三角函数的图像与性质
三角函数图像与性质知识点总结

三角函数图像与性质知识点总结The Standardization Office was revised on the afternoon of December 13, 2020函数图像与性质知识点总结一、三角函数图象的性质 1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0) ⎝ ⎛⎭⎪⎪⎫π2,1 (π,0)⎝ ⎛⎭⎪⎪⎫32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),⎝ ⎛⎭⎪⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎪⎫3π2,0,(2π,1)2.三角函数的图象和性质函数 性质y =sin x y =cos x y =tan x 定义域 R R{x |x ≠k π+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴: x =k π+π2(k ∈Z);对称轴:x =k π(k ∈Z) 对称中心:对称中心:⎝ ⎛⎭⎪⎪⎫k π2,0 (k ∈Z)3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期)4.求三角函数值域(最值)的方法:(1)利用sin x、cos x的有界性;关于正、余弦函数的有界性由于正余弦函数的值域都是[-1,1],因此对于∀x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;含参数的最值问题,要讨论参数对最值的影响.(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.利用换元法求三角函数最值时注意三角函数有界性,如:y =sin 2x -4sin x +5,令t =sin x (|t |≤1),则y =(t -2)2+1≥1,解法错误.5.求三角函数的单调区间时,应先把函数式化成形如y =A sin(ωx +φ) (ω>0)的形式,再根据基本三角函数的单调区间,求出x 所在的区间.应特别注意,应在函数的定义域内考虑.注意区分下列两题的单调增区间不同;利用换元法求复合函数的单调区间(要注意x 系数的正负号) (1)y =sin ⎝ ⎛⎭⎪⎪⎫2x -π4;(2)y =sin ⎝ ⎛⎭⎪⎪⎫π4-2x .6、y =A sin(ωx +φ)+B 的图象求其解析式的问题,主要从以下四个方面来考虑:①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点2;②B 的确定:根据图象的最高点和最低点,即B =最高点+最低点2;③ω的确定:结合图象,先求出周期,然后由T =2πω(ω>0)来确定ω;④φ的确定:把图像上的点的坐标带入解析式y =A sin(ωx +φ)+B ,然后根据φ的范围确定φ即可,例如由函数y =A sin(ωx +φ)+K 最开始与x 轴的交点(最靠近原点)的横坐标为-φω(即令ωx +φ=0,x =-φω)确定φ.二、三角函数的伸缩变化先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−→ 得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. .。
高中数学三角函数的图像与性质优秀课件

1
2 3
2
2
1 2
3 2
2
y cos x,x R
3 2
2
正、余弦函数的性质
y
2
sin
1 2
x
4
④周期性:形如y Asin x 或y Aco1sx 的
函数的周期T 2 .
2 1
3 2 5 3 7 4
2
2
2
2
y sin 2x 1
1
2 3 2
2 1
2
3 2
例1:已知函数y
Asin x A
0,
0,
2
,x
R
的部分图像,求函数解析式.
解:由图知A 2.
又 T 3 1 2,故T 8, 即 2 8, .
4
4
令 1 = 得= .
4
2
4
综上得,y
2sin
4
x
4
.
例2:函数f
x
Asin
x
0,
2
,x
R
的部分图像如图,则函数表达式为(
x
0
4
3
2
4
2x
0
3
2
2
2
y sin 2x
0
1
0
1
0
五点:0,0, 4 ,1, 2 ,0,
3
4
,1,,0.
1
3 2
2 1 2
2
五点作图法
例1:用“五点法”作y
2sin
1 2
x
4
,x
2
,7 2
的图像.
x
3
5
7
2
2
三角函数图像与性质

