2015年内蒙古通辽市中考数学试卷
内蒙古通辽市2015年中考数学真题试题(含解析)

2015年广东省佛山市中考数学试卷(解析版)一.选择题(每小题3分,共300分,在每小题给出的四个选项中只有一项是符合题目要求的))×(﹣.4.(3分)(2015•佛山)如图所示的几何体是由若干大小相同的小立方块搭成,则这个几何体的左视图是()5.(3分)(2015•佛山)一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是∴摸到黄球的概率是=,6.(3分)(2015•佛山)不等式组的解集是()解:7.(3分)(2015•佛山)如图,在△ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=45°,∠C=60°.则∠EFD=()29.(3分)(2015•佛山)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()解:设原正方形的边长为10.(3分)(2015•佛山)下列给出5个命题:①对角线互相垂直且相等的四边形是正方形②六边形的内角和等于720°③相等的圆心角所对的弧相等④顺次连接菱形各边中点所得的四边形是矩形⑤三角形的内心到三角形三个顶点的距离相等.在同圆或等圆中,相等的圆心角所对的弧相等,所以③错误;二.填空题(每小题3分,共15分)11.(3分)(2015•佛山)地球半径约为6 400 000m,这个数字用科学记数法表示为 6.4×106m.12.(3分)(2015•佛山)分式方程的解是 3 .解分式方程.13.(3分)(2015•佛山)如图,在Rt△ABC中,AB=BC,∠B=90°,AC=10.四边形BDEF是△ABC 的内接正方形(点D、E、F在三角形的边上).则此正方形的面积是25 .AC=10∴AB=BC=10,=,即=14.(3分)(2015•佛山)如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(﹣1,0).现将△ABC绕点A顺时针旋转90°,则旋转后点C的坐标是(2,1).15.(3分)(2015•佛山)各边长度都是整数、最大边长为8的三角形共有10 个.三.解答题(16-20题每小题6分,21-23题每小题6分,24题10分,25题11分共75分)16.(6分)(2015•佛山)计算:+20150+(﹣2)3+2×sin60°.×=17.(6分)(2015•佛山)计算:﹣.﹣==18.(6分)(2015•佛山)如图,△ABC是等腰三角形,AB=AC,请你用尺规作图将△ABC分成两个全等的三角形,并说明这两个三角形全等的理由.(保留作图痕迹,不写作法),19.(6分)(2015•佛山)若正比例函数y=k1x的图象与反比例函数y=的图象有一个交点坐标是(﹣2,4)(1)求这两个函数的表达式;(2)求这两个函数图象的另一个交点坐标.y=.;.解得20.(6分)(2015•佛山)如图,在水平地面上竖立着一面墙AB,墙外有一盏路灯D.光线DC恰好通过墙的最高点B,且与地面形成37°角.墙在灯光下的影子为线段AC,并测得AC=5.5米.(1)求墙AB的高度(结果精确到0.1米);(参考数据:tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)(2)如果要缩短影子AC的长度,同时不能改变墙的高度和位置,请你写出两种不同的方法.tanC=,21.(8分)(2015•佛山)某中学初二年级抽取部分学生进行跳绳测试.并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟跳100~109次的为中等;每分钟跳110~119次的为良好;每分钟跳120次及以上的为优秀.测试结果整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)参加这次跳绳测试的共有50 人;(2)补全条形统计图;(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是72°;(4)如果该校初二年级的总人数是480人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.)“中等”部分所对应的圆心角的度数是:×360°=72°,)该校初二年级跳绳成绩为“优秀”的人数为:480×=96某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?,解得:23.(8分)(2015•佛山)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.(1)若∠E=∠F时,求证:∠ADC=∠ABC;(2)若∠E=∠F=42°时,求∠A的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小.∴∠A=90°﹣24.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x 刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.抛物线于点y=y=x+3与抛物线的解析式联立,得到方程组,解方程组即可求出点)联立两解析式可得:,解得:,或的坐标为(,×2×4+×(+4)×(﹣)﹣××=4+﹣;y=x+b∴4=×2+b,解得y=x+3,解得,,)25.(11分)(2015•佛山)如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值.ACAO=AC AH=AC ACAC b=AC AC ∴AO=AC==.∴AO=AC=2AG)∵AE=EF=FD,===,=,即AC∴a=AG=ACAC﹣AC=ACAC﹣AC=AC::2015年内蒙古通辽市中考数学试卷一、选择题(本题包括10个小题,每小题3分,共30分,每小题只有一个正确选项)1.(3分)(2015•通辽)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查2.(3分)(2015•通辽)的算术平方根是()A.﹣2 B.±2 C. D. 23.(3分)(2015•通辽)实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A. 4 B. 2 C. 1 D. 34.(3分)(2015•通辽)已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2) B.(﹣2,﹣3) C.(1,﹣6) D.(﹣6,1)5.(3分)(2015•通辽)下列说法中,正确的是()A.﹣x2的系数是 B.πa2的系数是C. 3ab2的系数是3a D.xy2的系数是6.(3分)(2015•通辽)如图,由几个相同的小正方体搭成的一个几何体,它的俯视图为()A. B. C. D.7.(3分)(2015•通辽)一组数据2,0,1,x,3的平均数是2,则这组数据的方差是() A. 2 B. 4 C. 1 D. 38.(3分)(2015•通辽)如图,已知AB∥CD,若∠A=25°,∠E=40°,则∠C等于()A.40° B. 65° C.115° D.25°9.(3分)(2015•通辽)已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①② B.①③ C.③ D.①②④10.(3分)(2015•通辽)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A. 8 B. 20 C. 8或20 D. 10二、填空题(本题包括7小题,每小题3分,共21分)11.(3分)(2015•通辽)在数1,0,﹣1,|﹣2|中,最小的数是.12.(3分)(2015•通辽)因式分解:x3y﹣xy= .13.(3分)(2015•通辽)函数y=中,自变量x的取值范围是.14.(3分)(2015•通辽)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为.15.(3分)(2015•通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程.16.(3分)(2015•通辽)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为.17.(3分)(2015•通辽)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015= .三、解答题(本题包括9个小题,共69分,请写出解答的文字说明、证明过程或计算步骤)18.(12分)(2015•通辽)(1)计算:(π﹣)0+()﹣1﹣﹣tan30°;(2)解方程:+=1;(3)解不等式组,并把解集在数轴上表示出来.19.(5分)(2015•通辽)先化简,再求值:÷(a﹣),其中a,b满足|a﹣3|+(b﹣2)2=0.20.(5分)(2015•通辽)如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)21.(5分)(2015•通辽)如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.22.(7分)(2015•通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.23.(6分)(2015•通辽)课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B﹣良好,C﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调查了多少名学生?(2)C类女生有名,D类男生有名,并将条形统计图补充完整;(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.24.(8分)(2015•通辽)光明文具厂工人的工作时间:每月26天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资920元,按月结算.该厂生产A,B两种型号零件,工人每生产一件A 种型号零件,可得报酬0.85元,每生产一件B种型号零件,可得报酬1.5元,下表记录的是工人小王的工作情况:生产A种型号零件/件生产B种型号零件/件总时间/分2 2 706 4 170根据上表提供的信息,请回答如下问题:(1)小王每生产一件A种型号零件、每生产一件B种型号零件,分别需要多少分钟?(2)设小王某月生产A种型号零件x件,该月工资为y元,求y与x的函数关系式;(3)如果生产两种型号零件的数目限制,那么小王该月的工资数目最多为多少?25.(9分)(2015•通辽)如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O于点H,E为上一点,连接ME,NE,NE交MQ于点F,且ME2=EF•EN.(1)求证:QN=QF;(2)若点E到弦MH的距离为1,cos∠Q=,求⊙O的半径.26.(12分)(2015•通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M 的坐标;若不存在,请说明理由.[注:3+2=(+1)2].2015年内蒙古通辽市中考数学试卷参考答案与试题解析一、选择题(本题包括10个小题,每小题3分,共30分,每小题只有一个正确选项)1.(3分)(2015•通辽)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查考点:全面调查与抽样调查.分析:一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.解答:解:A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查;故选D.点评:本题考查了全面调查与抽样调查的应用,一般由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.2.(3分)(2015•通辽)的算术平方根是()A.﹣2 B.±2 C. D. 2考点:算术平方根.分析:首先求出的值是2;然后根据算术平方根的求法,求出2的算术平方根,即可求出的算术平方根是多少.解答:解:∵,2的算术平方根是,∴的算术平方根是.故选:C.点评:此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.3.(3分)(2015•通辽)实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A. 4 B. 2 C. 1 D. 3考点:无理数.分析:掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.解答:解:在实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1)中,无理数有:﹣π,sin60°,0.3131131113…(相邻两个3之间依次多一个1),共3个,故选D.点评:此题主要考查了无理数的定义,熟记无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数是解题的关键.4.(3分)(2015•通辽)已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2) B.(﹣2,﹣3) C.(1,﹣6) D.(﹣6,1)考点:反比例函数图象上点的坐标特征.专题:计算题.分析:把已知点坐标代入反比例解析式求出k的值,即可做出判断.解答:解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选D.点评:此题考查了反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.5.(3分)(2015•通辽)下列说法中,正确的是()A.﹣x2的系数是 B.πa2的系数是C. 3ab2的系数是3a D.xy2的系数是考点:单项式.分析:根据单项式的概念求解.解答:解:A、﹣x2的系数是﹣,故本选项错误;B、πa2的系数是π,故本选项错误;C、3ab2的系数是3,故本选项错误;D、xy2的系数,故本选项正确.故选D.点评:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.6.(3分)(2015•通辽)如图,由几个相同的小正方体搭成的一个几何体,它的俯视图为()A. B. C. D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面向下看,从左到右有三排,且其正方形的个数分别为2、3、1,故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面向下看得到的视图.7.(3分)(2015•通辽)一组数据2,0,1,x,3的平均数是2,则这组数据的方差是() A. 2 B. 4 C. 1 D. 3考点:方差;算术平均数.分析:先根据平均数的定义确定出x的值,再根据方差的计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]求出这组数据的方差.解答:解:由平均数的公式得:(0+1+2+3+x)÷5=2,解得x=4;则方差=[(0﹣2)2+(1﹣2)2+(2﹣2)2+(3﹣2)2+(4﹣2)2]÷5=2.故选:A.点评:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.8.(3分)(2015•通辽)如图,已知AB∥CD,若∠A=25°,∠E=40°,则∠C等于()A.40° B.65° C.115° D.25°考点:平行线的性质.分析:由平行线的性质可求得∠EFB=∠C,在△AEF中由三角形外角的性质可求得∠EFB,可求得答案解答:解:∵∠EFB是△AEF的一个外角,∴∠EFB=∠A+∠E=25°+40°=65°,∵AB∥CD,∴∠C=∠EFB=65°,故选B.点评:本题主要考查平行线的性质,掌握平行线的性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.9.(3分)(2015•通辽)已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①② B.①③ C.③ D.①②④考点:算术平方根;平方根;无理数;不等式的解集.分析:①根据边长为m的正方形面积为12,可得m2=12,所以m=2,然后根据是一个无理数,可得m是无理数,据此判断即可.②根据m2=12,可得m是方程m2﹣12=0的解,据此判断即可.③首先求出不等式组的解集是4<m<5,然后根据m=2<2×2=4,可得m不满足不等式组,据此判断即可.④根据m2=12,而且m>0,可得m是12的算术平方根,据此判断即可.解答:解:∵边长为m的正方形面积为12,∴m2=12,∴m=2,∵是一个无理数,∴m是无理数,∴结论①正确;∵m2=12,∴m是方程m2﹣12=0的解,∴结论②正确;∵不等式组的解集是4<m<5,m=2<2×2=4,∴m不满足不等式组,∴结论③不正确;∵m2=12,而且m>0,∴m是12的算术平方根,∴结论④正确.综上,可得关于m的说法中,错误的是③.故选:C.点评:(1)此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.(2)此题还考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.(3)此题还考查了不等式的解集的求法,以及正方形的面积的求法,要熟练掌握.10.(3分)(2015•通辽)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A. 8 B. 20 C. 8或20 D. 10考点:菱形的性质;解一元二次方程-因式分解法.分析:边AB的长是方程y2﹣7y+10=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.解答:解:∵解方程y2﹣7y+10=0得:y=2或5∵对角线长为6,2+2<6,不能构成三角形;∴菱形的边长为5.∴菱形ABCD的周长为4×5=20.故选B.点评:本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.二、填空题(本题包括7小题,每小题3分,共21分)11.(3分)(2015•通辽)在数1,0,﹣1,|﹣2|中,最小的数是﹣1 .考点:有理数大小比较.专题:计算题.分析:利用绝对值的代数意义化简后,找出最小的数即可.解答:解:在数1,0,﹣1,|﹣2|=2中,最小的数是﹣1.故答案为:﹣1.点评:此题考查了有理数的大小比较,弄清有理数的比较方法是解本题的关键.12.(3分)(2015•通辽)因式分解:x3y﹣xy= xy(x﹣1)(x+1).考点:提公因式法与公式法的综合运用.分析:首先提取公因式xy,再运用平方差公式进行二次分解.解答:解:x3y﹣xy,=xy(x2﹣1)…(提取公因式)=xy(x+1)(x﹣1).…(平方差公式)故答案为:xy(x+1)(x﹣1).点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(3分)(2015•通辽)函数y=中,自变量x的取值范围是x≥﹣1且x≠﹣3 .考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x+1≥0;分母不等于0,可知:x+3≠0,所以自变量x的取值范围就可以求出.解答:解:根据题意得:x+1≥0且x+3≠0,解得:x≥﹣1且x≠﹣3.故答案为:x≥﹣1且x≠﹣3.点评:本题考查了函数自变量的取值范围,使得分式和根号有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14.(3分)(2015•通辽)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为42°.考点:圆周角定理.分析:根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.解答:解:∵OA=OB,∠OBA=48°,∴∠OAB=∠OBA=48°,∴∠AOB=180°﹣48°×2=84°,∴∠C=∠AOB=42°,故答案为:42°.点评:此题综合运用了三角形的内角和定理以及圆周角定理.解决本题的关键是熟记一条弧所对的圆周角等于它所对的圆心角的一半.15.(3分)(2015•通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程﹣=15 .考点:由实际问题抽象出分式方程.分析:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,根据题意可得,实际比原计划少用15天完成任务,据此列方程即可.解答:解:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,由题意得,﹣=15.故答案为:﹣=15.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.16.(3分)(2015•通辽)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为8cm2或2cm2或2cm2.考点:勾股定理;等腰三角形的判定;矩形的性质.专题:分类讨论.分析:因为等腰三角形腰的位置不明确,所以分三种情况进行讨论:(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.解答:解:分三种情况计算:(1)当AE=AF=4时,如图:∴S△AEF=AE•AF=×4×4=8(cm2);(2)当AE=EF=4时,如图:则BE=5﹣4=1,BF===,∴S△AEF=•AE•BF=×4×=2(cm2);(3)当AE=EF=4时,如图:则DE=7﹣4=3,DF===,∴S△AEF=AE•DF=×4×=2(cm2);故答案为:8或2或2.点评:本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论,有一定的难度.17.(3分)(2015•通辽)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015= 2 .考点:规律型:数字的变化类.分析:根据表达式求出前几个数不难发现,每三个数为一个循环组依次循环,用2015除以3,根据商和余数的情况确定a2015的值即可.