HMS2M32M16V中文资料
Belimo 产品B216 型号15 技术数据表说明书

B216•Stainless Steel Ball and StemType overviewType DNB21615Technical dataFunctional data Valve size0.5" [15]Fluid chilled or hot water, up to 60% glycolFluid Temp Range (water)0...250°F [-18...120°C]Body Pressure Rating600 psiClose-off pressure ∆ps200 psiFlow characteristic equal percentageServicing maintenance-freeFlow Pattern2-wayLeakage rate0% for A – ABControllable flow range75°Cv16No Characterized Disc TRUECv Flow Rating A-port: as stated in chart B-port: 70% of A – ABCvMaterials Valve body Nickel-plated brass bodyStem stainless steelStem seal EPDM (lubricated)Seat PTFECharacterized disc No Disc (full flow)Pipe connection NPT female endsO-ring EPDM (lubricated)Ball stainless steelSuitable actuators Non-Spring TRLRB(X)NRSpring TFRB(X)LFSafety notesWARNING: This product can expose you to lead which is known to the State of California tocause cancer and reproductive harm. For more information go to B216ApplicationMode of operationProduct featuresThis valve is typically used in air handling units on heating or cooling coils, and fan coil unit heating or cooling coils. Some other common applications include Unit Ventilators, VAV box re-heat coils and bypass loops. This valve is suitable for use in a hydronic system with variable flow.Flow/Mounting detailsTwo-way valves should be installed with thedisc upstream.Product featuresSY7~8 Replacement HandwheelDimensionsType DN B21615LRB, LRXAB C D E F H1H29.4" [239]2.4" [60]5.6" [141]5.0" [127]1.3" [33]1.3" [33]1.2" [30]1.1" [28]TRAB C D E F 3.7" [95]2.4" [60]5.2" [132]4.6" [117]1.3" [33]1.3" [33]B216TFRB, TFRXA B C D E F6.6" [167] 2.4" [60] 5.5" [139] 4.7" [120] 1.5" [39] 1.5" [39]LFA B C D E F7.9" [200] 2.4" [60] 6.1" [154] 5.5" [140] 1.3" [33] 1.3" [33]ARB N4, ARX N4, NRB N4, NRX N4A B C D E F11.4" [289] 2.4" [60]7.7" [196]7.0" [179] 3.1" [80] 3.1" [80]FootnotesNEMA 4X, Modulating Control, Non-Spring Return, 24 V, for DC 2...10 V or 4...20 mATechnical dataElectrical dataNominal voltageAC/DC 24 V Nominal voltage frequency 50/60 Hz Power consumption in operation 3.5 W Power consumption in rest position 0.6 WTransformer sizing 5 VA (class 2 power source)Electrical Connection Screw terminal (for 26 to 14 GA wire), 1/2" conduit connectorOverload Protectionelectronic throughout 0...95° rotation Functional dataOperating range Y 2...10 VOperating range Y note 4...20 mA w/ ZG-R01 (500 Ω, 1/4 W resistor)Input Impedance 100 kΩ for 2...10 V (0.1 mA), 500 Ω for 4...20 mA Position feedback U 2...10 V Position feedback U note Max. 1 mADirection of motion motor selectable with switch 0/1Manual override external push button Angle of rotation Max. 90°Angle of rotation note adjustable with mechanical stop Running Time (Motor)90 s / 90°Noise level, motor 45 dB(A)Position indicationpointer Safety dataDegree of protection IEC/EN IP66/67Degree of protection NEMA/UL NEMA 4XEnclosure UL Enclosure Type 4XAgency ListingcULus acc. to UL60730-1A/-2-14, CAN/CSA E60730-1:02, CE acc. to 2014/30/EU and 2014/35/EU Quality Standard ISO 9001Ambient temperature -22...122°F [-30...50°C]Ambient temperature note -40...50°C for actuator with integrated heating Storage temperature -40...176°F [-40...80°C]Ambient humidity Max. 100% RH Servicingmaintenance-freeMaterialsHousing material Die cast aluminium and plastic casing†Rated Impulse Voltage 800V, Type of action 1.AA, Control Pollution Degree 3AccessoriesElectrical accessories Description TypeBattery backup system, for non-spring return models NSV24 USBattery, 12 V, 1.2 Ah (two required)NSV-BATAuxiliary switch 1 x SPDT add-on S1AAuxiliary switch 2 x SPDT add-on S2AFeedback potentiometer 140 Ω add-on, grey P140A GRFeedback potentiometer 1 kΩ add-on, grey P1000A GRFeedback potentiometer 10 kΩ add-on, grey P10000A GRFeedback potentiometer 2.8 kΩ add-on, grey P2800A GRFeedback potentiometer 500 Ω add-on, grey P500A GRFeedback potentiometer 5 kΩ add-on, grey P5000A GR Electrical installationINSTALLATION NOTESProvide overload protection and disconnect as required.Actuators may be