.14. 甲、乙二人沿相同的路线由A 到B 匀速行进,A B ,两地间的路程为20km.他们行进的路程()s km 与甲出发后的时间()t h 之间的函数图象如图所示根据图象信息,填空 ()1乙的速度是______ km /h()2从A 地到达B 地,甲比乙多用了______ h .[答案] (1). 20 (2). 3[解析][分析](1)根据图象确定出A 、B 两地间的距离以乙两人所用的时间,然后根据速度=路程÷时间求出两人的速度; (2)根据图象即可判断甲比乙晚到B 地的时间.[详解](1)由图可知,A. B 两地间的距离为20km ,从A 地到B ,乙用的时间为2−1=1小时,乙的速度是40÷1=40km/h ,故B 选项错误; (2)由图可知,甲4小时到达B 地,乙1小时到达B 地,所以,甲比乙晚到3小时.故答案为20,3.[点睛]本题考查函数的图像,解题的关键是清楚速度路程时间关系.15. 如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.[答案]10[解析][分析]分别令x=0,y=0,可得A 、B 坐标,即可求出OA 、OB 的长,利用三角形面积公式即可得答案.[详解]∵直线510y x =+交x 轴于点A ,交y 轴于点B ,∴令0y =,则2x =-;令0x =,则10y =;∴()2,0A -,()0,10B ,∴2OA =,10OB =,∴AOB 的面积1210102=⨯⨯=. 故答案为10[点睛]本题考查一次函数与坐标轴的交点问题,分别令x=0,y=0即可求出一次函数与坐标轴的交点坐标;也考查了三角形的面积.16. 若二元一次方程组41,2x y y x m -=⎧⎨=-⎩的解是2,7,x y =⎧⎨=⎩则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为________.[答案](2,7).[解析][分析]根据一次函数图象交点坐标为两个一次函数解析式联立组成的方程组的解,确定一次函数2y x m =-与41y x =-的图象的交点坐标.[详解]解:若二元一次方程组412x y y x m -=⎧⎨=-⎩的解是27x y =⎧⎨=⎩,则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为(2,7).故答案为:(2,7).[点睛]本题考查一次函数与二元一次方程组. 理解一次函数与二元一次方程(组)的关系是解决此类问题的关键.17. 一组数据1,2,a 的平均数为2,另一组数据﹣1,a ,1,2,b 的唯一众数为﹣l ,则数据﹣1,a ,1,2,b 的中位数为___________.[答案]1[解析][分析]根据平均数求得a 的值,然后根据众数求得b 的值后再确定新数据的中位数.[详解]试题分析:∵一组数据1,2,a 的平均数为2,∴1+2+a=3×2解得a=3∴数据﹣l ,a ,1,2,b 的唯一众数为﹣l ,∴b=﹣1,∴数据﹣1,3,1,2,b 的中位数为1.故答案为1.[点睛]本题考查了平均数、众数及中位数的定义,解题的关键是正确的利用其定义求得未知数的值. 18. 某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:那么这50名学生平均每人植树__________棵.[答案]4[解析][分析]利用加权平均数的计算公式进行计算即可.[详解]解:平均每人植树(3×20+4×15+5×10+6×5)÷50=4棵,故答案为4.[点睛]本题考查了加权平均数的计算,解题的关键是牢记加权平均数的计算公式,属于基础题.19. 一组数据:﹣1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是__.[答案]3[解析][分析]先根据数据的众数确定出x的值,即可得出结论.[详解]∵一组数据:﹣1,3,2,x,5,它有唯一的众数是3,∴x=3,∴此组数据为﹣1,2,3,3,5,∴这组数据的中位数为3.故答案为3.[点睛]本题考查了数据的中位数,众数的确定,掌握中位数和众数的确定方法是解答本题的关键.20. 小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试平均成绩不少于80分的目标,他第三次数学考试至少得____分.[答案]82[解析][分析]设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.[详解]设第三次考试成绩为x,∵三次考试的平均成绩不少于80分, ∴7286803x ++≥, 解得:82x ≥,∴他第三次数学考试至少得82分,故答案为:82[点睛]本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.三.解答题21. 已知一次函数图象经过(-2,1)和(1,3)两点.(1)求这个一次函数的解析式;(2)当3x =时,求y 的值.[答案](1)2733y x =+;(2)y 的值是133. [解析][分析](1)设该直线解析式为()0y kx b k =+≠,把(-2,1)和(1,3)代入可得关于k 、b 的二元一次方程组,解方程组求出k 、b 的值即可得答案;(2)把x=3代入(1)中所求的解析式,求出y 值即可得答案.[详解](1)设该直线解析式为()0y kx b k =+≠,∵一次函数图象经过(-2,1)和(1,3)两点,∴213k b k b -+=⎧⎨+=⎩, 解得2373k b ⎧=⎪⎪⎨⎪=⎪⎩. 故该一次函数解析式为:2733y x =+;(2)把3x =代入(1)中的函数解析2733y x =+得:27133333y =⨯+=, ∴3x =时,y 的值是133. [点睛]本题主要考查了待定系数法求一次函数解析式,根据一次函数图象上的点的坐标特征列出方程组求解是解题关键.22. 如图,直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,﹣2).(1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.[答案](1)直线AB 的解析式为y=2x ﹣2,(2)点C 的坐标是(2,2).[解析][分析]待定系数法,直线上点的坐标与方程的.(1)设直线AB 的解析式为y=kx+b ,将点A (1,0)、点B (0,﹣2)分别代入解析式即可组成方程组,从而得到AB 的解析式.(2)设点C 的坐标为(x ,y ),根据三角形面积公式以及S △BOC =2求出C 的横坐标,再代入直线即可求出y 的值,从而得到其坐标.[详解]解:(1)设直线AB 的解析式为y=kx+b ,∵直线AB 过点A (1,0)、点B (0,﹣2),∴k b 0{ b=2+=-,解得k 2{ b=2=-. ∴直线AB 的解析式为y=2x ﹣2.(2)设点C 的坐标为(x ,y ),∵S △BOC =2,∴12•2•x=2,解得x=2. ∴y=2×2﹣2=2.∴点C的坐标是(2,2).23. 一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).(1)由图可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求点B的坐标;②求a的值.[答案](1)x>﹣2;(2)①(1,6);②10.[解析][分析](1)求不等式kx+b>0的解集,找到x轴上方的范围就可以了,比C点横坐标大就行了(2)①我们可以先根据B,C两点求出k值,因为不等式kx+b>﹣4x+a的解集是x>1所以B点横坐标为1,利用x=1代入y1=kx+b,即求出B点的坐标;②将B点代入y2=﹣4x+a中即可求出a值.[详解]解:(1)∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴不等式kx+b>0的解集是x>﹣2,故答案为x>﹣2;(2)①∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴b=4-2k+b=0⎧⎨⎩,得b=4k=2⎧⎨⎩,∴一次函数y1=2x+4,∵不等式kx+b>﹣4x+a的解集是x>1, ∴点B的横坐标是x=1,当x=1时,y1=2×1+4=6,∴点B 坐标为(1,6);②∵点B (1,6),∴6=﹣4×1+a ,得a =10, 即a 的值是10.[点睛]本题主要考查学生对于一次函数图像性质的掌握程度24. 某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.