解答:解:根据题意得,a2==2,a3==﹣1,a4==,…,依此类推,每三个数为一个循环组依次循环,∵2015÷3=671…2,∴a2015是第671个循环组的第2个数,与a2相同,即a2015=2.故答案为:2.点评:本题考查数字的变化规律,计算并观察出每三个数为一个循环组依次循环是解题的关键.三、解答题(本题包括9个小题,共69分,请写出解答的文字说明、证明过程或计算步骤)18.(12分)(2015•通辽)(1)计算:(π﹣)0+()﹣1﹣﹣tan30°;(2)解方程:+=1;(3)解不等式组,并把解集在数轴上表示出来.考点:实数的运算;零指数幂;负整数指数幂;解分式方程;在数轴上表示不等式的解集;解一元一次不等式组;特殊角的三角函数值.分析:(1)分别根据0指数幂及负整数指数幂的计算法则、数的开方法则及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先把分式方程化为整式方程,求出x的值,在进行检验即可;(3)分别求出各不等式的解集,再求出其公共解集即可.解答:解:(1)原式=1+2﹣3﹣=3﹣;(2)方程两边同时乘以(x+3)(x﹣3)得,3+x(x+3)=x2﹣9,解得x=4,代入(x+3)(x﹣3)得,(4+3)(4﹣3)=7≠0,故x=4是原分式方程的解;(3),由①得,y≥1,由②得,y<2,故不等式组的解集为:1≤y<2.点评:本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则、数的开方法则及特殊角的三角函数值是解答此题的关键.19.(5分)(2015•通辽)先化简,再求值:÷(a﹣),其中a,b满足|a﹣3|+(b﹣2)2=0.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=÷=•=,∵|a﹣3|+(b﹣2)2=0,∴a﹣3=0,b﹣2=0,即a=3,b=2,则原式=1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(5分)(2015•通辽)如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:首先过点E作EF⊥BC于点F,过点E作EN⊥AB于点N,再利用坡度的定义以及勾股定理得出EF、FC的长,求出AB的长即可.解答:解:过点E作EF⊥BC于点F,过点E作EN⊥AB于点N,∵建筑物AB后有一座假山,其坡度为i=1:,∴设EF=x,则FC=x,∵CE=20米,∴x2+(x)2=400,解得:x=10,则FC=10m,∵BC=25m,∴BF=NE=(25+10)m,∴AB=AN+BN=NE+EF=10+25+10=(35+10)m,答:建筑物AB的高为(35+10)m.点评:本题考查了解直角三角形的应用,要求学生借助坡角关系构造直角三角形,并结合图形利用三角函数解直角三角形,难度适中.21.(5分)(2015•通辽)如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.考点:平行四边形的性质;等腰三角形的判定与性质.分析:首先根据平行四边形的性质可得AB=DC=6,AD=BC=10,AB∥DC,再根据平行线的性质与角平分线的性质证明∠2=∠3,根据等角对等边可得BC=CF=10,再用CF﹣CD即可算出DF的长.解答:解:∵四边形ABCD为平行四边形,∴AB=DC=6,AD=BC=10,AB∥DC.∵AB∥DC,∴∠1=∠3,又∵BF平分∠ABC,∴∠1=∠2,∴∠2=∠3,∴BC=CF=10,∴DF=BF﹣DC=10﹣6=4.点评:此题主要考查了平行线的性质,以及平行线的性质,关键是证明∠2=∠3推出BC=CF.22.(7分)(2015•通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.考点:全等三角形的判定.专题:证明题.分析:根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论.解答:解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).点评:本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.23.(6分)(2015•通辽)课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B﹣良好,C﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调查了多少名学生?(2)C类女生有 3 名,D类男生有 1 名,并将条形统计图补充完整;(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.考点:列表法与树状图法;扇形统计图;条形统计图.专题:计算题.分析:(1)用B类的人数除以它所占的百分比即可得到本次调查的学生数;。
【2015中考真题】内蒙古通辽市中考数学试题及解析

2015年内蒙古通辽市中考数学试卷一、选择题(本题包括10个小题,每小题3分,共30分,每小题只有一个正确选项)3.(3分)(2015•通辽)实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之4.(3分)(2015•通辽)已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图﹣x 2的系数是 B πa 2的系数是 2 xy 2的系数是6.(3分)(2015•通辽)如图,由几个相同的小正方体搭成的一个几何体,它的俯视图为( )C) 8.(3分)(2015•通辽)如图,已知AB ∥CD ,若∠A=25°,∠E=40°,则∠C 等于( )9.(3分)(2015•通辽)已知边长为m 的正方形面积为12,则下列关于m 的说法中,错误的是( )①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①②B.①③C.③D.①②④10.(3分)(2015•通辽)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则A.8B.20 C.8或20 D.10二、填空题(本题包括7小题,每小题3分,共21分)11.(3分)(2015•通辽)在数1,0,﹣1,|﹣2|中,最小的数是.12.(3分)(2015•通辽)因式分解:x3y﹣xy=.13.(3分)(2015•通辽)函数y=中,自变量x的取值范围是.14.(3分)(2015•通辽)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为.15.(3分)(2015•通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程.16.(3分)(2015•通辽)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为.17.(3分)(2015•通辽)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015=.三、解答题(本题包括9个小题,共69分,请写出解答的文字说明、证明过程或计算步骤)18.(12分)(2015•通辽)(1)计算:(π﹣)0+()﹣1﹣﹣tan30°;(2)解方程:+=1;(3)解不等式组,并把解集在数轴上表示出来.19.(5分)(2015•通辽)先化简,再求值:÷(a﹣),其中a,b满足|a﹣3|+(b﹣2)2=0.20.(5分)(2015•通辽)如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)21.(5分)(2015•通辽)如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.22.(7分)(2015•通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.23.(6分)(2015•通辽)课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B﹣良好,C ﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调查了多少名学生?(2)C类女生有名,D类男生有名,并将条形统计图补充完整;(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.24.(8分)(2015•通辽)光明文具厂工人的工作时间:每月26天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资920元,按月结算.该厂生产A,B两种型号零件,工人每生产一件A种型号零(1)小王每生产一件A种型号零件、每生产一件B种型号零件,分别需要多少分钟?(2)设小王某月生产A种型号零件x件,该月工资为y元,求y与x的函数关系式;(3)如果生产两种型号零件的数目限制,那么小王该月的工资数目最多为多少?25.(9分)(2015•通辽)如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O于点H,E为上一点,连接ME,NE,NE交MQ于点F,且ME2=EF•EN.(1)求证:QN=QF;(2)若点E到弦MH的距离为1,cos∠Q=,求⊙O的半径.26.(12分)(2015•通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x 于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].2015年内蒙古通辽市中考数学试卷参考答案与试题解析一、选择题(本题包括10个小题,每小题3分,共30分,每小题只有一个正确选项)A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查考点:全面调查与抽样调查.分析:一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.解答:解:A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查;故选D.点评:本题考查了全面调查与抽样调查的应用,一般由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.2.(3分)(2015•通辽)的算术平方根是()A.﹣2 B.±2 C.D.2考点:算术平方根.分析:首先求出的值是2;然后根据算术平方根的求法,求出2的算术平方根,即可求出的算术平方根是多少.解答:解:∵,2的算术平方根是,∴的算术平方根是.故选:C.点评:此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.3.(3分)(2015•通辽)实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之A.4B.2C.1D.3考点:无理数.分析:掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.解答:解:在实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1)中,无理数有:﹣π,sin60°,0.3131131113…(相邻两个3之间依次多一个1),共3个,故选D.点评:此题主要考查了无理数的定义,熟记无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数是解题的关键.4.(3分)(2015•通辽)已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图,x的系数是πa2的系数是xy2的系数是解答:解:A、﹣x2的系数是﹣,故本选项错误;、的系数是C、3abD、xy2的系数,故本选项正确.6.(3分)(2015•通辽)如图,由几个相同的小正方体搭成的一个几何体,它的俯视图为()C7.(3分)(2015•通辽)一组数据2,0,1,x,3的平均数是2,则这组数据的方差是()A . 2B . 4C . 1D . 3考点:方差;算术平均数. 分析: 先根据平均数的定义确定出x 的值,再根据方差的计算公式S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]求出这组数据的方差.解答: 解:由平均数的公式得:(0+1+2+3+x )÷5=2,解得x=4;则方差=[(0﹣2)2+(1﹣2)2+(2﹣2)2+(3﹣2)2+(4﹣2)2]÷5=2. 故选:A . 点评:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数. 8.(3分)(2015•通辽)如图,已知AB ∥CD ,若∠A=25°,∠E=40°,则∠C 等于( )A . 40°B . 65°C . 115°D . 25°考点: 平行线的性质. 分析:由平行线的性质可求得∠EFB=∠C ,在△AEF 中由三角形外角的性质可求得∠EFB ,可求得答案 解答:解:∵∠EFB 是△AEF 的一个外角, ∴∠EFB=∠A+∠E=25°+40°=65°, ∵AB ∥CD ,∴∠C=∠EFB=65°, 故选B . 点评:本题主要考查平行线的性质,掌握平行线的性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补. 9.(3分)(2015•通辽)已知边长为m 的正方形面积为12,则下列关于m 的说法中,错误的是( ) ①m 是无理数;②m 是方程m 2﹣12=0的解;③m 满足不等式组;A . ①②B . ①③C . ③D . ①②④考点:算术平方根;平方根;无理数;不等式的解集. 分析: ①根据边长为m 的正方形面积为12,可得m 2=12,所以m=2,然后根据是一个无理数,可得m 是无理数,据此判断即可.②根据m 2=12,可得m 是方程m 2﹣12=0的解,据此判断即可.③首先求出不等式组的解集是4<m <5,然后根据m=2<2×2=4,可得m 不满足不等式组,据此判断即可.④根据m 2=12,而且m >0,可得m 是12的算术平方根,据此判断即可. 解答:解:∵边长为m 的正方形面积为12, ∴m 2=12,∵不等式组<∴m不满足不等式组,10.(3分)(2015•通辽)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则二、填空题(本题包括7小题,每小题3分,共21分)11.(3分)(2015•通辽)在数1,0,﹣1,|﹣2|中,最小的数是﹣1.12.(3分)(2015•通辽)因式分解:x3y﹣xy=xy(x﹣1)(x+1).考点:提公因式法与公式法的综合运用.分析:首先提取公因式xy,再运用平方差公式进行二次分解.解答:解:x3y﹣xy,=xy(x2﹣1)…(提取公因式)=xy(x+1)(x﹣1).…(平方差公式)故答案为:xy(x+1)(x﹣1).点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(3分)(2015•通辽)函数y=中,自变量x的取值范围是x≥﹣1且x≠﹣3.考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x+1≥0;分母不等于0,可知:x+3≠0,所以自变量x的取值范围就可以求出.解答:解:根据题意得:x+1≥0且x+3≠0,解得:x≥﹣1且x≠﹣3.故答案为:x≥﹣1且x≠﹣3.点评:本题考查了函数自变量的取值范围,使得分式和根号有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14.(3分)(2015•通辽)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为42°.考点:圆周角定理.分析:根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.解答:解:∵OA=OB,∠OBA=48°,∴∠OAB=∠OBA=48°,∴∠AOB=180°﹣48°×2=84°,∴∠C=∠AOB=42°,故答案为:42°.点评:此题综合运用了三角形的内角和定理以及圆周角定理.解决本题的关键是熟记一条弧所对的圆周角等于它所对的圆心角的一半.15.(3分)(2015•通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程﹣=15.比原计划少用15天完成任务,据此列方程即可.由题意得,﹣=15故答案为:﹣=15.16.(3分)(2015•通辽)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为8cm2或2cm2或2cm2.AE=,∴S△AEF=•AE•BF=×4×=2(cm2);则DE=7﹣4=3,DF===,∴S△AEF=AE•DF=×4×=2(cm2);故答案为:8或2或2.点评:本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论,有一定的难度.17.(3分)(2015•通辽)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015=2.考点:规律型:数字的变化类.分析:根据表达式求出前几个数不难发现,每三个数为一个循环组依次循环,用2015除以3,根据商和余数的情况确定a2015的值即可.解答:解:根据题意得,a2==2,a3==﹣1,a4==,…,依此类推,每三个数为一个循环组依次循环,∵2015÷3=671…2,∴a2015是第671个循环组的第2个数,与a2相同,即a2015=2.故答案为:2.点评:本题考查数字的变化规律,计算并观察出每三个数为一个循环组依次循环是解题的关键.三、解答题(本题包括9个小题,共69分,请写出解答的文字说明、证明过程或计算步骤)18.(12分)(2015•通辽)(1)计算:(π﹣)0+()﹣1﹣﹣tan30°;(2)解方程:+=1;(3)解不等式组,并把解集在数轴上表示出来.考点:实数的运算;零指数幂;负整数指数幂;解分式方程;在数轴上表示不等式的解集;解一元一次不等式组;特殊角的三角函数值.分析:(1)分别根据0指数幂及负整数指数幂的计算法则、数的开方法则及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先把分式方程化为整式方程,求出x的值,在进行检验即可;﹣;,19.(5分)(2015•通辽)先化简,再求值:÷(a﹣),其中a,b满足|a﹣3|+(b﹣2)2=0.÷•,20.(5分)(2015•通辽)如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比):(m25+10AB=AN+BN=NE+EF=10+25+1035+10)35+1021.(5分)(2015•通辽)如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.22.(7分)(2015•通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.,23.(6分)(2015•通辽)课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B﹣良好,C ﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调查了多少名学生?(2)C类女生有3名,D类男生有1名,并将条形统计图补充完整;(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.的结果数,然后根据概率公式计算.所以所选同学中恰好是一位男同学和一位女同学的概率=.24.(8分)(2015•通辽)光明文具厂工人的工作时间:每月26天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资920元,按月结算.该厂生产A,B两种型号零件,工人每生产一件A种型号零生产A种型号零件/件生产B种型号零件/件总时间/分2 2 706 4 170(1)小王每生产一件A种型号零件、每生产一件B种型号零件,分别需要多少分钟?(2)设小王某月生产A种型号零件x件,该月工资为y元,求y与x的函数关系式;(3)如果生产两种型号零件的数目限制,那么小王该月的工资数目最多为多少?考点:一次函数的应用.专题:应用题.分析:(1)设小王生产一个A种产品用a分钟,生产一个B种产品用b分钟,根据表格中的数据,列方程组求a、b的值;(2)根据:月工资y=生产一件A种产品报酬×x+生产一件B种产品报酬×+福利工资920元,列出函数关系式;(3)利用(2)得到的函数关系式,根据一次函数的增减性求解.解答:解:(1)设小王生产一个A种产品用a分钟,生产一个B种产品用b分钟;根据题意得,解得,即小李生产一个A种产品用15分钟,生产一个B种产品用20分钟.(2)y=0.85x+×1.5+920,即y=﹣0.275x+1856.(3)由解析式y=﹣0.275x+1856可知:x越小,y值越大,并且生产A,B两种产品的数目又没有限制,所以,当x=0时,y=1856.即小王该月全部时间用来生产B种产品,最高工资为1856元.点评:本题考查了一次函数的运用.关键是根据题意列出函数关系式,利用一次函数的增减性解答题目的问题.25.(9分)(2015•通辽)如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O于点H,E为上一点,连接ME,NE,NE交MQ于点F,且ME2=EF•EN.(1)求证:QN=QF;(2)若点E到弦MH的距离为1,cos∠Q=,求⊙O的半径.考点:切线的性质;相似三角形的判定与性质.分析:(1)如图1,通过相似三角形(△MEF∽△MEN)的对应角相等推知,∠1=∠EMN;又由弦切角定理、对顶角相等证得∠2=∠3;最后根据等角对等边证得结论;(2)如图2,连接OE交MQ于点G,设⊙O的半径是r.根据(1)中的相似三角形GMO==可以求r的值.=EF•EN,∴=.=.Q=,且∠∴sin∠GMO=,=,即=,26.(12分)(2015•通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x 于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].+1=2,解这个方程,得a=,(+1=.OQ=2+2((=OQ<,(3)把y=x代入y=x2﹣x+2,得x=x2﹣x+2,2y=4+2,4+2=4+4,OC=,OC=4+2。