connected in parallel. Power consumption and input impedance must beobserved.Actuators may also be powered by DC 24 V.Only connect common to negative (-) leg of control circuits.A 500 Ω resistor (ZG-R01) converts the 4...20 mA control signal to 2...10 V.Actuators are provided with a numbered screw terminal strip instead of a cable.Meets cULus requirements without the need of an electrical ground connection.Warning! Live electrical components!During installation, testing, servicing and troubleshooting of this product, it may be necessaryto work with live electrical components. Have a qualified licensed electrician or other individualwho has been properly trained in handling live electrical components perform these tasks.Failure to follow all electrical safety precautions when exposed to live electrical componentscould result in death or serious injury.Wiring diagrams2...10 V / 4...20 mA ControlDimensions。
MEMORY存储芯片MT48V16M32L2B5-8 IT中文规格书

Table 4: Pin and Ball Descriptions256Mb: x4, x8, x16 SDRAM Pin and Ball Assignments and DescriptionsInitializationSDRAM must be powered up and initialized in a predefined manner. Operational proce-dures other than those specified may result in undefined operation. After power is ap-plied to V DD and V DDQ (simultaneously) and the clock is stable (stable clock is defined as a signal cycling within timing constraints specified for the clock pin), the SDRAM re-quires a 100μs delay prior to issuing any command other than a COMMAND INHIBIT or NOP . Starting at some point during this 100μs period and continuing at least through the end of this period, COMMAND INHIBIT or NOP commands must be applied.After the 100μs delay has been satisfied with at least one COMMAND INHIBIT or NOP command having been applied, a PRECHARGE command should be applied. All banks must then be precharged, thereby placing the device in the all banks idle state.Once in the idle state, at least two AUTO REFRESH cycles must be performed. After the AUTO REFRESH cycles are complete, the SDRAM is ready for mode register program-ming. Because the mode register will power up in an unknown state, it must be loaded prior to applying any operational command. If desired, the two AUTO REFRESH com-mands can be issued after the LMR command.The recommended power-up sequence for SDRAM:1.Simultaneously apply power to V DD and V DDQ .2.Assert and hold CKE at a LVTTL logic LOW since all inputs and outputs are LVTTL-compatible.3.Provide stable CLOCK signal. Stable clock is defined as a signal cycling within tim-ing constraints specified for the clock pin.4.Wait at least 100μs prior to issuing any command other than a COMMAND INHIB-IT or NOP .5.Starting at some point during this 100μs period, bring CKE HIGH. Continuing at least through the end of this period, 1 or more COMMAND INHIBIT or NOP com-mands must be applied.6.Perform a PRECHARGE ALL command.7.Wait at least t RP time; during this time NOPs or DESELECT commands must be given. All banks will complete their precharge, thereby placing the device in the all banks idle state.8.Issue an AUTO REFRESH command.9.Wait at least t RFC time, during which only NOPs or COMMAND INHIBIT com-mands are allowed.10.Issue an AUTO REFRESH command.11.Wait at least t RFC time, during which only NOPs or COMMAND INHIBIT com-mands are allowed.12.The SDRAM is now ready for mode register programming. Because the mode reg-ister will power up in an unknown state, it should be loaded with desired bit values prior to applying any operational command. Using the LMR command, program the mode register. The mode register is programmed via the MODE REGISTER SET command with BA1 = 0, BA0 = 0 and retains the stored information until it is pro-grammed again or the device loses power. Not programming the mode register upon initialization will result in default settings which may not be desired. Out-puts are guaranteed High-Z after the LMR command is issued. Outputs should be High-Z already before the LMR command is issued.13.Wait at least t MRD time, during which only NOP or DESELECT commands are al-lowed.At this point the DRAM is ready for any valid command.256Mb: x4, x8, x16 SDRAM Initialization。