三角函数图像与性质R ,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭1、函数522y sin x π⎛⎫=-⎪⎝⎭是( ) A 、奇函数 B 、偶函数 C 、非奇非偶函数 D 、以上都不对2、y =sin 2x 是( )A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数3、函数y =sin (x +2π)(x ∈[-2π,2π])是( ) A.增函数 B.减函数 C.偶函数 D.奇函数 4、在下列各区间中,函数y =sin (x +4π)的单调递增区间是( )A.[2π,π] B.[0,4π] C.[-π,0] D.[4π,2π] 5、在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ) A.(4π,2π)∪(π,45π) B.(4π,π) C.(4π,45π)D.(4π,π)∪(45π,23π) 6、下列函数中,周期是2π的偶函数是( ) A. y =sin4x B. y =cos 22x -sin 22x C. y =tan2x D. y =cos2x7、函数y =sin (3π-2x )+cos2x 的最小正周期是( ) A.2πB.πC.2πD.4π 8、若f (x )sin x 是周期为π的奇函数,则f (x )可以是( ) A. sin x B. cos x C.sin2x D.cos2x9、函数y =cos 2x -3cos x +2的最小值为( ) A.2 B.0 C.-41 D.610、在[0,2π]上满足sin x ≥21的x 的取值范围是( ) A .[0,6π] B .[6π,65π] C .[6π,32π] D .[65π,π]11、关于函数f (x )=4sin (2x +3π)(x ∈R ),有下列命题: ①f (x )最大值为4②y =f (x )的表达式可改写为y =4cos (2x -6π);③y =f (x )的图象关于点(-6π,0)对称;④y =f (x )的图象关于直线x =-6π对称.⑤由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍;其中正确的命题的序号是 (注:把你正确的命题的序号都填上). 13、函数y =sin2x +1的最小正周期为 .14、24y sin(x )π=-的单增区间为____________.15、f (x )=|sin x |的最小正周期为_____________ 16、已知函数f (x )=sin(2x-6π),x ∈R .(1)求f (x )的最小正周期(2)当函数f (x )取得最大值时,求自变量x 的集合;(3)求f (x )的单调区间。
三角函数的图像与性质

三角函数的图像与性质三角函数是数学中重要的概念之一,它们不仅在几何学和三角学中起着重要作用,还在物理学、工程学等领域有广泛的应用。
本文将探讨三角函数的图像和性质,帮助读者更好地理解和应用三角函数。
一、正弦函数的图像与性质正弦函数是最基本的三角函数之一,记为y = sin(x)。
它的图像是一条连续的曲线,在坐标系中呈现周期性变化。
正弦函数的性质如下:1. 周期性:正弦函数的周期是2π,即在一个周期内,y = sin(x)的值在0到2π之间循环变化。
2. 奇偶性:正弦函数是奇函数,即满足y = sin(-x) = -sin(x)。
这意味着正弦函数在原点对称。
3. 取值范围:正弦函数的值域在[-1, 1]之间,即-1 ≤ sin(x) ≤ 1。
当x = 0时,sin(x) = 0,当x = π/2时,sin(x) = 1,当x = -π/2时,sin(x) = -1。
4. 单调性:在一个周期内,正弦函数先递增后递减。
当x = π/2 +2kπ(k为整数)时,取得极大值1;当x = -π/2 + 2kπ(k为整数)时,取得极小值-1。
二、余弦函数的图像与性质余弦函数是与正弦函数密切相关的三角函数,记为y = cos(x)。
它的图像也是一条连续的曲线,具有周期性变化。
余弦函数的性质如下:1. 周期性:余弦函数的周期同样为2π,即在一个周期内,y = cos(x)的值在0到2π之间循环变化。
2. 奇偶性:余弦函数是偶函数,即满足y = cos(-x) = cos(x)。
这意味着余弦函数关于y轴对称。
3. 取值范围:余弦函数的值域同样在[-1, 1]之间,即-1 ≤ cos(x) ≤ 1。
当x = 0时,cos(x) = 1,当x = π/2时,cos(x) = 0,当x = π时,cos(x) = -1。
4. 单调性:在一个周期内,余弦函数先递减后递增。
当x = 2kπ(k为整数)时,取得极大值1;当x = π + 2kπ(k为整数)时,取得极小值-1。
三角函数的图像和性质

(ω>0)的最小正周期为π,则函数 ( π B.关于直线x= 对称 8 π D.关于点8 ,0对称 )
π 2π 解析:∵f(x)=sin ωx+4 的最小正周期为π,∴ ω =π,ω=2, π π π 3π ∴f(x)=sin 2x+4 .当x= 时,2x+ = ,∴A、C错误;当x 4 4 4
[即时应用] 求函数 y=cos x+sin
2
π x|x|≤ 4的最大值与最小值.
π 2 2 解:令 t=sin x,∵|x|≤ ,∴t∈- , . 4 2 2
∴y=-t
2
1 2 5 +t+1=-t-2 + , 4
1- 2 1 5 2 ∴当 t= 时,ymax= ,当 t=- 时,ymin= . 2 4 2 2 ∴函数 y=cos x+sin
2.求三角函数单调区间的 2 种方法 (1)代换法: 就是将比较复杂的三角函数含自变量的代 数式整体当作一个角 u(或 t),利用基本三角函数的单调性 列不等式求解. (2)图象法:画出三角函数的正、余弦曲线,结合图象 求它的单调区间.
[演练冲关] π 1.最小正周期为π且图象关于直线x= 对称的函数是( 3
π π B,因为sin2×3-6 =sin
π =1,所以选B. 2
答案:B
2.函数
π y=cos4-2x的单调减区间为____________. π π y=cos4-2x=cos2x-4 得
解析:由
π 2kπ≤2x- ≤2kπ+π(k∈Z), 4 π 5π 解得 kπ+ ≤x≤kπ+ (k∈Z). 8 8
π π π π 3 在 3,2 上单调递减知, = ,∴ω= . 2ω 3 2
三角函数的图象与性质