内蒙古通辽市中考数学试题及答案解析

2015年内蒙古通辽市中考数学试卷一、选择题(本题包括10个小题,每小题3分,共30分,每小题只有一个正确选项)1.(3分)(2015通辽)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查2.(3分)(2015通辽)的算术平方根是()A.﹣2 B.±2 C. D. 23.(3分)(2015通辽)实数tan45°,,0,﹣π,,﹣,sin60°,…(相邻两个3之间依次多一个1),其中无理数的个数是()A. 4 B. 2 C. 1 D. 34.(3分)(2015通辽)已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2) B.(﹣2,﹣3) C.(1,﹣6) D.(﹣6,1)5.(3分)(2015通辽)下列说法中,正确的是()A.﹣x2的系数是 B.πa2的系数是C. 3ab2的系数是3a D.xy2的系数是6.(3分)(2015通辽)如图,由几个相同的小正方体搭成的一个几何体,它的俯视图为()A. B. C. D.7.(3分)(2015通辽)一组数据2,0,1,x,3的平均数是2,则这组数据的方差是()A. 2 B. 4 C. 1 D. 38.(3分)(2015通辽)如图,已知AB∥CD,若∠A=25°,∠E=40°,则∠C等于() A.40° B.65° C.115° D.25°9.(3分)(2015通辽)已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①② B.①③ C.③ D.①②④10.(3分)(2015通辽)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A. 8 B. 20 C. 8或20 D. 10二、填空题(本题包括7小题,每小题3分,共21分)11.(3分)(2015通辽)在数1,0,﹣1,|﹣2|中,最小的数是.12.(3分)(2015通辽)因式分解:x3y﹣xy= .13.(3分)(2015通辽)函数y=中,自变量x的取值范围是.14.(3分)(2015通辽)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为.15.(3分)(2015通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程.16.(3分)(2015通辽)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为.17.(3分)(2015通辽)一列数x1,x2,x3,…,其中x1=,xn=(n为不小于2的整数),则x2015= .三、解答题(本题包括9个小题,共69分,请写出解答的文字说明、证明过程或计算步骤)18.(12分)(2015通辽)(1)计算:(π﹣)0+()﹣1﹣﹣tan30°;(2)解方程:+=1;(3)解不等式组,并把解集在数轴上表示出来.19.(5分)(2015通辽)先化简,再求值:÷(a﹣),其中a,b满足|a﹣3|+(b﹣2)2=0.20.(5分)(2015通辽)如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)21.(5分)(2015通辽)如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.22.(7分)(2015通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.23.(6分)(2015通辽)课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B﹣良好,C﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调查了多少名学生(2)C类女生有名,D类男生有名,并将条形统计图补充完整;(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.24.(8分)(2015通辽)光明文具厂工人的工作时间:每月26天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资920元,按月结算.该厂生产A,B两种型号零件,工人每生产一件A种型号零件,可得报酬元,每生产一件B种型号零件,可得报酬元,下表记录的是工人小王的工作情况:生产A种型号零件/件生产B种型号零件/件总时间/分2 2 706 4 170根据上表提供的信息,请回答如下问题:(1)小王每生产一件A种型号零件、每生产一件B种型号零件,分别需要多少分钟(2)设小王某月生产A种型号零件x件,该月工资为y元,求y与x的函数关系式;(3)如果生产两种型号零件的数目限制,那么小王该月的工资数目最多为多少25.(9分)(2015通辽)如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O 于点H,E为上一点,连接ME,NE,NE交MQ于点F,且ME2=EFEN.(1)求证:QN=QF;(2)若点E到弦MH的距离为1,cos∠Q=,求⊙O的半径.26.(12分)(2015通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].2015年内蒙古通辽市中考数学试卷参考答案与试题解析一、选择题(本题包括10个小题,每小题3分,共30分,每小题只有一个正确选项)1.(3分)(2015通辽)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查考点:全面调查与抽样调查.分析:一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.解答:解:A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查;故选D.点评:本题考查了全面调查与抽样调查的应用,一般由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.2.(3分)(2015通辽)的算术平方根是()A.﹣2 B.±2 C. D. 2考点:算术平方根.分析:首先求出的值是2;然后根据算术平方根的求法,求出2的算术平方根,即可求出的算术平方根是多少.解答:解:∵,2的算术平方根是,∴的算术平方根是.故选:C.点评:此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.3.(3分)(2015通辽)实数tan45°,,0,﹣π,,﹣,sin60°,…(相邻两个3之间依次多一个1),其中无理数的个数是()A. 4 B. 2 C. 1 D. 3考点:无理数.分析:掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.解答:解:在实数tan45°,,0,﹣π,,﹣,sin60°,…(相邻两个3之间依次多一个1)中,无理数有:﹣π,sin60°,…(相邻两个3之间依次多一个1),共3个,故选D.点评:此题主要考查了无理数的定义,熟记无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数是解题的关键.4.(3分)(2015通辽)已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2) B.(﹣2,﹣3) C.(1,﹣6) D.(﹣6,1)考点:反比例函数图象上点的坐标特征.专题:计算题.分析:把已知点坐标代入反比例解析式求出k的值,即可做出判断.解答:解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选D.点评:此题考查了反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.5.(3分)(2015通辽)下列说法中,正确的是()A.﹣x2的系数是 B.πa2的系数是C. 3ab2的系数是3a D.xy2的系数是考点:单项式.分析:根据单项式的概念求解.解答:解:A、﹣x2的系数是﹣,故本选项错误;B、πa2的系数是π,故本选项错误;C、3ab2的系数是3,故本选项错误;D、xy2的系数,故本选项正确.故选D.点评:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.6.(3分)(2015通辽)如图,由几个相同的小正方体搭成的一个几何体,它的俯视图为()A. B. C. D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面向下看,从左到右有三排,且其正方形的个数分别为2、3、1,故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面向下看得到的视图.7.(3分)(2015通辽)一组数据2,0,1,x,3的平均数是2,则这组数据的方差是()A. 2 B. 4 C. 1 D. 3考点: 方差;算术平均数.分析: 先根据平均数的定义确定出x 的值,再根据方差的计算公式S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]求出这组数据的方差. 解答: 解:由平均数的公式得:(0+1+2+3+x )÷5=2,解得x=4;则方差=[(0﹣2)2+(1﹣2)2+(2﹣2)2+(3﹣2)2+(4﹣2)2]÷5=2.故选:A .点评: 此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.8.(3分)(2015通辽)如图,已知AB ∥CD ,若∠A=25°,∠E=40°,则∠C 等于( )A . 40° B. 65° C. 115° D. 25°考点: 平行线的性质.分析: 由平行线的性质可求得∠EFB=∠C ,在△AEF 中由三角形外角的性质可求得∠EFB ,可求得答案解答: 解:∵∠EFB 是△AEF 的一个外角,∴∠EFB=∠A+∠E=25°+40°=65°,∵AB ∥CD ,∴∠C=∠EFB=65°,故选B.点评:本题主要考查平行线的性质,掌握平行线的性质是解题的关键,即①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.9.(3分)(2015通辽)已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①② B.①③ C.③ D.①②④考点:算术平方根;平方根;无理数;不等式的解集.分析:①根据边长为m的正方形面积为12,可得m2=12,所以m=2,然后根据是一个无理数,可得m是无理数,据此判断即可.②根据m2=12,可得m是方程m2﹣12=0的解,据此判断即可.③首先求出不等式组的解集是4<m<5,然后根据m=2<2×2=4,可得m 不满足不等式组,据此判断即可.④根据m2=12,而且m>0,可得m是12的算术平方根,据此判断即可.解答:解:∵边长为m的正方形面积为12,∴m2=12,∴m=2,∵是一个无理数,∴m是无理数,∴结论①正确;∵m2=12,∴m是方程m2﹣12=0的解,∴结论②正确;∵不等式组的解集是4<m<5,m=2<2×2=4,∴m不满足不等式组,∴结论③不正确;∵m2=12,而且m>0,∴m是12的算术平方根,∴结论④正确.综上,可得关于m的说法中,错误的是③.故选:C.点评:(1)此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.(2)此题还考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.(3)此题还考查了不等式的解集的求法,以及正方形的面积的求法,要熟练掌握.10.(3分)(2015通辽)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A. 8 B. 20 C. 8或20 D. 10考点:菱形的性质;解一元二次方程-因式分解法.分析:边AB的长是方程y2﹣7y+10=0的一个根,解方程求得x的值,根据菱形ABCD 的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD 的周长.解答:解:∵解方程y2﹣7y+10=0得:y=2或5∵对角线长为6,2+2<6,不能构成三角形;∴菱形的边长为5.∴菱形ABCD的周长为4×5=20.故选B.点评:本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.二、填空题(本题包括7小题,每小题3分,共21分)11.(3分)(2015通辽)在数1,0,﹣1,|﹣2|中,最小的数是﹣1 .考点:有理数大小比较.专题:计算题.分析:利用绝对值的代数意义化简后,找出最小的数即可.解答:解:在数1,0,﹣1,|﹣2|=2中,最小的数是﹣1.故答案为:﹣1.点评:此题考查了有理数的大小比较,弄清有理数的比较方法是解本题的关键.12.(3分)(2015通辽)因式分解:x3y﹣xy= xy(x﹣1)(x+1).考点:提公因式法与公式法的综合运用.分析:首先提取公因式xy,再运用平方差公式进行二次分解.解答:解:x3y﹣xy,=xy(x2﹣1)…(提取公因式)=xy(x+1)(x﹣1).…(平方差公式)故答案为:xy(x+1)(x﹣1).点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(3分)(2015通辽)函数y=中,自变量x的取值范围是x≥﹣1且x≠﹣3 .考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x+1≥0;分母不等于0,可知:x+3≠0,所以自变量x的取值范围就可以求出.解答:解:根据题意得:x+1≥0且x+3≠0,解得:x≥﹣1且x≠﹣3.故答案为:x≥﹣1且x≠﹣3.点评:本题考查了函数自变量的取值范围,使得分式和根号有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14.(3分)(2015通辽)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为42°.考点:圆周角定理.分析:根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.解答:解:∵OA=OB,∠OBA=48°,∴∠OAB=∠OBA=48°,∴∠AOB=180°﹣48°×2=84°,∴∠C=∠AOB=42°,故答案为:42°.点评:此题综合运用了三角形的内角和定理以及圆周角定理.解决本题的关键是熟记一条弧所对的圆周角等于它所对的圆心角的一半.15.(3分)(2015通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程﹣=15 .考点:由实际问题抽象出分式方程.分析:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,根据题意可得,实际比原计划少用15天完成任务,据此列方程即可.解答:解:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,由题意得,﹣=15.故答案为:﹣=15.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.16.(3分)(2015通辽)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为8cm2或2cm2或2cm2.考点:勾股定理;等腰三角形的判定;矩形的性质.专题:分类讨论.分析:因为等腰三角形腰的位置不明确,所以分三种情况进行讨论:(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.解答:解:分三种情况计算:(1)当AE=AF=4时,如图:=AEAF=×4×4=8(cm2);∴S△AEF(2)当AE=EF=4时,如图:则BE=5﹣4=1,BF===,=AEBF=×4×=2(cm2);∴S△AEF(3)当AE=EF=4时,如图:则DE=7﹣4=3,DF===,∴S△AEF=AEDF=×4×=2(cm2);故答案为:8或2或2.点评:本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论,有一定的难度.17.(3分)(2015通辽)一列数x1,x2,x3,…,其中x1=,xn=(n为不小于2的整数),则x2015= 2 .考点:规律型:数字的变化类.分析:根据表达式求出前几个数不难发现,每三个数为一个循环组依次循环,用2015除以3,根据商和余数的情况确定a2015的值即可.解答:解:根据题意得,a2==2,a3==﹣1,a4==,…,依此类推,每三个数为一个循环组依次循环,∵2015÷3=671…2,∴a2015是第671个循环组的第2个数,与a2相同,即a=2.2015故答案为:2.点评:本题考查数字的变化规律,计算并观察出每三个数为一个循环组依次循环是解题的关键.三、解答题(本题包括9个小题,共69分,请写出解答的文字说明、证明过程或计算步骤)18.(12分)(2015通辽)(1)计算:(π﹣)0+()﹣1﹣﹣tan30°;(2)解方程:+=1;(3)解不等式组,并把解集在数轴上表示出来.考点:实数的运算;零指数幂;负整数指数幂;解分式方程;在数轴上表示不等式的解集;解一元一次不等式组;特殊角的三角函数值.分析:(1)分别根据0指数幂及负整数指数幂的计算法则、数的开方法则及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先把分式方程化为整式方程,求出x的值,在进行检验即可;(3)分别求出各不等式的解集,再求出其公共解集即可.解答:解:(1)原式=1+2﹣3﹣=3﹣;(2)方程两边同时乘以(x+3)(x﹣3)得,3+x(x+3)=x2﹣9,解得x=4,代入(x+3)(x﹣3)得,(4+3)(4﹣3)=7≠0,故x=4是原分式方程的解;(3),由①得,y≥1,由②得,y<2,故不等式组的解集为:1≤y<2.点评:本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则、数的开方法则及特殊角的三角函数值是解答此题的关键.19.(5分)(2015通辽)先化简,再求值:÷(a﹣),其中a,b满足|a﹣3|+(b﹣2)2=0.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=÷==,∵|a﹣3|+(b﹣2)2=0,∴a﹣3=0,b﹣2=0,即a=3,b=2,则原式=1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(5分)(2015通辽)如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:首先过点E作EF⊥BC于点F,过点E作EN⊥AB于点N,再利用坡度的定义以及勾股定理得出EF、FC的长,求出AB的长即可.解答:解:过点E作EF⊥BC于点F,过点E作EN⊥AB于点N,∵建筑物AB后有一座假山,其坡度为i=1:,∴设EF=x,则FC=x,∵CE=20米,∴x2+(x)2=400,解得:x=10,则FC=10m,∵BC=25m,∴BF=NE=(25+10)m,∴AB=AN+BN=NE+EF=10+25+10=(35+10)m,答:建筑物AB的高为(35+10)m.点评:本题考查了解直角三角形的应用,要求学生借助坡角关系构造直角三角形,并结合图形利用三角函数解直角三角形,难度适中.21.(5分)(2015通辽)如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.考点:平行四边形的性质;等腰三角形的判定与性质.分析:首先根据平行四边形的性质可得AB=DC=6,AD=BC=10,AB∥DC,再根据平行线的性质与角平分线的性质证明∠2=∠3,根据等角对等边可得BC=CF=10,再用CF ﹣CD即可算出DF的长.解答:解:∵四边形ABCD为平行四边形,∴AB=DC=6,AD=BC=10,AB∥DC.∵AB∥DC,∴∠1=∠3,又∵BF平分∠ABC,∴∠1=∠2,∴∠2=∠3,∴BC=CF=10,∴DF=BF﹣DC=10﹣6=4.点评:此题主要考查了平行线的性质,以及平行线的性质,关键是证明∠2=∠3推出BC=CF.22.(7分)(2015通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.考点:全等三角形的判定.专题:证明题.分析:根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论.解答:解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).点评:本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.23.(6分)(2015通辽)课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B﹣良好,C﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调查了多少名学生(2)C类女生有 3 名,D类男生有 1 名,并将条形统计图补充完整;(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.考点:列表法与树状图法;扇形统计图;条形统计图.专题:计算题.分析:(1)用B类的人数除以它所占的百分比即可得到本次调查的学生数;(2)先利用调查的总人数乘以C类所占百分比得到C类人数,然后减去男生人数即可得到C类女生人数,同样可求出D类男生人数,然后补全条形统计图;(3)先画树状图展示15种等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式计算.解答:解:(1)本次调查的学生数=10÷50%=20(名);(2)C类学生数=20×25%=5,则C类女生数=5﹣2=3(名);D类学生数=20﹣3﹣10﹣5=2(名),则D类男生有1名,条形统计图为:(3)画树状图为:共有15种等可能的结果数,其中恰好是一位男同学和一位女同学的结果数为7种,所以所选同学中恰好是一位男同学和一位女同学的概率=.故答案为3,1.点评:本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A 或B的概率.