MEMORY存储芯片MT48H16M32LFCM-75中文规格书

WRITE latency and AL, WL = AL + CWL (see Mode Register 2 (MR2) (page 135)). Exam-ples of READ and WRITE latencies are shown in Figure 53 (page 135) and Figure 55(page 136).Figure 53: READ Latency (AL = 5, CL = 6)CKCK#Command DQDQS, DQS#Don’t CareBC4Indicates breakin time scale Transitioning Data Mode Register 2 (MR2)The mode register 2 (MR2) controls additional functions and features not available in the other mode registers. These additional functions are CAS WRITE latency (CWL), AU-TO SELF REFRESH (ASR), SELF REFRESH TEMPERATURE (SRT), and DYNAMIC ODT (R TT(WR)). These functions are controlled via the bits shown in Figure 54. The MR2 is programmed via the MRS command and will retain the stored information until it is programmed again or until the device loses power. Reprogramming the MR2 register will not alter the contents of the memory array, provided it is performed correctly. The MR2 register must be loaded when all banks are idle and no data bursts are in progress,and the controller must wait the specified time t MRD and t MOD before initiating a sub-sequent operation.Address busNote: 1.MR2[18, 15:11, 8, and 2:0] are reserved for future use and must all be programmed to 0.CAS WRITE Latency (CWL)CWL is defined by MR2[5:3] and is the delay, in clock cycles, from the releasing of the internal write to the latching of the first data in. CWL must be correctly set to the corre-sponding operating clock frequency (see Figure 54 (page 136)). The overall WRITE la-tency (WL) is equal to CWL + AL (Figure 52 (page 132)).Figure 55: CAS WRITE LatencyCKCK#Command DQDQS, DQS#Don’t CareIndicates breakin time scale Transitioning Data AUTO SELF REFRESH (ASR)Mode register MR2[6] is used to disable/enable the ASR function. When ASR is disabled,the self refresh mode’s refresh rate is assumed to be at the normal 85°C limit (some-times referred to as 1x refresh rate). In the disabled mode, ASR requires the user to en-sure the DRAM never exceeds a T C of 85°C while in self refresh unless the user enables the SRT feature listed below when the T C is between 85°C and 95°C.Enabling ASR assumes the DRAM self refresh rate is changed automatically from 1x to 2x when the case temperature exceeds 85°C. This enables the user to operate the DRAM beyond the standard 85°C limit up to the optional extended temperature range of 95°C while in self refresh mode.The standard self refresh current test specifies test conditions to normal case tempera-ture (85°C) only, meaning if ASR is enabled, the standard self refresh current specifica-tions do not apply (see Extended Temperature Usage (page 173)).SELF REFRESH TEMPERATURE (SRT)Mode register MR2[7] is used to disable/enable the SRT function. When SRT is disabled,the self refresh mode’s refresh rate is assumed to be at the normal 85°C limit (some-times referred to as 1x refresh rate). In the disabled mode, SRT requires the user to en-sure the DRAM never exceeds a T C of 85°C while in self refresh mode unless the user en-ables ASR.When SRT is enabled, the DRAM self refresh is changed internally from 1x to 2x, regard-less of the case temperature. This enables the user to operate the DRAM beyond the standard 85°C limit up to the optional extended temperature range of 95°C while in self refresh mode. The standard self refresh current test specifies test conditions to normal case temperature (85°C) only, meaning if SRT is enabled, the standard self refresh cur-rent specifications do not apply (see Extended Temperature Usage (page 173)).SRT vs. ASRIf the normal case temperature limit of 85°C is not exceeded, then neither SRT nor ASR is required, and both can be disabled throughout operation. However, if the extended temperature option of 95°C is needed, the user is required to provide a 2x refresh rate during (manual) refresh and to enable either the SRT or the ASR to ensure self refresh is performed at the 2x rate.SRT