[答案](1)甲、乙六次测试成绩的方差分别是223S =甲,243S =乙;(2)甲 [解析][分析](1)根据方差的定义,利用方差公式分别求出甲、乙的方差即可;(2)根据平均数相同,利用(1)所求方差比较,方差小的成绩稳定,即可得答案.[详解](1)甲、乙六次测试成绩的方差分别是: (222222212[(109)(99)(89)(89)(109)99)63S ⎤=⨯-+-+-+-+-+-=⎦甲, (222222214[(109)(109)(89)(109)(79)99)63S ⎤=⨯-+-+-+-+-+-=⎦乙, (2)推荐甲参加全国比赛更合适,理由如下:∵两人的平均成绩相等,∴两人实力相当;∵甲的六次测试成绩的方差比乙小,∴甲发挥较为稳定,∴推荐甲参加比赛更合适.故答案为:甲[点睛]本题考查方差的求法及利用方差做决策,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;熟练掌握方差公式是解题关键.25. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.平均数中位数众数九()1班85 85九()2班80()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.[答案](1)详见解析;(2)九()1班成绩好些;(3)九()1班的成绩更稳定,能胜出.[解析][分析]()1由条形图得出两班的成绩,根据中位数、平均数及众数分别求解可得;()2由平均数相等得前提下,中位数高的成绩好解答可得;()3分别计算两班成绩的方差,由方差小的成绩稳定解答.[详解]解:()1九()1班5位同学的成绩为:75、80、85、85、100,其中位数为85分;九()2班5位同学的成绩为:70、100、100、75、80,九()2班平均数为70100100758085(5++++=分),其众数为100分, 补全表格如下:()2九()1班成绩好些,两个班的平均数都相同,而九()1班的中位数高,在平均数相同的情况下,中位数高的九()1班成绩好些.()3九()1班的成绩更稳定,能胜出.()(22222211[(7585)(8085)(8585)(8585)10085)70(5S ⎤=⨯-+-+-+-+-=⎦九分2), ()(22222221[(7085)(10085)(10085)(7585)8085)160(5S 九⎤=⨯-+-+-+-+-=⎦分2), ()()2212S S 九九∴<,九()1班的成绩更稳定,能胜出.[点睛]本题考查了平均数、中位数、众数和方差的意义即运用方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.26. 某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元.(1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A 、B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?[答案](1)A 型空调和B 型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,案三:采购A 型空调12台,B 型空调18台;(3)采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.[解析]分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A 型空调和B 型空调每台各需x 元、y 元,3239000456000x y x y +⎧⎨-⎩==,解得,90006000x y ⎧⎨⎩==, 答:A 型空调和B 型空调每台各需9000元、6000元;(2)设购买A 型空调a 台,则购买B 型空调(30-a )台,()()13029000600030217000a a a a ⎧≥-⎪⎨⎪+-≤⎩, 解得,10≤a≤1213, ∴a=10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为w 元,w=9000a+6000(30-a)=3000a+180000,∴当a=10时,w 取得最小值,此时w=210000,即采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.。

华师大版八年级下册数学期中考试试题及答案

华师大版八年级下册数学期中考试试题及答案

华师大版八年级下册数学期中考试试卷一、单选题1.在下列分式中,最简分式是()A .11a a --B .22a ba b -+C .-bab b D .1352-ab2.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 3.下列计算正确的是()A .3x x x =B .11a a b b +=+C .2+1﹣1=﹣1D .a ﹣3=(a 3)-14.若把分式2xy x y +的x.y 同时扩大3倍,则分式值()A .扩大3倍B .缩小3倍C .不变D .扩大9倍5.已知反比例函数y =21k x+的图上象有三个点(2,y 1),(3,y 2),(﹣1,y 3),则y 1,y 2,y 3的大小关系是()A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 16.函数y =m x与y =mx ﹣m (m≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .7.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是()A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣348.ABCD 中,∠A :∠B :∠C :∠D 的值可以是()A .1:2:3:4B .1:2:2:1C .2:2:1:1D .2:1:2:19.下列说法错误的是()A .平行四边形的对角相等B .平行四边形的对角互补C .平行四边形的对边相等D .平行四边形的内角和是360°10.某施工队要铺设一条长为1500米的管道,为了减少施工对交通造成的影响,施工队实际的工作效率比原计划提高了20%,结果比原计划提前2天完成任务.若设施工队原计划每天铺设管道x 米,则根据题意所列方程正确的是()A .15000(120)0x -﹣1500x =2B .1500x =2+15000(120)0x -C .15000(1+20)0x ﹣1500x =2D .1500x =2+15000(1+20)0x 二、填空题1121()2--+(π﹣3.14)0=___.12.函数y =x 的取值范围是__________.13.已知点P(2﹣a ,2a ﹣7)(其中a 为整数)位于第三象限,则点P 坐标为_____.14.若点A (a ,b )在反比例函数y =5x -的图象上,则代数式ab ﹣4的值为_____.15.一个y 关于x 的函数同时满足两个条件:图象过(2,1)点;当x >0时,y 随x 的增大而减小.这个函数解析式为_________________.(写出一个即可)三、解答题16.解下列方程:(1)11322x x x -+=--.(2)6123x x x =--+.17.先化简,再求值:2x 2x 1x 4xx 2x 4x 4+--⎛⎫-÷ ⎪--+⎝⎭,其中x 是不等式3x 71+>的负整数解.18.已知y=y1+y2,其中y1与x成正比例,y2与x成反比例,并且当x=﹣1时,y=﹣1;当x=2时,y=5,求①y与x的函数关系式;②当x=﹣2时y的值.19.如图,甲、乙两人分别骑自行车和摩托车沿相同路线由A地到B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:(1)______先出发,提前______小时;(2)______先到达B地,早到______小时;(3)A地与B地相距______千米;(4)甲乙两人在途中的速度分别是多少?20.某村在今年退耕还林活动中,计划植树200亩,全村在完成植树40亩后,某环保组织加入此活动,并且该环保组织植树的速度是水源村植树速度的1.5倍,整个植树过程共用了13天,水源村每天植树多少亩?21.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E,(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.22.