也考查了统计图.24.(8分)(2015通辽)光明文具厂工人的工作时间:每月26天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资920元,按月结算.该厂生产A,B两种型号零件,工人每生产一件A种型号零件,可得报酬元,每生产一件B种型号零件,可得报酬元,下表记录的是工人小王的工作情况:生产A种型号零件/件生产B种型号零件/件总时间/分2 2 706 4 170根据上表提供的信息,请回答如下问题:(1)小王每生产一件A种型号零件、每生产一件B种型号零件,分别需要多少分钟(2)设小王某月生产A种型号零件x件,该月工资为y元,求y与x的函数关系式;(3)如果生产两种型号零件的数目限制,那么小王该月的工资数目最多为多少考点:一次函数的应用.专题:应用题.分析:(1)设小王生产一个A种产品用a分钟,生产一个B种产品用b分钟,根据表格中的数据,列方程组求a、b的值;(2)根据:月工资y=生产一件A种产品报酬×x+生产一件B种产品报酬×+福利工资920元,列出函数关系式;(3)利用(2)得到的函数关系式,根据一次函数的增减性求解.解答:解:(1)设小王生产一个A种产品用a分钟,生产一个B种产品用b分钟;根据题意得,解得,即小李生产一个A种产品用15分钟,生产一个B种产品用20分钟.(2)y=+×+920,即y=﹣+1856.(3)由解析式y=﹣+1856可知:x越小,y值越大,并且生产A,B两种产品的数目又没有限制,所以,当x=0时,y=1856.即小王该月全部时间用来生产B种产品,最高工资为1856元.点评:本题考查了一次函数的运用.关键是根据题意列出函数关系式,利用一次函数的增减性解答题目的问题.25.(9分)(2015通辽)如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O 于点H,E为上一点,连接ME,NE,NE交MQ于点F,且ME2=EFEN.(1)求证:QN=QF;(2)若点E到弦MH的距离为1,cos∠Q=,求⊙O的半径.考点:切线的性质;相似三角形的判定与性质.分析:(1)如图1,通过相似三角形(△MEF∽△MEN)的对应角相等推知,∠1=∠EMN;又由弦切角定理、对顶角相等证得∠2=∠3;最后根据等角对等边证得结论;(2)如图2,连接OE交MQ于点G,设⊙O的半径是r.根据(1)中的相似三角形的性质证得∠EMF=∠ENM,所以由“圆周角、弧、弦间的关系”推知点E是弧MH的中点,则OE⊥MQ;然后通过解直角△MNE求得cos∠Q=sin∠GMO==,则可以求r的值.解答:(1)证明:如图1,∵ME2=EFEN,∴=.又∵∠MEF=∠MEN,∴△MEF∽△MEN,∴∠1=∠EMN.∵∠1=∠2,∠3=∠EMN,∴∠2=∠3,∴QN=QF;(2)解:如图2,连接OE交MQ于点G,设⊙O的半径是r.由(1)知,△MEF∽△MEN,则∠4=∠5.∴=.∴OE⊥MQ,∴EG=1.∵cos∠Q=,且∠Q+∠GMO=90°,∴sin∠GMO=,∴=,即=,解得,r=,即⊙O的半径是.点评:本题考查切线的性质和相似三角形的判定与性质.在(1)中判定△MEF∽△MEN是解题的关键,在(2)中推知点E是弧MH的中点是解题的关键.26.(12分)(2015通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].考点:二次函数综合题.分析:(1)根据抛物线的顶点是(2,1),因而设抛物线的表达式为y=a(x﹣2)2+1,把A的坐标代入即可求得函数的解析式;。
通辽中考数学试题及答案

通辽中考数学试题及答案一、选择题(共20小题,每小题4分,共80分)1.已知函数f(x)=logbx-logcx,其中b,c为正实数,且b>1,c>1,若f(x)=0,则x=()A. logb(1+bc)B. logc(1+bc)C. logb(1-bc)D. logc(1-bc)2.设等差数列{an}的公差为d,且a1+a2+…+an=Sn (n∈N*)。
若S3:S4 = 2:3,且S4:S5 = 4:7,则d=()A. 7B. 5C. 3D. 13.已知正三角形ABC的外接圆的半径为R,边长为2a,点D是弧BC上一动点,置E、F分别是AB、AC上的点,且AE=AF=AD。
(1)当点D变动时,动点E的轨迹为()A. 直线B. 圆C. 椭圆D. 双曲线(2)若角EBF的度数为θ,则R与2a之间的关系式为()A. R=acosθB. R=asinθC. R=2sinθD. R=2cosθ4.若a∈[1,2],y=x^2+ax+1的图像与抛物线y+3=4x相切,则a=()A. -1B. 0C. 1D. 25.设函数f(x)满足f(1)=2,f'(x)=2x-f(x)+4。
若函数g(x)满足g'(x)=2x-g(x)+6,则f(2)+g(1)=()A. 2B. 4C. 6D. 86.设S是一元二次不等式3x^2-4x+5>0的解集,则S的取值范围是()A. RB. 空集C. (0, ∞)D. (∞, 0)7.如图所示,在△ABC中,有点D,使得DB=DC。
若∠BAC=60°,∠CBA=70°,则∠DCB=()A. 70°B. 75°C. 100°D. 110°8.已知集合A={1,2,3,4},集合B=[A],即B是集合A的所有子集所构成的集合,则B的元素个数是()A. 4B. 8C. 16D. 329.XZ是△ABC内一条与边AC平行的射线,B为直线AC上一点,且BX=6cm。
2015内蒙古通辽市初中毕业生学业考试(1)

2015年内蒙古通辽市初中毕业生学业考试试题英语注意事项:1. 本试卷共12页,10道大题,满分为120分,考试时间为120分钟。
2. 根据网上阅卷需要,本试卷中的所有试题均按要求在答题卡上作答,答在本试卷上的答案无效。
3. 考试结束后,将本试卷与答题卡分别封装一并上交。
笔试部分(共95分)四、单项选择(每小题1分,共15分)从下面每小题的A、B、C、D四个选项中选择可以填入空白处的最佳选项。
26. Bill is ______ English teacher. He likes playing ______ football.A. a; /B. an; /C. an; theD. a; the27. You should start working hard, ______ you won’t pass the exam.A. andB. butC. orD. so28. Don’t be afraid of new words. You can ______ in the dictionary.A. look it overB. look them overC. look it upD. look them up29. - Must I be home before eight o’clock, Mum?- No, you ______ .But you have to come back before ten o’clock.A. mustn’tB. can’tC. needn’tD. couldn’t30. - Did you watch the football match at 8:30 last night?- No, I ______ with my sister at that time.A. was playingB. had playedC. have playedD. played31. I can’t understand what the book is about because it ______ in Japanese.A. writesB. will writeC. wroteD. is written32. ______ beautiful flowers they are!A. HowB. WhatC. What aD. How a33. - May I speak to the headmaster?- He’s not here. He ______ Beijing.A. has gone toB. has been toC. have gone toD. have been to34. Could you tell me ______ late for the meeting yesterday?A. why were youB. why are youC. why you wereD. why you are35. - What’s your hobby?- I ______ listen to music, but now I enjoy dancing.A. am used toB. use toC. am usedD. used to36. The book ______ Mr. Li bought yesterday is very interesting.A. whoB. whomC. whichD. where37. It’s said that ______ of the water around the world is dirty.A. two thirdB. two thirdsC. second threeD. second thirds38. - Would you mind ______ me the book?- No, not at all.A. passB. passedC. passingD. to pass39. He will go to the mountains with his parents if it ______ next Sunday.A. doesn’t rainB. isn’t rainC. won’t rainD. rains40. Keep on. Don’t stop. The ______ you climb, the ______ you will see.A. highest; farthestB. higher; fartherC. higher; farthestD. high; far五、完形填空(每小题1分,共10分)阅读下面短文,掌握其大意,然后从A、B、C、D四个选项中选择一个最佳选项。
内蒙古通辽市中考数学真题试题(含解析)

内蒙古通辽市中考数学真题试题一.选择题(本题包括10个小题每小题3分共30分,每小题只有一个正确选项,请在答题卡上将代表正确答案字母用2B铅笔涂黑)1.(3.00分)倒数是()A.2018B.﹣2018C.﹣D.2.(3.00分)剪纸是我国传统民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形是()A. B. C. D.3.(3.00分)下列说法错误是()A.通过平移或旋转得到图形与原图形全等B.“对顶角相等”逆命题是真命题C.圆内接正六边形边长等于半径D.“经过有交通信号灯路口,遇到红灯”是随机事件4.(3.00分)小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系大致图象是()A. B.C D.5.(3.00分)如图,一个几何体主视图和左视图都是边长为6等边三角形,俯视图是直径为6圆,则此几何体全面积是()A.18πB.24πC.27πD.42π6.(3.00分)学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本价格比文学类图书平均每本价格贵5元,且购买科普书数量比购买文学书数量少100本.求科普类图书平均每本价格是多少元?若设科普类图书平均每本价格是x元,则可列方程为()A.﹣=100B.﹣=100C.﹣=100D.﹣=1007.(3.00分)已知⊙O半径为10,圆心O到弦AB距离为5,则弦AB所对圆周角度数是()A.30°B.60°C.30°或150°D.60°或120°8.(3.00分)一商店以每件150元价格卖出两件不同商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏9.(3.00分)已知抛物线y=x2+2x+k+1与x轴有两个不同交点,则一次函数y=kx﹣k与反比例函数y=在同一坐标系内大致图象是()A. B. C. D.10.(3.00分)如图,▱ABCD对角线AC.BD交于点O,DE平分∠ADC交AB于点E,∠BCD=60°,AD=AB,连接OE.下列结论:①S▱ABCD=AD•BD;②DB平分∠CDE;③AO=DE;④S△ADE=5S△OFE,其中正确个数有()A.1个B.2个C.3个D.4个二.填空题(本题包括7个小题,每小题3分,共21分,将答案直接填在答题卡对应题横线上)11.(3.00分)5月13日,我国第一艘国产航母出海试航,这标志着我国从此进入“双航母”时代,据估测该航母满载排水量与辽宁舰相当,约67500吨,将67500用科学记数法表示为.12.(3.00分)如图,∠AOB一边OA为平面镜,∠AOB=37°45′,在OB边上有一点E,从点E射出一束光线经平面镜反射后,反射光线DC恰好与OB平行,则∠DEB度数是.13.(3.00分)一组数据2,x,1,3,5,4,若这组数据中位数是3,则这组数据方差是.14.(3.00分)如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点机会均等),则恰好落在正方形EFGH内概率为.15.(3.00分)为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为.16.(3.00分)如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC 长为半径作弧,两弧相交于M.N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD面积为.17.(3.00分)如图,在平面直角坐标系中,反比例函数y=(k>0)图象与半径为5⊙O 交于M.N两点,△MON面积为3.5,若动点P在x轴上,则PM+PN最小值是.三.解答题(本题包括9个小题共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答文字说明.证明过程或计算步骤)18.(5.00分)计算:﹣|4﹣|﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2.19.(6.00分)先化简(1﹣)÷,然后从不等式2x﹣6<0非负整数解中选取一个合适解代入求值.20.(6.00分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A.C两地海拔高度约为1000米,山顶B处海拔高度约为1400米,由B处望山脚A 处俯角为30°,由B处望山脚C处俯角为45°,若在A.C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据≈1.732)21.(6.00分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整频数分布表和频数分布直方图.学生立定跳远测试成绩频数分布表分组频数1.2≤x<1.6 a1.6≤x<2.0 122.0≤x<2.4 b2.4≤x<2.8 10请根据图表中所提供信息,完成下列问题:(1)表中a= ,b= ,样本成绩中位数落在范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内学生有多少人?22.(7.00分)如图,△ABC中,D是BC边上一点,E是AD中点,过点A作BC平行线交BE 延长线于F,且AF=CD,连接CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF形状,并证明你结论.23.(8.00分)为提升学生艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整统计图,请结合图中所给信息解答下列问题:(1)本次调查学生共有多少人?扇形统计图中∠α度数是多少?(2)请把条形统计图补充完整;(3)学校为举办·2018·度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新节目形式,请用列表法或树状图求出选中书法与乐器组合在一起概率.24.(9.00分)某网店销售甲.乙两种羽毛球,已知甲种羽毛球每筒售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲.乙两种羽毛球每筒售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲.乙两种羽毛球共200筒,且甲种羽毛球数量大于乙种羽毛球数量,已知甲种羽毛球每筒进价为50元,乙种羽毛球每筒进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?25.(10.00分)如图,⊙O是△ABC外接圆,点O在BC边上,∠BAC平分线交⊙O于点D,连接BD.CD,过点D作BC平行线与AC延长线相交于点P.(1)求证:PD是⊙O切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC长.26.(12.00分)如图,抛物线y=ax2+bx﹣5与坐标轴交于A(﹣1,0),B(5,0),C(0,﹣5)三点,顶点为D.(1)请直接写出抛物线解析式及顶点D坐标;(2)连接BC与抛物线对称轴交于点E,点P为线段BC上一个动点(点P不与B.C两点重合),过点P作PF∥DE交抛物线于点F,设点P横坐标为m.①是否存在点P,使四边形PEDF为平行四边形?若存在,求出点P坐标;若不存在,说明理由.②过点F作FH⊥BC于点H,求△PFH周长最大值.参考答案与试题解析一.选择题(本题包括10个小题每小题3分共30分,每小题只有一个正确选项,请在答题卡上将代表正确答案字母用2B铅笔涂黑)1.(3.00分)倒数是()A.2018B.﹣2018C.﹣D.【分析】根据倒数定义,互为倒数两数乘积为1,×2018=1即可解答.【解答】解:根据倒数定义得:×2018=1,因此倒数是2018.故选:A.2.(3.00分)剪纸是我国传统民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形是()A. B. C. D.【分析】根据轴对称图形和中心对称图形概念对各选项分析判断即可得解.【解答】解:A.不是中心对称图形,是轴对称图形,故本选项错误;B.不是中心对称图形,是轴对称图形,故本选项错误;C.既不是中心对称图形,也不是轴对称图形,故本选项正确;D.是中心对称图形,不是轴对称图形,故本选项错误.故选:C.3.(3.00分)下列说法错误是()A.通过平移或旋转得到图形与原图形全等B.“对顶角相等”逆命题是真命题C.圆内接正六边形边长等于半径D.“经过有交通信号灯路口,遇到红灯”是随机事件【分析】根据平移.旋转性质.对顶角性质.圆内接多边形性质.随机事件概念判断即可. 【解答】解:通过平移或旋转得到图形与原图形全等,A正确,不符合题意;“对顶角相等”逆命题是相等角是对顶角,是假命题,B错误,符合题意;圆内接正六边形边长等于半径,C正确,不符合题意;“经过有交通信号灯路口,遇到红灯”是随机事件,D正确,不符合题意;故选:B.4.(3.00分)小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系大致图象是()A. B. C.D.【分析】根据小刚行驶路程与时间关系,确定出图象即可.【解答】解:根据题意得:小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系大致图象是故选:B.5.(3.00分)如图,一个几何体主视图和左视图都是边长为6等边三角形,俯视图是直径为6圆,则此几何体全面积是()A.18πB.24πC.27πD.42π【分析】依据题意可得这个几何体为圆锥,其全面积=侧面积+底面积.【解答】解:圆锥全面积=π×32+π×3×6=27πcm2.故选:C.6.(3.00分)学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本价格比文学类图书平均每本价格贵5元,且购买科普书数量比购买文学书数量少100本.求科普类图书平均每本价格是多少元?若设科普类图书平均每本价格是x元,则可列方程为()A.﹣=100B.﹣=100C.﹣=100D.﹣=100【分析】直接利用购买科普书数量比购买文学书数量少100本得出等式进而得出答案. 【解答】解:设科普类图书平均每本价格是x元,则可列方程为:﹣=100.故选:B.7.(3.00分)已知⊙O半径为10,圆心O到弦AB距离为5,则弦AB所对圆周角度数是()A.30°B.60°C.30°或150°D.60°或120°【分析】由图可知,OA=10,OD=5.根据特殊角三角函数值求角度即可.【解答】解:由图可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD=,∴tan∠1=,∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴圆周角度数是60°或120°.故选:D.8.(3.00分)一商店以每件150元价格卖出两件不同商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏【分析】设盈利商品进价为x元,亏损商品进价为y元,根据销售收入﹣进价=利润,即可分别得出关于x.y一元一次方程,解之即可得出x.y值,再由两件商品销售收入﹣成本=利润,即可得出商店卖这两件商品总亏损20元.【解答】解:设盈利商品进价为x元,亏损商品进价为y元,根据题意得:150﹣x=25%x,150﹣y=﹣25%y,解得:x=120,y=200,∴150+150﹣120﹣200=﹣20(元).故选:A.9.(3.00分)已知抛物线y=x2+2x+k+1与x轴有两个不同交点,则一次函数y=kx﹣k与反比例函数y=在同一坐标系内大致图象是()A. B. C. D.【分析】依据抛物线y=x2+2x+k+1与x轴有两个不同交点,即可得到k<0,进而得出一次函数y=kx﹣k图象经过第一二四象限,反比例函数y=图象在第二四象限.【解答】解:∵抛物线y=x2+2x+k+1与x轴有两个不同交点,∴△=4﹣4(k+1)>0,解得k<0,∴一次函数y=kx﹣k图象经过第一二四象限,反比例函数y=图象在第二四象限,故选:D.10.(3.00分)如图,▱ABCD对角线AC.BD交于点O,DE平分∠ADC交AB于点E,∠BCD=60°,AD=AB,连接OE.