-
;
-1
y=cosx
2 3
4 5 4 5
6 x 6 x
五.定义域 、值域及取到最值时相应的x的集合:
-6 -5
-4 -3
复习回顾
-2 -
y y=sinx
1 o
-1
2 3
y
si-n6x的对称-5轴:x
k -4
2-,3对 称点-:2(k
,0);
-
y cosx的对称轴:x k , 对称点:(k ,0);
1.4.1正弦、余弦函数的图象
复习
回顾 三角函数
三角函数线
正弦函数 余弦函数 正切函数
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
-1
O
M A(1,0) x
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象?
途径:利用单位圆中正弦、余弦线来解决。
描图:用光滑曲线
复习回顾
一.正弦余弦函数的作图: 几何描点法(利用三角函数线) 五点法作简图
二.周期性:
函数y Asin(x )和y Acos(x ),x R的周期T 2 | |
三.奇偶性:
y sin x为奇函数,图像关于原点对称; y cosx为偶函数图像关于y轴对称。
-6 -5
-4 -3
复习回顾 y y=sinx
(0,11)
3
( 2 ,1)
-
(-o12 ,0)
( 2 ,0)
2
( ,-1)
3
线
4
5 6 x
正弦、余弦函数的图象
y
五点画图法
1
(
2
,1)
三角函数的图像及其性质

三角函数的图像及其性质1、三角函数的图像及性质sin y xsin y A x k图像值域周期对称轴2x k2x k对称中心(零点)令x k 代入求y令x k 代入,求出x 和y 单调增区间2,222x k k2,222x k k单调减区间32,222x k k32,222x k kcos y xcos y A x k图像值域周期对称轴x kx k 对称中心(零点)2x k代入,求y 2x k求出x 和y 单调增区间 2,2x k k 2,2x k k 单调减区间2,2x k k2,2x k k tan y x图像定义域值域周期单调性与对称性性质【考点分类】考点一:图像变换:1.把函数y =sin x 的图象向右平移个单位得到y =g (x )的图象,再把y =g (x )图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为()A.B.C.D.2.将函数f (x )=sin x 图象上所有点的横坐标变为原来的(ω>0),纵坐标不变,得到函数g (x )的图象,若g (x )的最小正周期为6π,则ω=()A.B.6C.D.33.将函数y =2sin2x 图象上的所有点向右平移个单位,然后把图象上所有点的横坐标缩短为原来的倍,(纵坐标不变)得到y =f (x )的图象,则f (x )等于()A.2sin(x ﹣)B.2sin(x ﹣)C.2sin(4x ﹣)D.2sin(4x ﹣)4.已知曲线C 1:y =cos x ,C 2:y =sin(2x +),则下面结论正确的是()A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再向右平移个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再向左平移个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的,纵坐标不变,再向右平移个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的,纵坐标不变,再向左平移个单位长度,得到曲线C 25.把函数y =cos(3x +4)的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是()A 向右平移4 B 向左平移4 C 向右平移12 D 向左平移126..函数32sin( x y 的图象是由2sin xy 的图象沿x 轴()得到的。
3.4三角函数的图像与性质