如图,一次函数y=ax+b的图象与反比例函数y=mx图象相交于点A(﹣1,2)与点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)在第二象限内,观察函数图像,直接写出不等式ax+b <m x 的解集.23.某商品经销店欲购进A 、B 两种纪念品,若用380元购进A 种纪念品7件,B 种纪念品8件;也可以用380元购进A 种纪念品10件,B 种纪念品6件.(1)求A 、B 两种纪念品的进价分别为多少?(2)若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备用不超过900元购进A 、B 两种纪念品40件,且这两种纪念品全部售出时总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?参考答案1.B【解析】根据最简分式的定义:分子,分母中不含有公因式,不能再约分的分式即可解答.【详解】解:A 、11111()--==----a a a a ,故A 选项不符合题意;B 、22a b a b -+是最简分式,故B 选项符合题意;C 、1(1)1==---b b ab b b a a ,故C 选项不符合题意;D 、1313521344-=-=-⋅a a a b b b,故D 选项不符合题意;故选:B .【点睛】此题考查最简分式的定义,分式的化简,首先要把分子、分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意.2.C【解析】【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法3.D【解析】【分析】分子和分母同乘以(或除以)一个不为0的数,分数的值不变.【详解】A 、32x x x=,故本选项错误;B 、11=11a a a b b b++≠++,故本选项错误;C 、1213-+=,故本选项错误;D 、()133a a --=,故本选项正确;故选D .【点睛】本题主要考查分式的性质,关键是根据把分式的分子和分母扩大还是缩小相同的倍数,分式的值不变进行解答.4.A【解析】【分析】根据分式的性质即可化简判断.【详解】分式2xyx y+的x.y同时扩大3倍,变为2331823333()x y xy xyx y x y x y⨯⨯==⨯+++故选A.【点睛】此题主要考查分式的性质,解题的关键是把变化后的分式进行约分化简即可.5.A【解析】【分析】先判断出k2+1是正数,再根据反比例函数图象的性质,比例系数k>0时,函数图象位于第一三象限,在每一个象限内y随x的增大而减小判断出y1、y2、y3的大小关系,然后即可选取答案.【详解】解:∵k2≥0,∴k2+1≥1,是正数,∴反比例函数y=21kx+的图象位于第一三象限,且在每一个象限内y随x的增大而减小,∵(2,y1),(3,y2),(﹣1,y3)都在反比例函数图象上,∴0<y2<y1,y3<0,∴y3<y2<y1.故选A.【点睛】本题考查了反比例函数图象的性质,对于反比例函数y=kx(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内,本题先判断出比例系数k2+1是正数是解题的关键.6.C【解析】【分析】分别根据反比例函数及一次函数的图象在坐标系中的位置,对四个选项逐一分析,即可得到答案.【详解】解:A、由反比例函数的图象在可一、三象限知m>0时,-m<0,∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限∴A 错误,C 、由反比例函数的图象在可一、三象限知m >0时,-m <0,∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限C 正确;B 、反比例函数的图象在二、四象限可知当m <0时,-m >0,∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限,∴B 错误,D 、由反比例函数的图象在二、四象限可知当m <0时,-m >0,∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限,∴D 错误;故选C.【点睛】本题主要考查反比例函数和一次函数的图象比例系数的关系,掌握反比例函数和一次函数的比例系数的几何意义,是解题的关键.7.B【解析】【详解】解:去分母得:x+m ﹣3m=3x ﹣9,整理得:2x=﹣2m+9,解得:x=292m -+,已知关于x 的方程333x m m x x++--=3的解为正数,所以﹣2m+9>0,解得m <92,当x=3时,x=292m -+=3,解得:m=32,所以m 的取值范围是:m <92且m≠32.故答案选B .8.D【解析】【分析】根据平行四边形的性质得到∠A=∠C,∠B=∠D,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AB∥CD,∴∠B+∠C=180°,∠A+∠D=180°,即∠A和∠C的数相等,∠B和∠D的数相等,且∠B+∠C=∠A+∠D.故选D.【点睛】本题主要考查了平行四边形的性质.其性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.9.B【解析】【分析】根据平行四边形性质逐项分析即可.【详解】解:A.平行四边形的对角相等,该选项正确;B.平行四边形的对角相等,该选项错误;C.平行四边形的对边相等,该选项正确;D.平行四边形的内角和是360°,该选项正确;故选B.10.D【解析】【分析】设施工队原计划每天铺设管道x米,实际的工作效率为每天(1+20%)x,根据题意可知,实际比计划提前2天完成任务,列方程即可.【详解】设施工队原计划每天铺设管道x米,实际的工作效率为每天(1+20%)x,由题意得1500x=2+()1500120%x+.故选D.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.11.0【解析】【分析】根据算术平方根的性质、负指数幂和零指数幂计算即可;【详解】原式=3410-+=;故答案为0.【点睛】本题主要考查了实数的计算,结合负指数幂、零指数幂计算是解题的关键.12.x≥-2且x≠1【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出结论.【详解】解:由题意可得2010 xx+≥⎧⎨-≠⎩解得x≥-2且x≠1故答案为:x≥-2且x≠1.【点睛】此题考查的是求自变量的取值范围,掌握二次根式有意义的条件和分式有意义的条件是解决此题的关键.13.(﹣1,﹣1).【解析】【详解】试题分析:根据第三象限点的坐标性质得出a的取值范围,进而得出a的值:∵点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,∴20270aa-<⎧⎨-<⎩,解得:2<a<3.5,因为a为整数,故a=3,代入计算,则点P坐标为:(﹣1,﹣1).故答案为(﹣1,﹣1).考点:点的坐标.14.-9【解析】【分析】由点A在反比例函数图象上,可得出ab=-5,将其代入代数式ab-4中即可得出结论.【详解】解:∵点A(a,b)在反比例函数y=5x-的图象上∴ab=-5∴ab-4=-5-4=-9.故答案为:-9.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是找出ab=2.本题属于基础题,难度不大,解决该题型题目时,由点在反比例函数图象上可以得出点的横纵坐标之积为定值,将其代入代数式即可.15.y=【解析】【详解】符合题意的函数解析式可以是y=,y=﹣x+3,y=﹣x2+5等,(本题答案不唯一)16.(1)无解;(2)43 x=-.【解析】【分析】(1)方程两边同时乘以(2)x -约去分母,化为整式方程,解出整式方程,然后检验是否是原方程的根;(2)方程两边同时乘以(2)(3)x x -+约去分母,化为整式方程,解出整式方程,然后检验是否是原方程的根.【详解】解:(1)11322x x x -+=--约去分母,得:13(2)1x x +-=-,解得:2x =,检验:当2x =时,2220x -=-=,∴2x =是增根,原分式方程无解;(2)6123x x x =--+约去分母,得:6(3)(2)(2)(3)x x x x x +=---+,解得:43x =-,检验:当43x =-时,4450(2)(3)(2)(3)0339x x -+=---+=-≠,∴原分式方程的解为43x =-.【点睛】本题主要考查了解分式方程,解题的关键是熟练掌握解分式方程的基本步骤,特别注意要检验是否是原方程的根.17.x 2x-;3【解析】【分析】先将括号里面的通分后,将除法转换成乘法,约分化简.