下列结论:①S▱ABCD=AD•BD;②DB平分∠CDE;③AO=DE;④S△ADE=5S△OFE,其中正确个数有()A.1个B.2个C.3个D.4个【分析】求得∠ADB=90°,即AD⊥BD,即可得到S▱ABCD=AD•BD;依据∠CDE=60°,∠BDE30°,可得∠CDB=∠BDE,进而得出DB平分∠CDE;依据Rt△AOD中,AO>AD,即可得到AO>DE;依据OE是△ABD中位线,即可得到OE∥AD,OE=AD,进而得到△OEF∽△ADF,依据S△ADF=4S△OEF,S△AEF=2S△OEF,即可得到S△ADE=6S△OFE.【解答】解:∵∠BAD=∠BCD=60°,∠ADC=120°,DE平分∠ADC,∴∠ADE=∠DAE=60°=∠AED,∴△ADE是等边三角形,∴AD=AE=AB,∴E是AB中点,∴DE=BE,∴∠BDE=∠AED=30°,∴∠ADB=90°,即AD⊥BD,∴S▱ABCD=AD•BD,故①正确;∵∠CDE=60°,∠BDE30°,∴∠CDB=∠BDE,∴DB平分∠CDE,故②正确;∵Rt△AOD中,AO>AD,∴AO>DE,故③错误;∵O是BD中点,E是AB中点,∴OE是△ABD中位线,∴OE∥AD,OE=AD,∴△OEF∽△ADF,∴S△ADF=4S△OEF,且AF=2OF,∴S△AEF=2S△OEF,∴S△ADE=6S△OFE,故④错误;故选:B.二.填空题(本题包括7个小题,每小题3分,共21分,将答案直接填在答题卡对应题横线上)11.(3.00分)5月13日,我国第一艘国产航母出海试航,这标志着我国从此进入“双航母”时代,据估测该航母满载排水量与辽宁舰相当,约67500吨,将67500用科学记数法表示为6.75×104.【分析】科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数.确定n值时,要看把原数变成a时,小数点移动了多少位,n绝对值与小数点移动位数相同.当原数绝对值>1时,n是正数;当原数绝对值<1时,n是负数.【解答】解:将67500用科学记数法表示为:6.75×104.故答案为6.75×104.12.(3.00分)如图,∠AOB一边OA为平面镜,∠AOB=37°45′,在OB边上有一点E,从点E射出一束光线经平面镜反射后,反射光线DC恰好与OB平行,则∠DEB度数是75°30′(或75.5°).【分析】首先证明∠EDO=∠AOB=37°45′,根据∠EDB=∠AOB+∠EDO计算即可解决问题;【解答】解:∵CD∥OB,∴∠ADC=∠AOB,∵∠EDO=∠CDA,∴∠EDO=∠AOB=37°45′,∴∠EDB=∠AOB+∠EDO=2×37°45′=75°30′(或75.5°),故答案为75°30′(或75.5°).13.(3.00分)一组数据2,x,1,3,5,4,若这组数据中位数是3,则这组数据方差是.【分析】先根据中位数定义求出x值,再求出这组数据平均数,最后根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]进行计算即可.【解答】解:∵按从小到大顺序排列为1,2,3,x,4,5,若这组数据中位数为3,∴x=3,∴这组数据平均数是(1+2+3+3+4+5)÷6=3,∴这组数据方差是:[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=,故答案为:.14.(3.00分)如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点机会均等),则恰好落在正方形EFGH内概率为.【分析】根据几何概型概率求法,飞镖扎在小正方形内概率为小正方形内与大正方形面积比,根据题意,可得小正方形面积与大正方形面积,进而可得答案.【解答】解:根据题意,AB2=AE2+BE2=13,∴S正方形ABCD=13,∵△ABE≌△BCF,∴AE=BF=3,∵BE=2,∴EF=1,∴S正方形EFGH=1,,故飞镖扎在小正方形内概率为.故答案为.15.(3.00分)为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为x(x﹣1)=21 .【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为x(x﹣1),即可列方程.【解答】解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=21,故答案为:x(x﹣1)=21.16.(3.00分)如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC 长为半径作弧,两弧相交于M.N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD面积为9.【分析】只要证明△ABD是等边三角形,推出BD=AD=DC,可得S△ADC=S△ABD即可解决问题;【解答】解:由作图可知,MN垂直平分线段AC,∴DA=DC,∴∠C=∠DAC=30°,∴∠ADB=∠C+∠DAC=60°,∵AB=AD,∴△ABD是等边三角形,∴BD=AD=DC,∴S△ADC=S△ABD=×62=9,故答案为9.17.(3.00分)如图,在平面直角坐标系中,反比例函数y=(k>0)图象与半径为5⊙O 交于M.N两点,△MON面积为3.5,若动点P在x轴上,则PM+PN最小值是5.【分析】先求出a2+b2=c2+d2=25,再求出ac=,同理:bd=,即可得出ac﹣bc=0,最后用两点间距离公式即可得出结论.【解答】解:如图,设点M(a,b),N(c,d),∴ab=k,cd=k,∵点M,N在⊙O上,∴a2+b2=c2+d2=25,作出点N关于x轴对称点N'(c,﹣d),∴S△OMN=k+(b+d)(a﹣c)﹣k=3.5,∴bc﹣ad=k+7,∴,∴ac=,同理:bd=,∴ac﹣bc=﹣=[(c2+d2)﹣(a2+b2)]=0,∵M(a,b),N'(c,﹣d),∴MN'2=(a﹣c)2+(b+d)2=a2+b2+c2+d2﹣2ac+2bd=a2+b2+c2+d2﹣2(ac﹣bd)=50,∴MN'=5,故答案为:5.三.解答题(本题包括9个小题共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答文字说明.证明过程或计算步骤)18.(5.00分)计算:﹣|4﹣|﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2.【分析】直接利用绝对值性质以及零指数幂性质和特殊角三角函数值以及负指数幂性质分别化简得出答案.【解答】解:原式=﹣(4﹣2)﹣1+(1﹣)×4=﹣4+2﹣1+4﹣2=﹣1.19.(6.00分)先化简(1﹣)÷,然后从不等式2x﹣6<0非负整数解中选取一个合适解代入求值.【分析】原式括号中两项通分并利用同分母分式减法法则计算,同时利用除法法则变形,约分得到最简结果,求出x值,代入计算即可求出值.【解答】解:原式=•=•=,由不等式2x﹣6<0,得到x<3,∴不等式2x﹣6<0非负整数解为x=0,1,2,则x=0时,原式=2.20.(6.00分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A.C两地海拔高度约为1000米,山顶B处海拔高度约为1400米,由B处望山脚A 处俯角为30°,由B处望山脚C处俯角为45°,若在A.C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据≈1.732)【分析】作BD⊥AC于D,利用直角三角形性质和三角函数解答即可.【解答】解:如图,作BD⊥AC于D,由题意可得:BD=1400﹣1000=400(米),∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵,即,∴AD=400(米),在Rt△BCD中,∵,即,∴CD=400(米),∴AC=AD+CD=400+400≈1092.8≈1093(米),答:隧道最短为1093米.21.(6.00分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整频数分布表和频数分布直方图.学生立定跳远测试成绩频数分布表分组频数1.2≤x<1.6 a1.6≤x<2.0 122.0≤x<2.4 b2.4≤x<2.8 10请根据图表中所提供信息,完成下列问题:(1)表中a= 8 ,b= 20 ,样本成绩中位数落在 2.0≤x<2.4 范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内学生有多少人?【分析】(1)根据题意和统计图可以求得a.b值,并得到样本成绩中位数所在取值范围;(2)根据b值可以将频数分布直方图补充完整;(3)根据统计图中数据可以求得该年级学生立定跳远成绩在2.4≤x<2.8范围内学生有多少人.【解答】解:(1)由统计图可得,a=8,b=50﹣8﹣12﹣10=20,样本成绩中位数落在:2.0≤x<2.4范围内,故答案为:8,20,2.0≤x<2.4;(2)由(1)知,b=20,补全频数分布直方图如右图所示;(3)1000×=200(人),答:该年级学生立定跳远成绩在2.4≤x<2.8范围内学生有200人.22.(7.00分)如图,△ABC中,D是BC边上一点,E是AD中点,过点A作BC平行线交BE 延长线于F,且AF=CD,连接CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF形状,并证明你结论.【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠EAF=∠EDB.AE=DE即可判定全等;(2)根据AB=AC,且AD是BC边上中线可得∠ADC=90°,由四边形ADCF是矩形可得答案. 【解答】证明:(1)∵E是AD中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB,∴△AEF≌△DEB(AAS);(2)连接DF,∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形,∵△AEF≌△DEB,∴BE=FE,∵AE=DE,∴四边形ABDF是平行四边形,∴DF=AB,∵AB=AC,∴DF=AC,∴四边形ADCF是矩形.23.(8.00分)为提升学生艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整统计图,请结合图中所给信息解答下列问题:(1)本次调查学生共有多少人?扇形统计图中∠α度数是多少?(2)请把条形统计图补充完整;(3)学校为举办·2018·度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新节目形式,请用列表法或树状图求出选中书法与乐器组合在一起概率.【分析】(1)用A科目人数除以其对应百分比可得总人数,用360°乘以C对应百分比可得∠α度数;(2)用总人数乘以C科目百分比即可得出其人数,从而补全图形;(3)画树状图展示所有12种等可能结果数,再找出恰好是“书法”“乐器”结果数,然后根据概率公式求解.【解答】解:(1)本次调查学生总人数为4÷10%=40人,∠α=360°×(1﹣10%﹣20%﹣40%)=108°;(2)C科目人数为40×(1﹣10%﹣20%﹣40%)=12人,补全图形如下:(3)画树状图为:共有12种等可能结果数,其中恰好是书法与乐器组合在一起结果数为2,所以书法与乐器组合在一起概率为=.24.(9.00分)某网店销售甲.乙两种羽毛球,已知甲种羽毛球每筒售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲.乙两种羽毛球每筒售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲.乙两种羽毛球共200筒,且甲种羽毛球数量大于乙种羽毛球数量,已知甲种羽毛球每筒进价为50元,乙种羽毛球每筒进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?【分析】(1)设甲种羽毛球每筒售价为x元,乙种羽毛球每筒售价为y元,由条件可列方程组,则可求得答案;(2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m不等式组,则可求得m取值范围,且m为整数,则可求得m值,即可求得进货方案;②用m可表示出W,可得到关于m一次函数,利用一次函数性质可求得答案.【解答】解:(1)设甲种羽毛球每筒售价为x元,乙种羽毛球每筒售价为y元,根据题意可得,解得,答:该网店甲种羽毛球每筒售价为60元,乙种羽毛球每筒售价为45元;(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,根据题意可得,解得75<m≤78,∵m为整数,∴m值为76.77.78,∴进货方案有3种,分别为:方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W随m增大而增大,且75<m≤78,∴当m=78时,W最大,W最大值为1390,答:当m=78时,所获利润最大,最大利润为1390元.25.(10.00分)如图,⊙O是△ABC外接圆,点O在BC边上,∠BAC平分线交⊙O于点D,连接BD.CD,过点D作BC平行线与AC延长线相交于点P.(1)求证:PD是⊙O切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC长.【分析】(1)先判断出∠BAC=2∠BAD,进而判断出∠BOD=∠BAC=90°,得出PD⊥OD即可得出结论;(2)先判断出∠ADB=∠P,再判断出∠DCP=∠ABD,即可得出结论;(3)先求出BC,再判断出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP 得出比例式求解即可得出结论.【解答】解:(1)如图,连接OD,∵BC是⊙O直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半径,∴PD是⊙O切线;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP,(3)∵BC是⊙O直径,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BC=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.26.(12.00分)如图,抛物线y=ax2+bx﹣5与坐标轴交于A(﹣1,0),B(5,0),C(0,﹣5)三点,顶点为D.(1)请直接写出抛物线解析式及顶点D坐标;(2)连接BC与抛物线对称轴交于点E,点P为线段BC上一个动点(点P不与B.C两点重合),过点P作PF∥DE交抛物线于点F,设点P横坐标为m.①是否存在点P,使四边形PEDF为平行四边形?若存在,求出点P坐标;若不存在,说明理由.②过点F作FH⊥BC于点H,求△PFH周长最大值.【分析】(1)应用待定系数法;(2)①求出直线BC解析式,表示PF.当PF=DE时,平行四边形存在.②利用△PFH∽△BCO,应用相似三角形性质表示△PFH周长,应用函数性质讨论最值. 【解答】解:(1)把A(﹣1,0),B(5,0)代入抛物线y=ax2+bx﹣5解得∴y=x2﹣4x﹣5∴顶点坐标为D(2,﹣9)(2)①存在设直线BC函数解析式为y=kx+b(k≠0)把B(5,0),C(0,﹣5)代入得∴BC解析式为y=x﹣5当x=m时,y=m﹣5∴P(m,m﹣5)当x=2时,y=2﹣5=﹣3∴E(2.﹣3)∵PF∥DE∥y轴∴点F横坐标为m当x=m时,y=m2﹣4m﹣5∴F(m,m2﹣4m﹣5)∴PF=(m﹣5)﹣(m2﹣4m﹣5)=﹣m2+5m∵E(2,﹣3),D(2,﹣9)∴DE=﹣3﹣(﹣9)=6如图,连接DF∵PF∥DE∴当PF=DE时,四边形PEDF为平行四边形即﹣m2+5m=6解得m1=3,m2=2(舍去)当m=3时,y=3﹣5=2此时P(3,﹣2)∴存在点P(3,﹣2)使四边形PEDF为平行四边形.②由题意在Rt△BOC中,OB=OC=5∴BC=5∴C△BOC=10+5∵PF∥DE∥y轴∴∠FPE=∠DEC=∠OCB∵FH⊥BC∴∠FHP=∠BOC=90°∴△PFH∽△BCO∴即C△PFH=∵0<m<5∴当m=﹣时,△PFH周长最大值为。
通辽2015中考数学试题(解析版)

2015年内蒙古通辽市中考数学试卷一、选择题(本题包括10个小题,每小题3分,共30分,每小题只有一个正确选项)1.(3分)(2015•通辽)下列调查适合抽样调查的是( )A . 审核书稿中的错别字B . 对某社区的卫生死角进行调查C . 对八名同学的身高情况进行调查D . 对中学生目前的睡眠情况进行调查2.(3分)(2015•通辽)的算术平方根是( )A . ﹣2B . ±2C .D . 23.(3分)(2015•通辽)实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是( )A . 4B . 2C . 1D . 34.(3分)(2015•通辽)已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是( )A . (3,﹣2)B . (﹣2,﹣3)C . (1,﹣6)D . (﹣6,1)5.(3分)(2015•通辽)下列说法中,正确的是( )A . ﹣x 2的系数是B . πa 2的系数是C . 3ab 2的系数是3aD . xy 2的系数是6.(3分)(2015•通辽)如图,由几个相同的小正方体搭成的一个几何体,它的俯视图为( )A .B .C .D .7.(3分)(2015•通辽)一组数据2,0,1,x ,3的平均数是2,则这组数据的方差是( )A . 2B . 4C . 1D . 38.(3分)(2015•通辽)如图,已知AB∥CD,若∠A=25°,∠E=40°,则∠C等于()A.40° B.65° C.115° D.25°9.(3分)(2015•通辽)已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①② B.①③ C.③ D.①②④10.(3分)(2015•通辽)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.10二、填空题(本题包括7小题,每小题3分,共21分)11.(3分)(2015•通辽)在数1,0,﹣1,|﹣2|中,最小的数是.12.(3分)(2015•通辽)因式分解:x3y﹣xy=.13.(3分)(2015•通辽)函数y=中,自变量x的取值范围是.14.(3分)(2015•通辽)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为.15.(3分)(2015•通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程.16.(3分)(2015•通辽)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为.17.(3分)(2015•通辽)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015=.三、解答题(本题包括9个小题,共69分,请写出解答的文字说明、证明过程或计算步骤)18.(12分)(2015•通辽)(1)计算:(π﹣)0+()﹣1﹣﹣tan30°;(2)解方程:+=1;(3)解不等式组,并把解集在数轴上表示出来.19.(5分)(2015•通辽)先化简,再求值:÷(a﹣),其中a,b满足|a﹣3|+(b﹣2)2=0.20.(5分)(2015•通辽)如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)21.(5分)(2015•通辽)如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.22.(7分)(2015•通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.23.(6分)(2015•通辽)课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B﹣良好,C﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调查了多少名学生?(2)C类女生有名,D类男生有名,并将条形统计图补充完整;(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.24.(8分)(2015•通辽)光明文具厂工人的工作时间:每月26天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资920元,按月结算.该厂生产A,B两种型号零件,工人每生产一件A种型号零件,可得报酬0.85元,每生产一件B种型号零件,可得报酬1.5元,下表记录的是工人小王的工作情况:生产A种型号零件/件生产B种型号零件/件总时间/分2 2 706 4 170根据上表提供的信息,请回答如下问题:(1)小王每生产一件A种型号零件、每生产一件B种型号零件,分别需要多少分钟?(2)设小王某月生产A种型号零件x件,该月工资为y元,求y与x的函数关系式;(3)如果生产两种型号零件的数目限制,那么小王该月的工资数目最多为多少?25.(9分)(2015•通辽)如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O于点H,E 为上一点,连接ME,NE,NE交MQ于点F,且ME2=EF•EN.(1)求证:QN=QF;(2)若点E到弦MH的距离为1,cos∠Q=,求⊙O的半径.26.(12分)(2015•通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].2015年内蒙古通辽市中考数学试卷参考答案与试题解析一、选择题(本题包括10个小题,每小题3分,共30分,每小题只有一个正确选项)1.(3分)(2015•通辽)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查考点:全面调查与抽样调查.分析:一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.解答:解:A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查;故选D.点评:本题考查了全面调查与抽样调查的应用,一般由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.2.(3分)(2015•通辽)的算术平方根是()A.﹣2 B.±2 C.D.2考点:算术平方根.分析:首先求出的值是2;然后根据算术平方根的求法,求出2的算术平方根,即可求出的算术平方根是多少.