例2 求函数y=cos3x的最大值及取得最大值时自变量x的集合.
解:令t=3x,y=cos3x=cost,ymax=1.
因为使函数cost取得最大值的t的集合为{t|t=2kΠ,k∈Z}因为t=3x,
所以{x|x=23kΠ,k∈Z}
练习
1.比较cos5与cos7值的大小.
解:5=36°,7≈26°,因为区间[0,Π]是减函数,所以cos5<cos7.
y=sinx是奇函数,从图像来看,y=sinx的图像关于原点对称,也能判断
出y=sinx是奇函数.
周期性:物体有规律地重复出现,做周期运动.
正弦曲线的部分图像是重复出现的,因此正
弦函数具有周期性.
周期函数:一般地,对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内
的每一个值,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么,函数f(x)就
下面五个点在确定图像形状
时起着关键作用:
(0,1),(
,0),(Π,2
1),(3
,0),(2Π,1)
2
这五个点描出后,余弦函数
y=cosx(x∈[0,2Π]) 的 图 像
形状就基本确定了.
0=0°,2=90°,Π=180°,3
=270°,2Π=360°,这五个点都是相差90°角
2
的关系.像这样画余弦函数的方法称为五点法.
(2)求出它的最大值和最小值;
(3)判断它的奇偶性;
(4)指出这个函数在[0,2Π]上的单调区间.
(2)ymin=-0.5,ymax=0.5.
(3)函数y=12sinx是奇函数.
(4)单调减区间为[ 2 , 3
],
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数的图像与性质
一.三角函数的图像:
1. 利用五点法作图
2. 利用函数的图像变换
三角函数图像的特点:(1)周期性(2)对称性(点对称、线对称)
二.三角函数的性质:
1. 奇偶性、周期性、有界性
2. 单调性、最值
例1.函数y =Asin (ωx +φ)(A>0,ω>0)的图像上相邻的最低点与最高点的坐标分别为5312ππ11(,-3)和(,)12
,求函数解析式 练习:
1. 求函数y =sin (2x -
6π)的对称中心和对称轴 变:如果函数x
x y sin a cos 2=+2的图像关于直线x 2π=-
对称,求a 的值 2. 求方程sinx -tanx =0,x 22
ππ
∈(-,)的解的个数 3. 已知21()sin sin cos f x x x x =+,22()cos sin cos f x x x x =+,判断:1()y f x =与
2()y f x =的图象间的位置关系。
例2.求下列函数的定义域、值域:
(1)22sec tan sec tan x x
y x x -=+
(2)y =lg (sinx +cosx -sinxcosx +3)
练习:(1)求函数y =acosx +b 的最值
变:若函数22cos sin cos y a x x x =+的最小值为-1,求a 的值 再变:函数(1cos )sin 2x
y x =+的最大值
(2)求函数sin sin y x x =+的值域
例3.判断下列函数是否为周期函数?若是,求出最小正周期
(1) y =tan (2x +3
π)+1 (2) cos y x =
(3) sin y x =
(4) sin()23x
y π
=-+cos()32x
π
-
练习:(1)欲使y =Asin ωx (A>0,ω>0)在[0,1]上至少出现50个最小值,求ω的最小值
(2)求函数sin sin 3()cos cos 3x x
f x x x +=+的周期
例4.判断下列函数的奇偶性:
(1)5()sin(2)2
f x x π=-
(2)()lg(sin f x x =+
(3)1sin cos ()1sin cos x x
f x x x +-=++
(4)()tan()tan()44f x x x ππ
=+
+-
练习:已知偶函数 ()cos sin sin()(tan 2)sin sin f x x x x θθθθ=--+--的最小值为0,求()f x 的最大值及此时x 的集合。
例5.试研究函数12
()log (sin cos )f x x x =-的性质
练习(1)下列函数既是(0,
)2π上的增函数,又是以π为周期的偶函数的是( ) A .sin cos 22x
x y =
B .y =cos2x
C .cot 2y x =
D .tan 2y x =
(2)若关于x 的方程sin cos 0x x a +-=在[-π,π]上有4个解,求a 的取值范围
例6.已知数列{}n a ,sin 36n n a π
π⎛⎫=+ ⎪⎝⎭
,12n n s a a a =+++ ,求:2006s
例7.设函数()f x a b =⋅ ,向量(2cos ,1)a x = ,(cos 2)b x x = ,若函数2sin 2y x
=的图象按向量(,)(||2
c m n m π=< 平移后得到函数()y f x =的图象,求:,m n 的值。
例8.已知函数()f x 是定义在R 上的单调递减的奇函数,且当02
πθ≤≤时,恒有2
(cos 2)(4sin 3)0f t f θθ-+-≥成立,求t 的取值范围。
练习:
已知方程[]sin cos 0,0,x x m x π+-=∈,
(1)当方程有解时,求m 的范围;
(2)当方程只有一个解时,求m 的范围;
(3)当方程有两个不同解时,αβ,求sin()αβ+。