然后解一元一次不等式求出负整数解,代x 的值求值.【详解】解:原式=()()()()2222x 2x 4x x x 4x 4x 2==x x 2x x 2x 4x x 2---+---÷⋅----解3x 71+>得x 2>-,负整数解为x=1-将x=1-代入原式=12=3 1---18.①y=3x-2x;②-5【解析】【分析】①设y1=kx,y2=nx则y=y1+y2=kx+nx,再把当x=-1时,y=-1,当x=2时,y=5代入求出k、n的值,进而可得答案;②把x=-2代入(1)所得的函数解析式即可.【详解】解:①设y1=kx,y2=nx则y=y1+y2=kx+nx,∵当x=-1时,y=-1,当x=2时,y=5,∴1522k nnk-=--⎧⎪⎨=+⎪⎩,解得:32 kn=⎧⎨=-⎩,∴y关于x的函数关系式为y=3x-2 x;②把x=-2代入y=3x-2x得:y=-6+1=-5.【点睛】此题主要考查了待定系数法求函数的解析式,关键是正确表示出函数解析式.19.(1)甲,3;(2)乙,3;(3)80;(4)10千米/小时,40千米/小时【解析】【分析】(1)由图象可得出甲先出发3小时;(2)乙在3小时后出发,且比甲先到终点3小时;(3)根据图象可得出A,B两地之间的距离;(4)根据路程除以时间等于速度,可得出答案.【详解】(1)由图象可得甲,3;(2)由图象可得乙,3;(3)由图象可得80;(4)甲:80÷8=10(千米/小时)乙:80÷2=40(千米/小时).故答案为甲,3;乙,3;80.【点睛】本题考查了函数的图象,利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.20.8【解析】【分析】根据整个植树过程共用了13天,以及环保组织植树的速度是全村植树速度的1.5倍表示出两者的植树天数得出等式求解即可.【详解】解:设全村每天植树x亩则由题意得4020040131.5x x x-+=+,即40160132.5x x+=∴10016013 2.5x+=∴解得8x=把8x=代入原分式方程中,方程左右两边相等∴8x=是方程的解答:水源村每天植树8亩.【点睛】本题主要考查了分式方程的实际应用,根据植树的天数得出等式是解题关键. 21.(1)详见解析;(2).【解析】【详解】试题分析:(1)由平行四边形的性质和角平分线易证∠BAE=∠BEA,根据等腰三角形的性质可得AB=BE;(2)易证△ABE是等边三角形,根据等边三角形的性质可得AE=AB=4,AF=EF=2,由勾股定理求出BF,再由AAS证明△ADF≌△ECF,即△ADF的面积=△ECF的面积,因此平行四边形ABCD 的面积=△ABE 的面积=12AE•BF ,即可得出结果.试题解析:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB=CD ,∴∠B+∠C=180°,∠AEB=∠DAE ,∵AE 是∠BAD 的平分线,∴∠BAE=∠DAE ,∴∠BAE=∠AEB ,∴AB=BE ,∴BE=CD ;(2)解:∵AB=BE ,∠BEA=60°,∴△ABE 是等边三角形,∴AE=AB=4,∵BF ⊥AE ,∴AF=EF=2,∴BF=,∵AD ∥BC ,∴∠D=∠ECF ,∠DAF=∠E ,在△ADF 和△ECF 中,D ECF DAF E AF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ECF (AAS ),∴△ADF 的面积=△ECF 的面积,∴平行四边形ABCD 的面积=△ABE 的面积=12AE•BF=12考点:全等三角形的判定与性质;平行四边形的性质.22.(1)y =﹣2x ,y=522x +(2)154(3)﹣5<x <﹣4或﹣1<x <0【解析】【分析】(1)将点A (-1,2)代入反比例函数解析式即可求得反比例函数解析式,将两点代入一次函数即可求得一次函数解析式.(2)求得C 点的坐标后利用S AOB S AOC S BOC =- 求面积即可.(3)根据图像即可得到结论.【详解】(1)将点A (﹣1,2)代入函数y =m x ,解得:m =﹣2,∴反比例函数解析式为y =﹣2x,将点A (﹣1,2)与点B (﹣4,12)代入一次函数y =ax+b ,解得:a =12,b =52∴一次函数的解析式为y =x 2+52;(2)C 点坐标(﹣5,0)∴S △AOB =S △AOC ﹣S △BOC =5﹣54=154;(3)由图象知,不等式ax+b <m x的解集为:﹣5<x <﹣4或﹣1<x <0.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握用待定系数法确定函数的解析式是解题的关键.23.(1)A ,B 两种纪念品的进价分别为20元、30元;(2)应进A 种纪念品30件,B 种纪念品l0件,才能使获得利润最大,最大值是220元.【解析】【详解】分析:(1)设A 种纪念品的进价为x 元、B 种纪念品的进价为y 元,件数×进价=付款,可得到一个二元一次方程组,解即可.(2)获利=利润×件数,设购买A 商品a 件,则购买B 商品(40﹣a )件,由题意可得到两个不等式,解不等式组即可.详解:(1)设A 种纪念品的进价为x 元、B 种纪念品的进价为y 元.由题意得:78380106380x y x y +=⎧⎨+=⎩,解得:2030x y =⎧⎨=⎩.答:A 种纪念品的进价为20元、B 种纪念品的进价为30元.(2)设商店准备购进A 种纪念品a 件,则购进B 种纪念品(40﹣a )件.由题意得:2030409005740216a a a a +-≤⎧⎨+-≥⎩()(),解得:30≤a≤32.设总利润为w .总获利w=5a+7(40﹣a )=﹣2a+280.∵w 是a 的一次函数,且w 随a 的增大而减小,∴当a=30时,w 最大,最大值w=﹣2×30+280=220,∴40﹣a=10,∴当购进A 种纪念品30件,B 种纪念品10件时,总获利不低于216元,且获得利润最大,最大值是220元.点睛:利用了总获利=A 利润×A 件数+B 利润×B 件数,件数×进价=付款,还用到了解二元一次方程组以及二元一次不等式组的知识.。

专题3.2期中全真模拟卷02-2020-2021学年八年级数学下学期期中考试高分直通车(原卷版)

专题3.2期中全真模拟卷02-2020-2021学年八年级数学下学期期中考试高分直通车(原卷版)

2020-2021学年八年级数学下册期中考试高分直通车【人教版】专题3.2人教版八年级数学下册期中全真模拟卷02姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共25题,选择12道、填空6道、解答7道 .答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.若二次根式√5x−1有意义,则x的取值范围是()A.x>15B.x≥15C.x≤15D.x≤52.下列二次根式中,不能与√2合并的是()A.√12B.√8C.√12D.√183.小明想知道学校旗杆的高度,她发现旗杆上的绳子刚好垂到地面,当她把绳子的下端拉开5米后,发现绳子下端距离地面1米,则旗杆的高是()A.8米B.10米C.12米D.13米4.▱ABCD中,AC交BD于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的是()A.AB=AD B.OA=OB C.AC=BD D.DC⊥BC5.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=()A.5B.4C.3.5D.36.如图,把一块含有30°角的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=50°,那么∠AFE的度数为()A.10°B.20°C.30°D.40°7.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.38.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面30cm.突然一阵大风吹过,红莲被吹至一边,花朵下部刚好齐及水面,如果知道红莲移动的水平距离为60cm,则水深是()cmA.35B.40C.50D.459.如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为()平方米.A.96B.204C.196D.30410.如图,直线L1、L2、L3分别过正方形ABCD的三个顶点A、D、C,且相互平行,若L1、L2的距离为2,L2、L3的距离为4,则正方形的边长是()A.2√3B.3√2C.2√5D.5√211.