解答:解:∵,2的算术平方根是,∴的算术平方根是.故选:C.点评:此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.3.(3分)(2015•通辽)实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4 B. 2 C.1 D. 3考点:无理数.分析:掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.解答:解:在实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1)中,无理数有:﹣π,sin60°,0.3131131113…(相邻两个3之间依次多一个1),共3个,故选D.点评:此题主要考查了无理数的定义,熟记无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数是解题的关键.4.(3分)(2015•通辽)已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(1,﹣6)D.(﹣6,1)考点:反比例函数图象上点的坐标特征.专题:计算题.分析:把已知点坐标代入反比例解析式求出k的值,即可做出判断.解答:解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选D.点评:此题考查了反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.5.(3分)(2015•通辽)下列说法中,正确的是()A.﹣x2的系数是B.πa2的系数是C.3ab2的系数是3a D.xy2的系数是考点:单项式.分析:根据单项式的概念求解.解答:解:A、﹣x2的系数是﹣,故本选项错误;B、πa2的系数是π,故本选项错误;C、3ab2的系数是3,故本选项错误;D、xy2的系数,故本选项正确.故选D.点评:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.6.(3分)(2015•通辽)如图,由几个相同的小正方体搭成的一个几何体,它的俯视图为()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面向下看,从左到右有三排,且其正方形的个数分别为2、3、1,故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面向下看得到的视图.7.(3分)(2015•通辽)一组数据2,0,1,x,3的平均数是2,则这组数据的方差是()A.2 B. 4 C. 1 D. 3考点:方差;算术平均数.分析:先根据平均数的定义确定出x的值,再根据方差的计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]求出这组数据的方差.解答:解:由平均数的公式得:(0+1+2+3+x)÷5=2,解得x=4;则方差=[(0﹣2)2+(1﹣2)2+(2﹣2)2+(3﹣2)2+(4﹣2)2]÷5=2.故选:A.点评:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.8.(3分)(2015•通辽)如图,已知AB∥CD,若∠A=25°,∠E=40°,则∠C等于()A.40° B.65° C.115° D.25°考点:平行线的性质.分析:由平行线的性质可求得∠EFB=∠C,在△AEF中由三角形外角的性质可求得∠EFB,可求得答案解答:解:∵∠EFB是△AEF的一个外角,∴∠EFB=∠A+∠E=25°+40°=65°,∵AB∥CD,∴∠C=∠EFB=65°,故选B.点评:本题主要考查平行线的性质,掌握平行线的性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.9.(3分)(2015•通辽)已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①② B.①③ C.③ D.①②④考点:算术平方根;平方根;无理数;不等式的解集.分析:①根据边长为m的正方形面积为12,可得m2=12,所以m=2,然后根据是一个无理数,可得m是无理数,据此判断即可.②根据m2=12,可得m是方程m2﹣12=0的解,据此判断即可.③首先求出不等式组的解集是4<m<5,然后根据m=2<2×2=4,可得m不满足不等式组,据此判断即可.④根据m2=12,而且m>0,可得m是12的算术平方根,据此判断即可.解答:解:∵边长为m的正方形面积为12,∴m2=12,∴m=2,∵是一个无理数,∴m是无理数,∴结论①正确;∵m2=12,∴m是方程m2﹣12=0的解,∴结论②正确;∵不等式组的解集是4<m<5,m=2<2×2=4,∴m不满足不等式组,∴结论③不正确;∵m2=12,而且m>0,∴m是12的算术平方根,∴结论④正确.综上,可得关于m的说法中,错误的是③.故选:C.点评:(1)此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.(2)此题还考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.(3)此题还考查了不等式的解集的求法,以及正方形的面积的求法,要熟练掌握.10.(3分)(2015•通辽)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.10考点:菱形的性质;解一元二次方程-因式分解法.分析:边AB的长是方程y2﹣7y+10=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.解答:解:∵解方程y2﹣7y+10=0得:y=2或5∵对角线长为6,2+2<6,不能构成三角形;∴菱形的边长为5.∴菱形ABCD的周长为4×5=20.故选B.点评:本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.二、填空题(本题包括7小题,每小题3分,共21分)11.(3分)(2015•通辽)在数1,0,﹣1,|﹣2|中,最小的数是﹣1.考点:有理数大小比较.专题:计算题.分析:利用绝对值的代数意义化简后,找出最小的数即可.解答:解:在数1,0,﹣1,|﹣2|=2中,最小的数是﹣1.故答案为:﹣1.点评:此题考查了有理数的大小比较,弄清有理数的比较方法是解本题的关键.12.(3分)(2015•通辽)因式分解:x3y﹣xy=xy(x﹣1)(x+1).考点:提公因式法与公式法的综合运用.分析:首先提取公因式xy,再运用平方差公式进行二次分解.解答:解:x3y﹣xy,=xy(x2﹣1)…(提取公因式)=xy(x+1)(x﹣1).…(平方差公式)故答案为:xy(x+1)(x﹣1).点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(3分)(2015•通辽)函数y=中,自变量x的取值范围是x≥﹣1且x≠﹣3.考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x+1≥0;分母不等于0,可知:x+3≠0,所以自变量x的取值范围就可以求出.解答:解:根据题意得:x+1≥0且x+3≠0,解得:x≥﹣1且x≠﹣3.故答案为:x≥﹣1且x≠﹣3.点评:本题考查了函数自变量的取值范围,使得分式和根号有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14.(3分)(2015•通辽)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为42°.考点:圆周角定理.分析:根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.解答:解:∵OA=OB,∠OBA=48°,∴∠OAB=∠OBA=48°,∴∠AOB=180°﹣48°×2=84°,∴∠C=∠AOB=42°,故答案为:42°.点评:此题综合运用了三角形的内角和定理以及圆周角定理.解决本题的关键是熟记一条弧所对的圆周角等于它所对的圆心角的一半.15.(3分)(2015•通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程﹣=15.考点:由实际问题抽象出分式方程.分析:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,根据题意可得,实际比原计划少用15天完成任务,据此列方程即可.解答:解:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,由题意得,﹣=15.故答案为:﹣=15.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.16.(3分)(2015•通辽)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为8cm2或2cm2或2cm2.考点:勾股定理;等腰三角形的判定;矩形的性质.专题:分类讨论.分析:因为等腰三角形腰的位置不明确,所以分三种情况进行讨论:(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.解答:解:分三种情况计算:(1)当AE=AF=4时,如图:∴S△AEF=AE•AF=×4×4=8(cm2);(2)当AE=EF=4时,如图:则BE=5﹣4=1,BF===,∴S △AEF=•AE•BF=×4×=2(cm2);(3)当AE=EF=4时,如图:则DE=7﹣4=3,DF===,∴S △AEF=AE•DF=×4×=2(cm2);故答案为:8或2或2.点评:本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论,有一定的难度.17.(3分)(2015•通辽)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015=2.考点:规律型:数字的变化类.分析:根据表达式求出前几个数不难发现,每三个数为一个循环组依次循环,用2015除以3,根据商和余数的情况确定a2015的值即可.解答:解:根据题意得,a2==2,a3==﹣1,a4==,…,依此类推,每三个数为一个循环组依次循环,∵2015÷3=671…2,∴a2015是第671个循环组的第2个数,与a2相同,即a2015=2.故答案为:2.点评:本题考查数字的变化规律,计算并观察出每三个数为一个循环组依次循环是解题的关键.三、解答题(本题包括9个小题,共69分,请写出解答的文字说明、证明过程或计算步骤)18.(12分)(2015•通辽)(1)计算:(π﹣)0+()﹣1﹣﹣tan30°;(2)解方程:+=1;(3)解不等式组,并把解集在数轴上表示出来.考点:实数的运算;零指数幂;负整数指数幂;解分式方程;在数轴上表示不等式的解集;解一元一次不等式组;特殊角的三角函数值.分析:(1)分别根据0指数幂及负整数指数幂的计算法则、数的开方法则及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先把分式方程化为整式方程,求出x的值,在进行检验即可;(3)分别求出各不等式的解集,再求出其公共解集即可.解答:解:(1)原式=1+2﹣3﹣=3﹣;(2)方程两边同时乘以(x+3)(x﹣3)得,3+x(x+3)=x2﹣9,解得x=4,代入(x+3)(x﹣3)得,(4+3)(4﹣3)=7≠0,故x=4是原分式方程的解;(3),由①得,y≥1,由②得,y<2,故不等式组的解集为:1≤y<2.点评:本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则、数的开方法则及特殊角的三角函数值是解答此题的关键.19.(5分)(2015•通辽)先化简,再求值:÷(a﹣),其中a,b满足|a﹣3|+(b﹣2)2=0.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=÷=•=,∵|a﹣3|+(b﹣2)2=0,∴a﹣3=0,b﹣2=0,即a=3,b=2,则原式=1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(5分)(2015•通辽)如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:首先过点E作EF⊥BC于点F,过点E作EN⊥AB于点N,再利用坡度的定义以及勾股定理得出EF、FC的长,求出AB的长即可.解答:解:过点E作EF⊥BC于点F,过点E作EN⊥AB于点N,∵建筑物AB后有一座假山,其坡度为i=1:,∴设EF=x,则FC=x,∵CE=20米,∴x2+(x)2=400,解得:x=10,则FC=10m,∵BC=25m,∴BF=NE=(25+10)m,∴AB=AN+BN=NE+EF=10+25+10=(35+10)m,答:建筑物AB的高为(35+10)m.点评:本题考查了解直角三角形的应用,要求学生借助坡角关系构造直角三角形,并结合图形利用三角函数解直角三角形,难度适中.21.(5分)(2015•通辽)如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.考点:平行四边形的性质;等腰三角形的判定与性质.分析:首先根据平行四边形的性质可得AB=DC=6,AD=BC=10,AB∥DC,再根据平行线的性质与角平分线的性质证明∠2=∠3,根据等角对等边可得BC=CF=10,再用CF﹣CD即可算出DF的长.解答:解:∵四边形ABCD为平行四边形,∴AB=DC=6,AD=BC=10,AB∥DC.∵AB∥DC,∴∠1=∠3,又∵BF平分∠ABC,∴∠1=∠2,∴∠2=∠3,∴BC=CF=10,∴DF=BF﹣DC=10﹣6=4.点评:此题主要考查了平行线的性质,以及平行线的性质,关键是证明∠2=∠3推出BC=CF.22.(7分)(2015•通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.考点:全等三角形的判定.专题:证明题.分析:根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论.解答:解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).点评:本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.23.(6分)(2015•通辽)课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B﹣良好,C﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调查了多少名学生?(2)C类女生有3名,D类男生有1名,并将条形统计图补充完整;(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.考点:列表法与树状图法;扇形统计图;条形统计图.专题:计算题.分析:(1)用B类的人数除以它所占的百分比即可得到本次调查的学生数;(2)先利用调查的总人数乘以C类所占百分比得到C类人数,然后减去男生人数即可得到C类女生人数,同样可求出D类男生人数,然后补全条形统计图;(3)先画树状图展示15种等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式计算.解答:解:(1)本次调查的学生数=10÷50%=20(名);(2)C类学生数=20×25%=5,则C类女生数=5﹣2=3(名);D类学生数=20﹣3﹣10﹣5=2(名),则D类男生有1名,条形统计图为:(3)画树状图为:共有15种等可能的结果数,其中恰好是一位男同学和一位女同学的结果数为7种,所以所选同学中恰好是一位男同学和一位女同学的概率=.故答案为3,1.点评:本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.24.(8分)(2015•通辽)光明文具厂工人的工作时间:每月26天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资920元,按月结算.该厂生产A,B两种型号零件,工人每生产一件A种型号零件,可得报酬0.85元,每生产一件B种型号零件,可得报酬1.5元,下表记录的是工人小王的工作情况:生产A种型号零件/件生产B种型号零件/件总时间/分2 2 706 4 170根据上表提供的信息,请回答如下问题:(1)小王每生产一件A种型号零件、每生产一件B种型号零件,分别需要多少分钟?(2)设小王某月生产A种型号零件x件,该月工资为y元,求y与x的函数关系式;(3)如果生产两种型号零件的数目限制,那么小王该月的工资数目最多为多少?考点:一次函数的应用.专题:应用题.分析:(1)设小王生产一个A种产品用a分钟,生产一个B种产品用b分钟,根据表格中的数据,列方程组求a、b的值;(2)根据:月工资y=生产一件A种产品报酬×x+生产一件B种产品报酬×+福利工资920元,列出函数关系式;(3)利用(2)得到的函数关系式,根据一次函数的增减性求解.解答:解:(1)设小王生产一个A种产品用a分钟,生产一个B种产品用b分钟;根据题意得,解得,即小李生产一个A种产品用15分钟,生产一个B种产品用20分钟.(2)y=0.85x+×1.5+920,即y=﹣0.275x+1856.(3)由解析式y=﹣0.275x+1856可知:x越小,y值越大,并且生产A,B两种产品的数目又没有限制,所以,当x=0时,y=1856.即小王该月全部时间用来生产B种产品,最高工资为1856元.点评:本题考查了一次函数的运用.关键是根据题意列出函数关系式,利用一次函数的增减性解答题目的问题.25.(9分)(2015•通辽)如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O于点H,E 为上一点,连接ME,NE,NE交MQ于点F,且ME2=EF•EN.(1)求证:QN=QF;(2)若点E到弦MH的距离为1,cos∠Q=,求⊙O的半径.考点:切线的性质;相似三角形的判定与性质.分析:(1)如图1,通过相似三角形(△MEF∽△MEN)的对应角相等推知,∠1=∠EMN;又由弦切角定理、对顶角相等证得∠2=∠3;最后根据等角对等边证得结论;(2)如图2,连接OE交MQ于点G,设⊙O的半径是r.根据(1)中的相似三角形的性质证得∠EMF=∠ENM,所以由“圆周角、弧、弦间的关系”推知点E是弧MH的中点,则OE⊥MQ;然后通过解直角△MNE求得cos∠Q=sin∠GMO==,则可以求r的值.解答:(1)证明:如图1,∵ME2=EF•EN,∴=.又∵∠MEF=∠MEN,∴△MEF∽△MEN,∴∠1=∠EMN.∵∠1=∠2,∠3=∠EMN,∴∠2=∠3,∴QN=QF;(2)解:如图2,连接OE交MQ于点G,设⊙O的半径是r.由(1)知,△MEF∽△MEN,则∠4=∠5.∴=.∴OE⊥MQ,∴EG=1.∵cos∠Q=,且∠Q+∠GMO=90°,∴sin∠GMO=,∴=,即=,解得,r=2.5,即⊙O的半径是2.5.点评:本题考查切线的性质和相似三角形的判定与性质.在(1)中判定△MEF∽△MEN是解题的关键,在(2)中推知点E是弧MH的中点是解题的关键.26.(12分)(2015•通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].考点:二次函数综合题.分析:(1)根据抛物线的顶点是(2,1),因而设抛物线的表达式为y=a(x﹣2)2+1,把A的坐标代入即可求得函数的解析式;(2)根据△PCQ为等边三角形,则△CGQ中,∠CQD=30°,CG的长度可以求得,利用直角三角形的性质,即可求得CQ,即等边△CQP的边长,则P的纵坐标代入二次函数的解析式,即可求得P的坐标;。
内蒙古通辽市中考数学试题及答案解析