如图:将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1,D1处.若∠C1BA=50°,则∠ABE的度数为()A.15°B.20°C.25°D.30°12.如图,点A,B为定点,定直线l∥AB,P是l上一动点.点M,N分别为P A,PB的中点,对于下列各值:①线段MN的长;②△PMN的面积;③△P AB的周长;④∠APB的大小;⑤直线MN,AB之间的距离.其中会随点P的移动而不改变的是()A.①②③B.①②⑤C.②③④D.②④⑤二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上13.已知a,b都是实数,b=√1−2a+√4a−2−2,则a b的值为.14.如图,为了检查平行四边形书架ABCD的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线AC,BD的长度,若二者长度相等,则该书架的侧边与上、下边都垂直,请你说出其中的数学原理.15.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是.16.如图,菱形ABCD的对角线AC,BD交于点O,E为DC的中点,若OE=3,则菱形的周长为.17.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=20,AH=12,那么FG=.18.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)(√24+√0.5)﹣2√1 8;(2)(√2+3)(√2−5).20.如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.21.如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE;(2)连接OE,若AB=4,BC=6,求OE的长.22.如图,在▱ABCD中,对角线AC,BD交于点O,E是AD上一点,连接EO并延长,交BC于点F.连接AF,CE,EF平分∠AEC.(1)求证:四边形AFCE是菱形;(2)若∠DAC=60°,AC=2,求四边形AFCE的面积.23.著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c),也可以表示为4×12ab+(a﹣b)2,由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.(1)图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)如图③,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,且CH⊥AB.测得CH=1.2千米,HB=0.9千米,求新路CH 比原路CA少多少千米?(3)在第(2)问中若AB≠AC时,CH⊥AB,AC=4,BC=5,AB=6,设AH=x,求x的值.24.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.25.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.求证:AM =AD+MC.【探究展示】(2)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,试判断AM=AD+MC是否成立?若成立,请给出证明,若不成立,请说明理由;【拓展延伸】(3)若(2)中矩形ABCD两边AB=6,BC=9,求AM的长.2020-2021学年八年级数学下册期中考试高分直通车【人教版】专题3.2人教版八年级数学下册期中全真模拟卷02姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共25题,选择12道、填空6道、解答7道 .答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.若二次根式√5x−1有意义,则x的取值范围是()A.x>15B.x≥15C.x≤15D.x≤5【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解析】由题意得,5x﹣1≥0,解得,x≥1 5,故选:B.2.下列二次根式中,不能与√2合并的是()A.√12B.√8C.√12D.√18【分析】根据二次根式的乘除法,可化简二次根式,根据最简二次根式的被开方数相同,可得答案.【解析】A、√12=√22,故A能与√2合并;B、√8=2√2,故B能与√2合并;C、√12=2√3,故C不能与√2合并;D、√18=3√2,故D能与√2合并;故选:C.3.小明想知道学校旗杆的高度,她发现旗杆上的绳子刚好垂到地面,当她把绳子的下端拉开5米后,发现绳子下端距离地面1米,则旗杆的高是()A.8米B.10米C.12米D.13米【分析】根据题意设旗杆的高AB为x米,则绳子AC的长为x米,在Rt△ACH利用勾股定理构建方程即可解决问题.【解析】如图,已知AB=AC,CD⊥BD,CH⊥AB,CD=1米,CH=5米,设AB=AC=x米.在Rt△ACH中,∵AC2=AH2+CH2,∴x2=52+(x﹣1)2,∴x=13,∴AB=13(米),故选:D.4.▱ABCD中,AC交BD于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的是()A.AB=AD B.OA=OB C.AC=BD D.DC⊥BC【分析】矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.据此判断.【解析】根据矩形的判定定理(有一个角是直角的平行四边形是矩形)可得DC⊥BC可证四边形ABCD是矩形.故D不正确.矩形的对角线相等且相互平分,OA=OB,AC=BD可证四边形ABCD为矩形,故B不正确,C不正确.AB=AD时,可证四边形ABCD为菱形,不能证四边形ABCD为矩形.故A正确.故选:A.5.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=()A.5B.4C.3.5D.3【分析】由矩形的性质得出AC=BD,OA=OC,∠BAD=90°,由直角三角形的性质得出AC=BD=2AB=8,得出OC=12AC=4即可.【解析】∵四边形ABCD是矩形,∴AC=BD,OA=OC,∠BAD=90°,∵∠ADB=30°,∴AC=BD=2AB=8,∴OC=12AC=4;故选:B.6.如图,把一块含有30°角的直角三角板ABC 的直角顶点放在矩形桌面CDEF 的一个顶点C 处,桌面的另一个顶点F 与三角板斜边相交于点F ,如果∠1=50°,那么∠AFE 的度数为( )A .10°B .20°C .30°D .40°【分析】由四边形CDEF 为矩形,得到EF 与DC 平行,利用两直线平行同位角相等求出∠AGE 的度数,根据∠AGE 为三角形AGF 的外角,利用外角性质求出∠AFE 的度数即可.【解析】∵四边形CDEF 为矩形,∴EF ∥DC ,∴∠AGE =∠1=50°,∵∠AGE 为△AGF 的外角,且∠A =30°,∴∠AFE =∠AGE ﹣∠A =20°.故选:B .7.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab =8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3【分析】由题意可知:中间小正方形的边长为:a ﹣b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解析】由题意可知:中间小正方形的边长为:a ﹣b ,∵每一个直角三角形的面积为:12ab =12×8=4, ∴4×12ab +(a ﹣b )2=25,∴(a ﹣b )2=25﹣16=9,∴a ﹣b =3,故选:D .8.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面30cm.突然一阵大风吹过,红莲被吹至一边,花朵下部刚好齐及水面,如果知道红莲移动的水平距离为60cm,则水深是()cmA.35B.40C.50D.45【分析】仔细分析该题,可画出草图,关键是水深、红莲移动的水平距离及红莲的高度构成一直角三角形,解此直角三角形即可.【解析】红莲被吹至一边,花朵刚好齐及水面即AC为红莲的长.设水深h尺,由题意得:Rt△ABC中,AB=h,AC=h+30,BC=60,由勾股定理得:AC2=AB2+BC2,即(h+30)2=h2+602,解得:h=45.