2015年内蒙古通辽市中考数学试卷一、选择题(本题包括10个小题,每小题3分,共30分,每小题只有一个正确选项)1.(3分)(2015•通辽)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查2.(3分)(2015•通辽)的算术平方根是()A.﹣2 B.±2 C.D.23.(3分)(2015•通辽)实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4 B. 2 C. 1 D. 34.(3分)(2015•通辽)已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(1,﹣6)D.(﹣6,1)5.(3分)(2015•通辽)下列说法中,正确的是()A.﹣x2的系数是B.πa2的系数是C.3ab2的系数是3a D.xy2的系数是6.(3分)(2015•通辽)如图,由几个相同的小正方体搭成的一个几何体,它的俯视图为()A.B.C.D.7.(3分)(2015•通辽)一组数据2,0,1,x,3的平均数是2,则这组数据的方差是()A.2 B. 4 C. 1 D. 38.(3分)(2015•通辽)如图,已知AB∥CD,若∠A=25°,∠E=40°,则∠C等于()A.40° B.65° C.115° D.25°9.(3分)(2015•通辽)已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①② B.①③ C.③ D.①②④10.(3分)(2015•通辽)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.10二、填空题(本题包括7小题,每小题3分,共21分)11.(3分)(2015•通辽)在数1,0,﹣1,|﹣2|中,最小的数是.12.(3分)(2015•通辽)因式分解:x3y﹣xy=.13.(3分)(2015•通辽)函数y=中,自变量x的取值范围是.14.(3分)(2015•通辽)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为.15.(3分)(2015•通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程.16.(3分)(2015•通辽)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为.17.(3分)(2015•通辽)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015=.三、解答题(本题包括9个小题,共69分,请写出解答的文字说明、证明过程或计算步骤)18.(12分)(2015•通辽)(1)计算:(π﹣)0+()﹣1﹣﹣tan30°;(2)解方程:+=1;(3)解不等式组,并把解集在数轴上表示出来.19.(5分)(2015•通辽)先化简,再求值:÷(a﹣),其中a,b满足|a﹣3|+(b﹣2)2=0.20.(5分)(2015•通辽)如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)21.(5分)(2015•通辽)如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.22.(7分)(2015•通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.23.(6分)(2015•通辽)课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B﹣良好,C﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调查了多少名学生?(2)C类女生有名,D类男生有名,并将条形统计图补充完整;(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.24.(8分)(2015•通辽)光明文具厂工人的工作时间:每月26天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资920元,按月结算.该厂生产A,B两种型号零件,工人每生产一件A种型号零件,可得报酬0.85元,每生产一件B种型号零件,可得报酬1.5元,下表记录的是工人小王的工作情况:生产A种型号零件/件生产B种型号零件/件总时间/分2 2 706 4 170根据上表提供的信息,请回答如下问题:(1)小王每生产一件A种型号零件、每生产一件B种型号零件,分别需要多少分钟?(2)设小王某月生产A种型号零件x件,该月工资为y元,求y与x的函数关系式;(3)如果生产两种型号零件的数目限制,那么小王该月的工资数目最多为多少?25.(9分)(2015•通辽)如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O于点H,E 为上一点,连接ME,NE,NE交MQ于点F,且ME2=EF•EN.(1)求证:QN=QF;(2)若点E到弦MH的距离为1,cos∠Q=,求⊙O的半径.26.(12分)(2015•通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].2015年内蒙古通辽市中考数学试卷参考答案与试题解析一、选择题(本题包括10个小题,每小题3分,共30分,每小题只有一个正确选项)1.(3分)(2015•通辽)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查考点:全面调查与抽样调查.分析:一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.解答:解:A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查;故选D.点评:本题考查了全面调查与抽样调查的应用,一般由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.2.(3分)(2015•通辽)的算术平方根是()A.﹣2 B.±2 C.D.2考点:算术平方根.分析:首先求出的值是2;然后根据算术平方根的求法,求出2的算术平方根,即可求出的算术平方根是多少.解答:解:∵,2的算术平方根是,∴的算术平方根是.故选:C.点评:此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.3.(3分)(2015•通辽)实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4 B. 2 C.1 D. 3考点:无理数.分析:掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.解答:解:在实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1)中,无理数有:﹣π,sin60°,0.3131131113…(相邻两个3之间依次多一个1),共3个,故选D.点评:此题主要考查了无理数的定义,熟记无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数是解题的关键.4.(3分)(2015•通辽)已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(1,﹣6)D.(﹣6,1)考点:反比例函数图象上点的坐标特征.专题:计算题.分析:把已知点坐标代入反比例解析式求出k的值,即可做出判断.解答:解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选D.点评:此题考查了反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.5.(3分)(2015•通辽)下列说法中,正确的是()A.﹣x2的系数是B.πa2的系数是C.3ab2的系数是3a D.xy2的系数是考点:单项式.分析:根据单项式的概念求解.解答:解:A、﹣x2的系数是﹣,故本选项错误;B、πa2的系数是π,故本选项错误;C、3ab2的系数是3,故本选项错误;D、xy2的系数,故本选项正确.故选D.点评:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.6.(3分)(2015•通辽)如图,由几个相同的小正方体搭成的一个几何体,它的俯视图为()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面向下看,从左到右有三排,且其正方形的个数分别为2、3、1,故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面向下看得到的视图.7.(3分)(2015•通辽)一组数据2,0,1,x,3的平均数是2,则这组数据的方差是()A.2 B. 4 C. 1 D. 3考点:方差;算术平均数.分析:先根据平均数的定义确定出x的值,再根据方差的计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]求出这组数据的方差.解答:解:由平均数的公式得:(0+1+2+3+x)÷5=2,解得x=4;则方差=[(0﹣2)2+(1﹣2)2+(2﹣2)2+(3﹣2)2+(4﹣2)2]÷5=2.故选:A.点评:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.8.(3分)(2015•通辽)如图,已知AB∥CD,若∠A=25°,∠E=40°,则∠C等于()A.40° B.65° C.115° D.25°考点:平行线的性质.分析:由平行线的性质可求得∠EFB=∠C,在△AEF中由三角形外角的性质可求得∠EFB,可求得答案解答:解:∵∠EFB是△AEF的一个外角,∴∠EFB=∠A+∠E=25°+40°=65°,∵AB∥CD,∴∠C=∠EFB=65°,故选B.点评:本题主要考查平行线的性质,掌握平行线的性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.9.(3分)(2015•通辽)已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①② B.①③ C.③ D.①②④考点:算术平方根;平方根;无理数;不等式的解集.分析:①根据边长为m的正方形面积为12,可得m2=12,所以m=2,然后根据是一个无理数,可得m是无理数,据此判断即可.②根据m2=12,可得m是方程m2﹣12=0的解,据此判断即可.③首先求出不等式组的解集是4<m<5,然后根据m=2<2×2=4,可得m不满足不等式组,据此判断即可.④根据m2=12,而且m>0,可得m是12的算术平方根,据此判断即可.解答:解:∵边长为m的正方形面积为12,∴m2=12,∴m=2,∵是一个无理数,∴m是无理数,∴结论①正确;∵m2=12,∴m是方程m2﹣12=0的解,∴结论②正确;∵不等式组的解集是4<m<5,m=2<2×2=4,∴m不满足不等式组,∴结论③不正确;∵m2=12,而且m>0,∴m是12的算术平方根,∴结论④正确.综上,可得关于m的说法中,错误的是③.故选:C.点评:(1)此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.(2)此题还考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.(3)此题还考查了不等式的解集的求法,以及正方形的面积的求法,要熟练掌握.10.(3分)(2015•通辽)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.10考点:菱形的性质;解一元二次方程-因式分解法.分析:边AB的长是方程y2﹣7y+10=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.解答:解:∵解方程y2﹣7y+10=0得:y=2或5∵对角线长为6,2+2<6,不能构成三角形;∴菱形的边长为5.∴菱形ABCD的周长为4×5=20.故选B.点评:本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.二、填空题(本题包括7小题,每小题3分,共21分)11.(3分)(2015•通辽)在数1,0,﹣1,|﹣2|中,最小的数是﹣1.考点:有理数大小比较.专题:计算题.分析:利用绝对值的代数意义化简后,找出最小的数即可.解答:解:在数1,0,﹣1,|﹣2|=2中,最小的数是﹣1.故答案为:﹣1.点评:此题考查了有理数的大小比较,弄清有理数的比较方法是解本题的关键.12.(3分)(2015•通辽)因式分解:x3y﹣xy=xy(x﹣1)(x+1).考点:提公因式法与公式法的综合运用.分析:首先提取公因式xy,再运用平方差公式进行二次分解.解答:解:x3y﹣xy,=xy(x2﹣1)…(提取公因式)=xy(x+1)(x﹣1).…(平方差公式)故答案为:xy(x+1)(x﹣1).点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(3分)(2015•通辽)函数y=中,自变量x的取值范围是x≥﹣1且x≠﹣3.考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x+1≥0;分母不等于0,可知:x+3≠0,所以自变量x的取值范围就可以求出.解答:解:根据题意得:x+1≥0且x+3≠0,解得:x≥﹣1且x≠﹣3.故答案为:x≥﹣1且x≠﹣3.点评:本题考查了函数自变量的取值范围,使得分式和根号有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14.(3分)(2015•通辽)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为42°.考点:圆周角定理.分析:根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.解答:解:∵OA=OB,∠OBA=48°,∴∠OAB=∠OBA=48°,∴∠AOB=180°﹣48°×2=84°,∴∠C=∠AOB=42°,故答案为:42°.点评:此题综合运用了三角形的内角和定理以及圆周角定理.解决本题的关键是熟记一条弧所对的圆周角等于它所对的圆心角的一半.15.(3分)(2015•通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程﹣=15.考点:由实际问题抽象出分式方程.分析:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,根据题意可得,实际比原计划少用15天完成任务,据此列方程即可.解答:解:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,由题意得,﹣=15.故答案为:﹣=15.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.16.(3分)(2015•通辽)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为8cm2或2cm2或2cm2.考点:勾股定理;等腰三角形的判定;矩形的性质.专题:分类讨论.分析:因为等腰三角形腰的位置不明确,所以分三种情况进行讨论:(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.解答:解:分三种情况计算:(1)当AE=AF=4时,如图:∴S△AEF=AE•AF=×4×4=8(cm2);(2)当AE=EF=4时,如图:则BE=5﹣4=1,BF===,∴S△AEF=•AE•BF=×4×=2(cm2);(3)当AE=EF=4时,如图:则DE=7﹣4=3,DF===,∴S△AEF=AE•DF=×4×=2(cm2);故答案为:8或2或2.点评:本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论,有一定的难度.17.(3分)(2015•通辽)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015=2.考点:规律型:数字的变化类.分析:根据表达式求出前几个数不难发现,每三个数为一个循环组依次循环,用2015除以3,根据商和余数的情况确定a2015的值即可.解答:解:根据题意得,a2==2,a3==﹣1,a4==,…,依此类推,每三个数为一个循环组依次循环,∵2015÷3=671…2,∴a2015是第671个循环组的第2个数,与a2相同,即a2015=2.故答案为:2.点评:本题考查数字的变化规律,计算并观察出每三个数为一个循环组依次循环是解题的关键.三、解答题(本题包括9个小题,共69分,请写出解答的文字说明、证明过程或计算步骤)18.(12分)(2015•通辽)(1)计算:(π﹣)0+()﹣1﹣﹣tan30°;(2)解方程:+=1;(3)解不等式组,并把解集在数轴上表示出来.考点:实数的运算;零指数幂;负整数指数幂;解分式方程;在数轴上表示不等式的解集;解一元一次不等式组;特殊角的三角函数值.分析:(1)分别根据0指数幂及负整数指数幂的计算法则、数的开方法则及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先把分式方程化为整式方程,求出x的值,在进行检验即可;(3)分别求出各不等式的解集,再求出其公共解集即可.解答:解:(1)原式=1+2﹣3﹣=3﹣;(2)方程两边同时乘以(x+3)(x﹣3)得,3+x(x+3)=x2﹣9,解得x=4,代入(x+3)(x﹣3)得,(4+3)(4﹣3)=7≠0,故x=4是原分式方程的解;(3),由①得,y≥1,由②得,y<2,故不等式组的解集为:1≤y<2.点评:本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则、数的开方法则及特殊角的三角函数值是解答此题的关键.19.(5分)(2015•通辽)先化简,再求值:÷(a﹣),其中a,b满足|a﹣3|+(b﹣2)2=0.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=÷=•=,∵|a﹣3|+(b﹣2)2=0,∴a﹣3=0,b﹣2=0,即a=3,b=2,则原式=1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(5分)(2015•通辽)如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:首先过点E作EF⊥BC于点F,过点E作EN⊥AB于点N,再利用坡度的定义以及勾股定理得出EF、FC的长,求出AB的长即可.解答:解:过点E作EF⊥BC于点F,过点E作EN⊥AB于点N,∵建筑物AB后有一座假山,其坡度为i=1:,∴设EF=x,则FC=x,∵CE=20米,∴x2+(x)2=400,解得:x=10,则FC=10m,∵BC=25m,∴BF=NE=(25+10)m,∴AB=AN+BN=NE+EF=10+25+10=(35+10)m,答:建筑物AB的高为(35+10)m.点评:本题考查了解直角三角形的应用,要求学生借助坡角关系构造直角三角形,并结合图形利用三角函数解直角三角形,难度适中.21.(5分)(2015•通辽)如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.考点:平行四边形的性质;等腰三角形的判定与性质.分析:首先根据平行四边形的性质可得AB=DC=6,AD=BC=10,AB∥DC,再根据平行线的性质与角平分线的性质证明∠2=∠3,根据等角对等边可得BC=CF=10,再用CF﹣CD即可算出DF的长.解答:解:∵四边形ABCD为平行四边形,∴AB=DC=6,AD=BC=10,AB∥DC.∵AB∥DC,∴∠1=∠3,又∵BF平分∠ABC,∴∠1=∠2,∴∠2=∠3,∴BC=CF=10,∴DF=BF﹣DC=10﹣6=4.点评:此题主要考查了平行线的性质,以及平行线的性质,关键是证明∠2=∠3推出BC=CF.22.(7分)(2015•通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.考点:全等三角形的判定.专题:证明题.分析:根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论.解答:解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).点评:本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.23.(6分)(2015•通辽)课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B﹣良好,C﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调查了多少名学生?(2)C类女生有3名,D类男生有1名,并将条形统计图补充完整;(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.考点:列表法与树状图法;扇形统计图;条形统计图.专题:计算题.分析:(1)用B类的人数除以它所占的百分比即可得到本次调查的学生数;(2)先利用调查的总人数乘以C类所占百分比得到C类人数,然后减去男生人数即可得到C类女生人数,同样可求出D类男生人数,然后补全条形统计图;(3)先画树状图展示15种等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式计算.解答:解:(1)本次调查的学生数=10÷50%=20(名);(2)C类学生数=20×25%=5,则C类女生数=5﹣2=3(名);D类学生数=20﹣3﹣10﹣5=2(名),则D类男生有1名,条形统计图为:(3)画树状图为:共有15种等可能的结果数,其中恰好是一位男同学和一位女同学的结果数为7种,所以所选同学中恰好是一位男同学和一位女同学的概率=.故答案为3,1.点评:本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.24.(8分)(2015•通辽)光明文具厂工人的工作时间:每月26天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资920元,按月结算.该厂生产A,B两种型号零件,工人每生产一件A种型号零件,可得报酬0.85元,每生产一件B种型号零件,可得报酬1.5元,下表记录的是工人小王的工作情况:生产A种型号零件/件生产B种型号零件/件总时间/分2 2 706 4 170根据上表提供的信息,请回答如下问题:(1)小王每生产一件A种型号零件、每生产一件B种型号零件,分别需要多少分钟?(2)设小王某月生产A种型号零件x件,该月工资为y元,求y与x的函数关系式;(3)如果生产两种型号零件的数目限制,那么小王该月的工资数目最多为多少?考点:一次函数的应用.专题:应用题.分析:(1)设小王生产一个A种产品用a分钟,生产一个B种产品用b分钟,根据表格中的数据,列方程组求a、b的值;(2)根据:月工资y=生产一件A种产品报酬×x+生产一件B种产品报酬×+福利工资920元,列出函数关系式;(3)利用(2)得到的函数关系式,根据一次函数的增减性求解.解答:解:(1)设小王生产一个A种产品用a分钟,生产一个B种产品用b分钟;根据题意得,解得,即小李生产一个A种产品用15分钟,生产一个B种产品用20分钟.(2)y=0.85x+×1.5+920,即y=﹣0.275x+1856.(3)由解析式y=﹣0.275x+1856可知:x越小,y值越大,并且生产A,B两种产品的数目又没有限制,所以,当x=0时,y=1856.即小王该月全部时间用来生产B种产品,最高工资为1856元.点评:本题考查了一次函数的运用.关键是根据题意列出函数关系式,利用一次函数的增减性解答题目的问题.25.(9分)(2015•通辽)如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O于点H,E 为上一点,连接ME,NE,NE交MQ于点F,且ME2=EF•EN.(1)求证:QN=QF;(2)若点E到弦MH的距离为1,cos∠Q=,求⊙O的半径.考点:切线的性质;相似三角形的判定与性质.分析:(1)如图1,通过相似三角形(△MEF∽△MEN)的对应角相等推知,∠1=∠EMN;又由弦切角定理、对顶角相等证得∠2=∠3;最后根据等角对等边证得结论;(2)如图2,连接OE交MQ于点G,设⊙O的半径是r.根据(1)中的相似三角形的性质证得∠EMF=∠ENM,所以由“圆周角、弧、弦间的关系”推知点E是弧MH的中点,则OE⊥MQ;然后通过解直角△MNE求得cos∠Q=sin∠GMO==,则可以求r的值.解答:(1)证明:如图1,∵ME2=EF•EN,∴=.又∵∠MEF=∠MEN,∴△MEF∽△MEN,∴∠1=∠EMN.∵∠1=∠2,∠3=∠EMN,∴∠2=∠3,∴QN=QF;(2)解:如图2,连接OE交MQ于点G,设⊙O的半径是r.由(1)知,△MEF∽△MEN,则∠4=∠5.∴=.∴OE⊥MQ,∴EG=1.