故选:D.9.如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为()平方米.A.96B.204C.196D.304【分析】连接AC,先利用勾股定理求出AC,再根据勾股定理的逆定理判定△ABC是直角三角形,那么△ABC的面积减去△ACD的面积就是所求的面积.【解析】如图,连接AC.在△ACD中,∵AD=12m,CD=9m,∠ADC=90°,∴AC=15m,又∵AC2+BC2=152+202=252=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积=12×15×20−12×9×12=96(平方米).故选:A.10.如图,直线L1、L2、L3分别过正方形ABCD的三个顶点A、D、C,且相互平行,若L1、L2的距离为2,L2、L3的距离为4,则正方形的边长是()A.2√3B.3√2C.2√5D.5√2【分析】先作CF⊥L2,AE⊥L2,再利用全等三角形的判定和勾股定理求解.【解析】如图,作CF⊥L2,垂足为F,AE⊥L2,垂足为E,∴由同角的余角相等得,∠FCD=∠EDA,又∵AD=CD,∠AED=∠CFD=90°,∴△AED≌△DFC,∴ED=CF=4,AE=2,∴AD=√AE2+ED2=2√5.故选:C.11.如图:将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1,D1处.若∠C1BA=50°,则∠ABE的度数为()A.15°B.20°C.25°D.30°【分析】根据折叠前后对应角相等可知.【解析】设∠ABE=x,根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,所以50°+x+x=90°,解得x=20°.故选:B.12.如图,点A,B为定点,定直线l∥AB,P是l上一动点.点M,N分别为P A,PB的中点,对于下列各值:①线段MN的长;②△PMN的面积;③△P AB的周长;④∠APB的大小;⑤直线MN,AB之间的距离.其中会随点P的移动而不改变的是()A .①②③B .①②⑤C .②③④D .②④⑤ 【分析】利用三角形中位线的性质得MN =12AB ,MN ∥AB ,则可判断①正确;利用平行线的距离得到l与AB 的距离为定值,则可判断⑤正确;利用三角形面积公式可得到△P AB 的面积为定值,所以△PMN 的面积为定值,于是可对②进行判断.【解析】∵点M ,N 分别为P A ,PB 的中点,∴MN 为△P AB 的中位线,∴MN =12AB ,MN ∥AB ,所以①正确;∵直线l ∥AB ,∴l 与AB 的距离为定值,所以⑤正确;∴△P AB 的面积为定值,∴△PMN 的面积为定值,所以②正确.故选:B .二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上13.已知a ,b 都是实数,b =√1−2a +√4a −2−2,则a b 的值为 4 .【分析】利用二次根式有意义的条件得到得{1−2a ≥04a −2≥0,解得a =12,则可得到对应b 的值,然后利用负整数指数幂的意义计算.【解析】根据题意得{1−2a ≥04a −2≥0,解得a =12, 当a =12时,b =﹣2,所以ab =(12)﹣2=4. 故答案为4.14.如图,为了检查平行四边形书架ABCD 的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线AC ,BD 的长度,若二者长度相等,则该书架的侧边与上、下边都垂直,请你说出其中的数学原理 对角线相等的平行四边形是矩形,矩形的四个角都是直角 .【分析】根据矩形的判定定理:对角线相等的平行四边形是矩形即可判定.【解析】这种做法的依据是对角线相等的平行四边形为矩形,故答案为:对角线相等的平行四边形是矩形,矩形的四个角都是直角.(“矩形的四个角都是直角”没写不扣分)15.如图,矩形ABCD 中,E 在AD 上,且EF ⊥EC ,EF =EC ,DE =2,矩形的周长为16,则AE 的长是 3 .【分析】设CD =xcm ,根据矩形的性质得出AB =CD ,AD =BC ,∠A =∠D =90°,求出∠AFE =∠DEC ,证△AFE ≌△DCE ,推出AE =DC =x ,求出AD =BC =x +2,得出方程2(x +x +2)=16,求出即可.【解析】设CD =x ,∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠A =∠D =90°,∵EF ⊥EC ,∴∠FEC =90°,∴∠AFE +∠AEF =90°,∠AEF +∠DEC =90°,∴∠AFE =∠DEC ,在△AFE 和△DCE 中,{∠AFE =∠DEC ∠A =∠D EF =EC ,∴△AFE ≌△DCE (AAS ),∴AE =DC =x ,∵DE =2,∴AD =BC =x +2,∵矩形ABCD 的周长为16,∴2(x +x +2)=16,x =3,即AE =3,故答案为:3.16.如图,菱形ABCD的对角线AC,BD交于点O,E为DC的中点,若OE=3,则菱形的周长为24.【分析】根据菱形的对角线互相平分可得BO=DO,然后求出OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,然后根据菱形的周长公式计算即可得解.【解析】∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=DO,∵点E是CD的中点,∴OE是△BCD的中位线,∴BC=2OE=2×3=6,∴菱形ABCD的周长=4×6=24;故答案为:24.17.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=20,AH=12,那么FG=4.【分析】在直角三角形AHB中,利用勾股定理进行解答即可.【解析】∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正方形,在直角三角形AHB中,由勾股定理得到:BH=√AB2−AH2=√202−122=16.∴FG =GH =BH ﹣BG =16﹣12=4,故答案为:4.18.如图,在四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DP ⊥AB 于P .若四边形ABCD 的面积是18,则DP 的长是 3√2 .【分析】过点D 作DE ⊥DP 交BC 的延长线于E ,先判断出四边形DPBE 是矩形,再根据等角的余角相等求出∠ADP =∠CDE ,再利用“角角边”证明△ADP 和△CDE 全等,根据全等三角形对应边相等可得DE =DP ,然后判断出四边形DPBE 是正方形,再根据正方形的面积公式解答即可.【解析】如图,过点D 作DE ⊥DP 交BC 的延长线于E ,∵∠ADC =∠ABC =90°,∴四边形DPBE 是矩形,∵∠CDE +∠CDP =90°,∠ADC =90°,∴∠ADP +∠CDP =90°,∴∠ADP =∠CDE ,∵DP ⊥AB ,∴∠APD =90°,∴∠APD =∠E =90°,在△ADP 和△CDE 中,{∠ADP =∠CDE ∠APD =∠E AD =CD ,∴△ADP ≌△CDE (AAS ),∴DE =DP ,四边形ABCD 的面积=四边形DPBE 的面积=18,∴矩形DPBE 是正方形,∴DP =√18=3√2.故答案为:3√2.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)(√24+√0.5)﹣2√1 8;(2)(√2+3)(√2−5).【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用多项式乘以多项式展开,然后合并即可.【解析】(1)原式=2√6+√22−√22=2√6;(2)原式=2﹣5√2+3√2−15=﹣13﹣2√2.20.如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.【分析】设OA=OB=x尺,用x表示出OE的长,在直角三角形OEB中,利用勾股定理列出关于x的方程,求出方程的解即可得到结果.【解析】设OA=OB=x尺,∵EC=BD=5尺,AC=1尺,∴EA=EC﹣AC=5﹣1=4(尺),OE=OA﹣AE=(x﹣4)尺,在Rt△OEB中,OE=(x﹣4)尺,OB=x尺,EB=10尺,根据勾股定理得:x2=(x﹣4)2+102,整理得:8x=116,即2x=29,解得:x=14.5,则秋千绳索的长度为14.5尺.21.如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE;(2)连接OE,若AB=4,BC=6,求OE的长.【分析】(1)根据矩形的对角线相等可得AC=BD,对边平行可得AB∥CD,再求出四边形ABEC是平行四边形,根据平行四边形的对边相等可得AC=BE,从而得证;(2)如图,过点O作OF⊥CD于点F,欲求OE,只需在直角△OEF中求得OF、FE的值即可.OF结合三角形中位线求得EF,结合矩形、平行四边形的性质以及勾股定理求得即可.【解析】(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD,又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE;(2)如图,过点O作OF⊥CD于点F,∵四边形ABCD是矩形,∴点O是BD的中点,即OB=OD,∴OF为△BCD的中位线,∴OF=12BC=3,又∵四边形ABEC是平行四边形,∴∠BCD=90°,AB=CE=DC=4.∴CF =DF =12CD =2,∴EF =6.在直角△OEF 中,由勾股定理可得:OE =√OF 2+EF 2=√32+62=3√5.22.如图,在▱ABCD 中,对角线AC ,BD 交于点O ,E 是AD 上一点,连接EO 并延长,交BC 于点F .连接AF ,CE ,EF 平分∠AEC .(1)求证:四边形AFCE 是菱形;(2)若∠DAC =60°,AC =2,求四边形AFCE 的面积.【分析】(1)由“AAS ”证△AOE ≌△COF ,得OF =OE ,证出四边形AFCE 是平行四边形,再证CE =CF ,即可得出结论;(2)由含30°角的直角三角形的性质得出OE =√3AO =√3,则EF =2OE =2√3,由菱形面积公式即可得出答案.【解析】(1)证明:∵四边形ABCD 是平行四边形∴AD ∥BC ,AO =CO ,∴∠AEF =∠CFE ,在△AOE 和△COF 中,{∠AEF =∠CFE∠AOE =∠COF AO =CO,∴△AOE ≌△COF (AAS ),∴OF =OE ,∵AO =CO ,∴四边形AFCE 是平行四边形;∵EF 平分∠AEC ,∴∠AEF=∠CEF,∴∠CFE=∠CEF,∴CE=CF,∴四边形AFCE是菱形;(2)解:由(1)得:四边形AFCE是菱形,∴AC⊥EF,AO=CO=12AC=1,∴∠AOE=90°,∵∠DAC=60°,∴∠AEO=30°,∴OE=√3AO=√3,∴EF=2OE=2√3,∴四边形AFCE的面积=12AC×EF=12×2×2√3=2√3.23.著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c),也可以表示为4×12ab+(a﹣b)2,由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.(1)图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)如图③,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,且CH⊥AB.测得CH=1.2千米,HB=0.9千米,求新路CH 比原路CA少多少千米?(3)在第(2)问中若AB≠AC时,CH⊥AB,AC=4,BC=5,AB=6,设AH=x,求x的值.【分析】(1)梯形的面积可以由梯形的面积公式求出,也可利用三个直角三角形面积求出,两次求出的面积相等列出关系式,化简即可得证;(2)设CA =x ,则AH =x ﹣0.9,根据勾股定理列方程,解得即可得到结果;(3)在Rt △ACH 和Rt △BCH 中,由勾股定理得求出CH 2=CA 2﹣AH 2=CB 2﹣BH 2,列出方程求解即可得到结果;【解析】(1)梯形ABCD 的面积为12(a +b )(a +b )=12a 2+ab +12b 2, 也可以表示为12ab +12ab +12c 2, ∴12ab +12ab +12c 2=12a 2+ab +12b 2, 即a 2+b 2=c 2;(2)∵CA =x ,∴AH =x ﹣0.9,在Rt △ACH 中,CA 2=CH 2+AH 2,即x 2=1.22+(x ﹣0.9)2,解得x =1.25,即CA =1.25,CA ﹣CH =1.25﹣1.2=0.05(千米),答:新路CH 比原路CA 少0.05千米;(3)设AH =x ,则BH =6﹣x ,在Rt △ACH 中,CH 2=CA 2﹣AH 2,在Rt △BCH 中,CH 2=CB 2﹣BH 2,∴CA 2﹣AH 2=CB 2﹣BH 2,即42﹣x 2=52﹣(6﹣x )2,解得:x =94.24.如图,在四边形ABCD 中,∠ABC =90°,AC =AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM =MN ;(2)∠BAD =60°,AC 平分∠BAD ,AC =2,求BN 的长.【分析】(1)根据三角形中位线定理得MN=12AD,根据直角三角形斜边中线定理得BM=12AC,由此即可证明.(2)首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【解析】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=12AD,在Rt△ABC中,∵M是AC中点,∴BM=12AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=12AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=12AC=1,∴BN=√225.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.求证:AM =AD+MC.【探究展示】(2)若四边形ABCD 是长与宽不相等的矩形,其他条件不变,如图2,试判断AM =AD +MC 是否成立?若成立,请给出证明,若不成立,请说明理由;【拓展延伸】(3)若(2)中矩形ABCD 两边AB =6,BC =9,求AM 的长.【分析】(1)先构造出△ADE ≌△NCE ,即可得出结论;(2)同(1)的方法即可得出结论;(3)设出MC =x ,利用(2)的结论得出AM =9+x ,再利用勾股定理建立方程求出CM 即可得出结论.【解析】(1)如图1,延长AE ,BC 相交于N ,∵四边形ABCD 是正方形,∴AD ∥BC ,∴∠DAE =∠ENC ,∵AE 平分∠DAE ,∴∠∠DAE =∠MAE ,∴∠ENC =∠MAE ,在△ADE 和△NCE 中,{∠DAE =∠CNE∠AED =∠NEC DE =CE,∴△ADE ≌△NCE ,∴AD =CN ,∴AM =MN =NC +MC =AD +MC ;(2)结论AM =AD +CM 仍然成立,理由:如图2,延长AE ,BC 相交于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DAE =∠ENC ,∵AE 平分∠DAE ,∴∠DAE =∠MAE ,∴∠ENC =∠MAE ,在△ADE 和△NCE 中,{∠DAE =∠CNE∠AED =∠NEC DE =CE,∴△ADE ≌△NCE ,∴AD =CN ,∴AM =MN =NC +MC =AD +MC ;(3)设MC =x ,则BM =BC ﹣CN =9﹣x , 由(2)知,AM =AD +MC =9+x , 在Rt △ABM 中,AM 2﹣BM 2=AB 2, (9+x )2﹣(9﹣x )2=36,∴x =1,∴AM =AD +MC =10.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(下册)数学期考试题
姓名:________ 班级:________ 学号:______
一、选一选(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每题3分,本题共18分)
1.不等式6-2x <0的解集在数轴上表示为( )
2.下列多项式中,不能运用公式进行分解因式的是( ) A.x 2
-x+
4
1 B.a 4+b 2-2a 2b C.m 4-25 D.x 2+2xy +y 2
3.在ab a b a 2=,2b
ab b a =,bc ac b a =,)1()1(2
2++=x b x a b a 这几个等式中,从左到右的变形一定正确的有( )
A.1个
B.2个
C.3个
D.4个 4.若
d
c
b a =,则下列式子正确的是( ) A.22
d
c b a = B.