∵cos∠Q=,且∠Q+∠GMO=90°,∴sin∠GMO=,∴=,即=,解得,r=2.5,即⊙O的半径是2.5.点评:本题考查切线的性质和相似三角形的判定与性质.在(1)中判定△MEF∽△MEN是解题的关键,在(2)中推知点E是弧MH的中点是解题的关键.26.(12分)(2015•通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].考点:二次函数综合题.分析:(1)根据抛物线的顶点是(2,1),因而设抛物线的表达式为y=a(x﹣2)2+1,把A的坐标代入即可求得函数的解析式;(2)根据△PCQ为等边三角形,则△CGQ中,∠CQD=30°,CG的长度可以求得,利用直角三角形的性质,即可求得CQ,即等边△CQP的边长,则P的纵坐标代入二次函数的解析式,即可求得P 的坐标;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年内蒙古通辽市中考数学试卷一、选择题(本题包括10个小题,每小题3分,共30分,每小题只有一个正确选项)1.(3分)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查2.(3分)的算术平方根是()A.﹣2 B.±2 C.D.23.(3分)实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4 B.2 C.1 D.34.(3分)已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(1,﹣6)D.(﹣6,1)5.(3分)下列说法中,正确的是()A.﹣x2的系数是B.πa2的系数是C.3ab2的系数是3a D.xy2的系数是6.(3分)如图,由几个相同的小正方体搭成的一个几何体,它的俯视图为()A.B.C.D.7.(3分)一组数据2,0,1,x,3的平均数是2,则这组数据的方差是()A.2 B.4 C.1 D.38.(3分)如图,已知AB∥CD,若∠A=25°,∠E=40°,则∠C等于()A.40°B.65°C.115° D.25°9.(3分)已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①②B.①③C.③D.①②④10.(3分)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.10二、填空题(本题包括7小题,每小题3分,共21分)11.(3分)在数1,0,﹣1,|﹣2|中,最小的数是.12.(3分)因式分解:x3y﹣xy=.13.(3分)函数y=中,自变量x的取值范围是.14.(3分)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C 的度数为.15.(3分)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程.16.(3分)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为.17.(3分)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015=.三、解答题(本题包括9个小题,共69分,请写出解答的文字说明、证明过程或计算步骤)18.(12分)(1)计算:(π﹣)0+()﹣1﹣﹣tan30°;(2)解方程:+=1;(3)解不等式组,并把解集在数轴上表示出来.19.(5分)先化简,再求值:÷(a﹣),其中a,b满足|a﹣3|+(b﹣2)2=0.20.(5分)如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)21.(5分)如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.22.(7分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.23.(6分)课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B﹣良好,C﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调查了多少名学生?(2)C类女生有名,D类男生有名,并将条形统计图补充完整;(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.24.(8分)光明文具厂工人的工作时间:每月26天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资920元,按月结算.该厂生产A,B两种型号零件,工人每生产一件A种型号零件,可得报酬0.85元,每生产一件B种型号零件,可得报酬1.5元,下表记录的是工人小王的工作情况:根据上表提供的信息,请回答如下问题:(1)小王每生产一件A种型号零件、每生产一件B种型号零件,分别需要多少分钟?(2)设小王某月生产A种型号零件x件,该月工资为y元,求y与x的函数关系式;(3)如果生产两种型号零件的数目无限制,那么小王该月的工资数目最多为多少?25.(9分)如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O于点H,E为上一点,连接ME,NE,NE交MQ于点F,且ME2=EF•EN.(1)求证:QN=QF;(2)若点E到弦MH的距离为1,cos∠Q=,求⊙O的半径.26.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].2015年内蒙古通辽市中考数学试卷参考答案与试题解析一、选择题(本题包括10个小题,每小题3分,共30分,每小题只有一个正确选项)1.(3分)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查;故选D.2.(3分)的算术平方根是()A.﹣2 B.±2 C.D.2【分析】首先求出的值是2;然后根据算术平方根的求法,求出2的算术平方根,即可求出的算术平方根是多少.【解答】解:∵,2的算术平方根是,∴的算术平方根是.故选:C.3.(3分)实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4 B.2 C.1 D.3【分析】掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.【解答】解:在实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1)中,无理数有:﹣π,sin60°,0.3131131113…(相邻两个3之间依次多一个1),共3个,故选D.4.(3分)已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(1,﹣6)D.(﹣6,1)【分析】把已知点坐标代入反比例解析式求出k的值,即可做出判断.【解答】解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选B.5.(3分)下列说法中,正确的是()A.﹣x2的系数是B.πa2的系数是C.3ab2的系数是3a D.xy2的系数是【分析】根据单项式的概念求解.【解答】解:A、﹣x2的系数是﹣,故A错误;B、πa2的系数是π,故B错误;C、3ab2的系数是3,故C错误;D、xy2的系数,故D正确.故选:D.6.(3分)如图,由几个相同的小正方体搭成的一个几何体,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面向下看,从左到右有三排,且其正方形的个数分别为2、3、1,故选:D.7.(3分)一组数据2,0,1,x,3的平均数是2,则这组数据的方差是()A.2 B.4 C.1 D.3【分析】先根据平均数的定义确定出x的值,再根据方差的计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]求出这组数据的方差.【解答】解:由平均数的公式得:(0+1+2+3+x)÷5=2,解得x=4;则方差=[(0﹣2)2+(1﹣2)2+(2﹣2)2+(3﹣2)2+(4﹣2)2]÷5=2.故选:A.8.(3分)如图,已知AB∥CD,若∠A=25°,∠E=40°,则∠C等于()A.40°B.65°C.115° D.25°【分析】由平行线的性质可求得∠EFB=∠C,在△AEF中由三角形外角的性质可求得∠EFB,可求得答案【解答】解:∵∠EFB是△AEF的一个外角,∴∠EFB=∠A+∠E=25°+40°=65°,∵AB∥CD,∴∠C=∠EFB=65°,故选B.9.(3分)已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①②B.①③C.③D.①②④【分析】①根据边长为m的正方形面积为12,可得m2=12,所以m=2,然后根据是一个无理数,可得m是无理数,据此判断即可.②根据m2=12,可得m是方程m2﹣12=0的解,据此判断即可.③首先求出不等式组的解集是4<m<5,然后根据m=2<2×2=4,可得m不满足不等式组,据此判断即可.④根据m2=12,而且m>0,可得m是12的算术平方根,据此判断即可.【解答】解:∵边长为m的正方形面积为12,∴m2=12,∴m=2,∵是一个无理数,∴m是无理数,∴结论①正确;∵m2=12,∴m是方程m2﹣12=0的解,∴结论②正确;∵不等式组的解集是4<m<5,m=2<2×2=4,∴m不满足不等式组,∴结论③不正确;∵m2=12,而且m>0,∴m是12的算术平方根,∴结论④正确.综上,可得关于m的说法中,错误的是③.故选:C.10.(3分)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.10【分析】边AB的长是方程y2﹣7y+10=0的一个根,解方程求得y的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.【解答】解:∵解方程y2﹣7y+10=0得:y=2或5∵对角线长为6,2+2<6,不能构成三角形;∴菱形的边长为5.∴菱形ABCD的周长为4×5=20.故选B.二、填空题(本题包括7小题,每小题3分,共21分)11.(3分)在数1,0,﹣1,|﹣2|中,最小的数是﹣1.【分析】利用绝对值的代数意义化简后,找出最小的数即可.【解答】解:在数1,0,﹣1,|﹣2|=2中,最小的数是﹣1.故答案为:﹣1.12.(3分)因式分解:x3y﹣xy=xy(x﹣1)(x+1).【分析】首先提取公因式xy,再运用平方差公式进行二次分解.【解答】解:x3y﹣xy,=xy(x2﹣1)…(提取公因式)=xy(x+1)(x﹣1).…(平方差公式)故答案为:xy(x+1)(x﹣1).13.(3分)函数y=中,自变量x的取值范围是x≥﹣1.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x+1≥0;分母不等于0,可知:x+3≠0,所以自变量x的取值范围就可以求出.【解答】解:根据题意得:x+1≥0且x+3≠0,解得:x≥﹣1,故答案为:x≥﹣1.14.(3分)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C 的度数为42°.【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=48°,∴∠OAB=∠OBA=48°,∴∠AOB=180°﹣48°×2=84°,∴∠C=∠AOB=42°,故答案为:42°.15.(3分)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程﹣=15.【分析】设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,根据题意可得,实际比原计划少用15天完成任务,据此列方程即可.【解答】解:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,由题意得,﹣=15.故答案为:﹣=15.16.(3分)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为8cm2或2cm2或2cm2.【分析】因为等腰三角形腰的位置不明确,所以分三种情况进行讨论:(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.【解答】解:分三种情况计算:(1)当AE=AF=4时,如图:∴S=AE•AF=×4×4=8(cm2);△AEF(2)当AE=EF=4时,如图:则BE=5﹣4=1,BF===,∴S=•AE•BF=×4×=2(cm2);△AEF(3)当AE=EF=4时,如图:则DE=7﹣4=3,DF===,=AE•DF=×4×=2(cm2);∴S△AEF故答案为:8或2或2.17.(3分)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015=2.【分析】根据表达式求出前几个数不难发现,每三个数为一个循环组依次循环,用2015除以3,根据商和余数的情况确定x2015的值即可.【解答】解:根据题意得,x2==2,x3==﹣1,x4==,…,依此类推,每三个数为一个循环组依次循环,∵2015÷3=671…2,∴x2015是第672个循环组的第2个数,与x2相同,即x2015=2.故答案为:2.三、解答题(本题包括9个小题,共69分,请写出解答的文字说明、证明过程或计算步骤)18.(12分)(1)计算:(π﹣)0+()﹣1﹣﹣tan30°;(2)解方程:+=1;(3)解不等式组,并把解集在数轴上表示出来.【分析】(1)分别根据0指数幂及负整数指数幂的计算法则、数的开方法则及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先把分式方程化为整式方程,求出x的值,在进行检验即可;(3)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)原式=1+2﹣3﹣=3﹣;(2)方程两边同时乘以(x+3)(x﹣3)得,3+x(x+3)=x2﹣9,解得x=﹣4,代入(x+3)(x﹣3)得,(﹣4+3)(﹣4﹣3)=7≠0,故x=﹣4是原分式方程的解;(3),由①得,y≥1,由②得,y<2,故不等式组的解集为:1≤y<2.19.(5分)先化简,再求值:÷(a﹣),其中a,b满足|a﹣3|+(b﹣2)2=0.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:原式=÷=•=,∵|a﹣3|+(b﹣2)2=0,∴a﹣3=0,b﹣2=0,即a=3,b=2,则原式=1.20.(5分)如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)【分析】首先过点E作EF⊥BC于点F,过点E作EN⊥AB于点N,再利用坡度的定义以及勾股定理得出EF、FC的长,求出AB的长即可.【解答】解:过点E作EF⊥BC于点F,过点E作EN⊥AB于点N,∵建筑物AB后有一座假山,其坡度为i=1:,∴设EF=x,则FC=x,∵CE=20米,∴x2+(x)2=400,解得:x=10,则FC=10m,∵BC=25m,∴BF=NE=(25+10)m,∴AB=AN+BN=NE+EF=10+25+10=(35+10)m,答:建筑物AB的高为(35+10)m.21.(5分)如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.【分析】首先根据平行四边形的性质可得AB=DC=6,AD=BC=10,AB∥DC,再根据平行线的性质与角平分线的性质证明∠2=∠3,根据等角对等边可得BC=CF=10,再用CF﹣CD即可算出DF的长.【解答】解:∵四边形ABCD为平行四边形,∴AB=DC=6,AD=BC=10,AB∥DC.∵AB∥DC,∴∠1=∠3,又∵BF平分∠ABC,∴∠1=∠2,∴∠2=∠3,∴BC=CF=10,∴DF=CF﹣DC=10﹣6=4.22.(7分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.【分析】根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论.【解答】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).23.(6分)课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B﹣良好,C﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调查了多少名学生?(2)C类女生有3名,D类男生有1名,并将条形统计图补充完整;(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.【分析】(1)用B类的人数除以它所占的百分比即可得到本次调查的学生数;(2)先利用调查的总人数乘以C类所占百分比得到C类人数,然后减去男生人数即可得到C类女生人数,同样可求出D类男生人数,然后补全条形统计图;(3)先画树状图展示15种等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式计算.【解答】解:(1)本次调查的学生数=10÷50%=20(名);(2)C类学生数=20×25%=5,则C类女生数=5﹣2=3(名);D类学生数=20﹣3﹣10﹣5=2(名),则D类男生有1名,条形统计图为:(3)画树状图为:共有15种等可能的结果数,其中恰好是一位男同学和一位女同学的结果数为7种,所以所选同学中恰好是一位男同学和一位女同学的概率=.故答案为3,1.24.(8分)光明文具厂工人的工作时间:每月26天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资920元,按月结算.该厂生产A,B两种型号零件,工人每生产一件A种型号零件,可得报酬0.85元,每生产一件B种型号零件,可得报酬1.5元,下表记录的是工人小王的工作情况:根据上表提供的信息,请回答如下问题:(1)小王每生产一件A种型号零件、每生产一件B种型号零件,分别需要多少分钟?(2)设小王某月生产A种型号零件x件,该月工资为y元,求y与x的函数关系式;(3)如果生产两种型号零件的数目无限制,那么小王该月的工资数目最多为多少?【分析】(1)设小王生产一个A种产品用a分钟,生产一个B种产品用b分钟,根据表格中的数据,列方程组求a、b的值;(2)根据:月工资y=生产一件A种产品报酬×x+生产一件B种产品报酬×+福利工资920元,列出函数关系式;(3)利用(2)得到的函数关系式,根据一次函数的增减性求解.【解答】解:(1)设小王生产一个A种产品用a分钟,生产一个B种产品用b 分钟;根据题意得,解得,即小李生产一个A种产品用15分钟,生产一个B种产品用20分钟.(2)y=0.85x+×1.5+920,即y=﹣0.275x+1856.(3)由解析式y=﹣0.275x+1856可知:x越小,y值越大,并且生产A,B两种产品的数目又没有限制,所以,当x=0时,y=1856.即小王该月全部时间用来生产B种产品,最高工资为1856元.25.(9分)如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O于点H,E为上一点,连接ME,NE,NE交MQ于点F,且ME2=EF•EN.(1)求证:QN=QF;(2)若点E到弦MH的距离为1,cos∠Q=,求⊙O的半径.【分析】(1)如图1,通过相似三角形(△MEF∽△MEN)的对应角相等推知,∠1=∠EMN;又由弦切角定理、对顶角相等证得∠2=∠3;最后根据等角对等边证得结论;(2)如图2,连接OE交MQ于点G,设⊙O的半径是r.根据(1)中的相似三角形的性质证得∠EMF=∠ENM,所以由“圆周角、弧、弦间的关系”推知点E是弧MH的中点,则OE⊥MQ;然后通过解直角△MNE求得cos∠Q=sin∠GMO==,则可以求r的值.【解答】(1)证明:如图1,∵ME2=EF•EN,∴=.又∵∠MEF=∠MEN,∴△MEF∽△MEN,∴∠1=∠EMN.∵∠1=∠2,∠3=∠EMN,∴∠2=∠3,∴QN=QF;(2)解:如图2,连接OE交MQ于点G,设⊙O的半径是r.由(1)知,△MEF∽△MEN,则∠4=∠5.∴=.∴OE⊥MQ,∴EG=1.∵cos∠Q=,且∠Q+∠GMO=90°,∴sin∠GMO=,∴=,即=,解得,r=2.5,即⊙O的半径是2.5.26.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].【分析】(1)根据抛物线的顶点是(2,1),因而设抛物线的表达式为y=a(x﹣2)2+1,把A的坐标代入即可求得函数的解析式;(2)根据△PCQ为等边三角形,则△CGQ中,∠CQD=30°,CG的长度可以求得,利用直角三角形的性质,即可求得CQ,即等边△CQP的边长,则P的纵坐标代入二次函数的解析式,即可求得P的坐标;(3)解方程组即可求得E的坐标,则EF的长等于E的纵坐标,OE的长度,利用勾股定理可以求得,同理,OC的长度可以求得,则CE的长度即可求解;(4)可以利用反证法,假设x轴上存在一点,使△CQM≌△CPE,可以证得EM=EF,即M与F重合,与点E为直线y=x上的点,∠CEF=45°即点M与点F不重合相矛盾,故M不存在.【解答】解:(1)设抛物线的表达式为y=a(x﹣2)2+1,将点A(0,2)代入,得a(0﹣2)2+1=2,解这个方程,得a=,∴抛物线的表达式为y=(x﹣2)2+1=x2﹣x+2;(2)将x=2代入y=x,得y=2∴点C的坐标为(2,2)即CG=2,∵△PCQ为等边三角形∴∠CQP=60°,CQ=PQ,∵PQ⊥x轴,∴∠CQG=30°,∴CQ=4,GQ=2.∴OQ=2+2,PQ=4,将y=4代入y=(x﹣2)2+1,得4=(x﹣2)2+1解这个方程,得x1=2+2=OQ,x2=2﹣2<0(不合题意,舍去).∴点P的坐标为(2+2,4);(3)把y=x代入y=x2﹣x+2,得x=x2﹣x+2解这个方程,得x1=4+2,x2=4﹣2<2(不合题意,舍去)∴y=4+2=EF∴点E的坐标为(4+2,4+2)∴OE==4+4,又∵OC==2,∴CE=OE﹣OC=4+2,∴CE=EF;(4)不存在.如图,假设x轴上存在一点,使△CQM≌△CPE,则CM=CE,∠QCM=∠PCE∵∠QCP=60°,∴∠MCE=60°又∵CE=EF,∴EM=EF,又∵点E为直线y=x上的点,∴∠CEF=45°,∴点M与点F不重合.∵EF⊥x轴,这与“垂线段最短”矛盾,∴原假设错误,满足条件的点M不存在.。