d c d b c a =++ C.b c d a = D.m d m c b a ++= 5.下列说法正确的是( )
A.所有的等腰三角形都相似
B.四个角都是直角的两个四边形一定相似
C.所有的正方形都相似
D.四条边对应成比例的两个四边形相似 6.调查某班级的学生对数学老师的喜欢程度,下列最具有代表性的样本是( ) A.调查单数学号的学生 B.调查所有的班级干部 C.调查全体女生 D.调查数学兴趣小组的学生
二、填一填(每空2分,本题共22分) 7.若分式
有意义,则x 满足的条件是_______________________.
8.分解因式:m 2
(x-y)+4n 2
(y-x)=__________________.
9.若4a 2
+kab+9b 2
可以因式分解为(2a-3b)2
,则k 的值为__________. 10.若不等式3a≥5a 成立,则a______________.
11.如图,在△ABC 中,EF∥BC,AE=2BE ,则△AEF 与梯形BCFE 的面积比为___________. 12.下列调查中,___________适宜使用抽样调查方式,___________适宜使用普查方式.(只填相应的序号)
①张伯想了解他承包的鱼塘中的鱼的生长情况, ②了解全国患非典型性肺炎的人数,
③评价八年十班本次期末数学考试的成绩, ④张红想了解妈妈煲的一锅汤的味道. 13.100个数据分成5组,其中第一、二小组的频率之和等于0.11,第四、五小组的频率之和等于0.27,则第三小组的频数等于_______________.
14.命题“同角的余角相等”的条件是______________________,结论是__________________.
15.在人体躯干和身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618越给人以美感. 张女士的身高为1.60米,身体躯干(脚底到肚脐的高度)与身高的比为0.60,那么她应选择约__________厘米的高跟鞋看起来更美.(精确到十分位)
三、画一画(本题共4分)
16.小明在一块玻璃上写上一个“”,然后用手电筒照着这块玻璃,
将“”映到了雪白的墙壁上.如图(将手电筒放在A 处,将点B 映到了C 处),AB=1.5m ,BC=3m.请作出映射后完整图形.(作图要求利用直尺和圆规,不写作法,但要求保留作图痕迹)
四、算一算(每题4分,本题共12分)
17.求不等式 19.解方程:
8.化简求值:,其中a=1,b=-2.
五、做一做(每题5分,本题共15分)
20.如图,已知在△ABC中,D点在AC上,E点在BC的延长线上.求证:∠ADB>∠CDE.
21.如图,已知AB∥ED,∠1=35°,∠2=80°,求∠ACD的度数.
22.某校八年一班的一节数学活动课安排了测量操场上悬挂国旗的旗杆的高度.甲、乙、丙三个学习小组设计的测量方案如图所示:甲组测得图中BO=60米,OD=3.4米,CD=1.7米;乙组测得图中,CD=1.5米,同一时刻影长FD=0.9米,EB=18米;丙组测得图中,EF∥AB、FH∥BD,BD=90米,EF=0.2米,人的臂长(FH)为0.6米,请你任选一种方案,利用实验数据求出该校旗杆的高度
.
六、想一想(每题7分,本题共14分)
23.随着IT技术的普及,越来越多的学校开设了微机课.某初中计划拿出72万元购买电脑,由于团体购买,结果每台电脑的价格比计划降低了500元,因此实际支出了64万元.学校共买了多少台电脑?若每台电脑每天最多可使用4节课,这些电脑每天最多可供多少学生上微机课?(该校上微机课时规定为单人单机)
24.某工艺品厂的手工编织车间有工人20名,每人每天可编织5个座垫或4个挂毯.在这20名工人中,如果派x人编织座垫,其余的编织挂毯.已知每个座垫可获利16元,每个挂毯可获利24元.
(1)写出该车间每天生产这两种工艺品所获得的利润y(元)与x(人)之间的函数关系式;
(2)若使车间每天所获利润不小于1800元,最多安排多少人编织座垫?
七、试一试(25题7分,26题8分,本题共15分)
25.已知:D是△ABC中BC边上的一点,AB=6cm,BC=4cm,BD=1.5cm,在AB边上是否存在点E,使由顶点B、D、E组成的三角形与△ABC相似?如果存在,求出BE的长;如果不存在,请说明理由.
26.为了迎接奥运,某市教育局要举办中学生体育知识竞赛.在大赛之前红光中学和育英中学先举办了一次对抗赛,每所学校各选派10人参赛,两校代表队取得的成绩如下表所示:
(1)分别计算两队平均成绩;
(2)分别计算两队的极差和方差;
(3)这两个队的成绩各有什么特点?
(4)你认为哪个队的团体赛的成绩会好一些?个人比赛中,哪个队的队员夺冠的可能性更大?请说明理由.。

相关文档
最新文档