forces the DRAM to switch the internal self refresh rate from 1x to 2x. Self refresh is performed at the 2x refresh rate regardless of the case temperature.ASR automatically switches the DRAM’s internal self refresh rate from 1x to 2x. Howev-er, while in self refresh mode, ASR enables the refresh rate to automatically adjust be-tween 1x to 2x over the supported temperature range. One other disadvantage with ASR is the DRAM cannot always switch from a 1x to a 2x refresh rate at an exact case temper-ature of 85°C. Although the DRAM will support data integrity when it switches from a 1x to a 2x refresh rate, it may switch at a lower temperature than 85°C.Since only one mode is necessary, SRT and ASR cannot be enabled at the same time.DYNAMIC ODTThe dynamic ODT (R TT(WR)) feature is defined by MR2[10, 9]. Dynamic ODT is enabled when a value is selected. This new DDR3 SDRAM feature enables the ODT termination value to change without issuing an MRS command, essentially changing the ODT ter-mination on-the-fly.With dynamic ODT (R TT(WR)) enabled, the DRAM switches from normal ODT (R TT,nom )to dynamic ODT (R TT(WR)) when beginning a WRITE burst and subsequently switches8Gb: x4, x8, x16 DDR3L SDRAM Mode Register 2 (MR2)。
S2M中文规格书

To learn more about ON Semiconductor, please visit our website atPlease note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can befound at . Please email any questions regarding the system integration to Fairchild_questions@.ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at /site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changeswithout further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of theapplication or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associatedS2A - S2M — General-Purpose Rectifiers (Glass Passivated)S2A - S2MGeneral-Purpose Rectifiers (Glass Passivated)Features•High-Current Capability, 2 A Rated•Fast Response: 2 μs T rr•Low-Forward Voltage Drop, 1.15 V V F Max at 2 A•High-Surge Current Capability, 50 A 2s I FSM•Glass Passivated Junction•RoHS Compliant•UL Certified, UL #E258596Applications•Power Supplies•AC to DC Rectification•Bypass Diodes Ordering InformationPart NumberMarking Package Packing Method S2AS2A DO-214AA (SMB)Tape and ReelS2BS2B S2DS2D S2GS2G S2JS2J S2KS2K S2M S2M Description The S2 family of devices are general-purpose 2 A rated rectifiers with voltage ratings ranging from 50 to 1000 V.They are implemented in traditional SMB packages and are well known to the industry. For advanced or special requirements, please contact a Fairchild Semiconductor representative.SMB/DO-214AA COLOR BAND DENOTES CATHODE2.202.504.70 2.65MAX2.451.90B 0.2030.0500.300.052.15 1.65A0.13M C B AC 3.953.30B2.201.91B5.605.08B4.754.050.13M C B ABA0.410.151.600.75R0.15 4X8°0°0.450-8°DETAIL ASCALE 20 : 1LAND PATTERN RECOMMENDATIONGAUGEPLANENOTES:A.EXCEPT WHERE NOTED CONFORMS TOJEDEC DO214 VARIATION AA.B DOES NOT COMPLY JEDEC STD. VALUE.C.ALL DIMENSIONS ARE IN MILLIMETERS.D.DIMENSIONS ARE EXCLUSIVE OF BURRS,MOLD FLASH AND TIE BAR PROTRUSIONS.E.DIMENSION AND TOLERANCE AS PER ASMEY14.5-1994.ND PATTERN STD. DIOM5336X240M.G.DRAWING FILE NAME: DO214AAREV1S2A - S2M — General-Purpose Rectifiers (Glass Passivated) Figure 6. 2-LEAD, SMB, JEDEC DO-214, VARIATION AA。
Basic MOST Training Package Rev02-012011

4 1 3½
hours hour hours
4.
Equipment Use Sequence (EUS) EUS Lab Exercise & Review Test Lunch Basic MOST Review Test Practical Exercise Wrap Up
5. Day 5 08:30 am 11:30 am
Basic MOST Certification Exam Course survey/feedback End of training
3 ¼
hours hours
5
GOS-hhyeo-BasicMOST-rev01-102009 Internal Circulation With Permission Only
13
GOS-hhyeo-BasicMOST-rev01-102009 Internal Circulation With Permission Only
Basic MOST®
Work Standards
Engineered Standards
• Engineered Standards are work standards that are developed systematically and scientifically 1. The method is systematically analyzed and documented 2. The time it takes to perform the operation is actually measured, rather than estimated
L9942中文大数据手册簿

实用文档特点■两路全桥,最大输出电流. 1.3 A(R DSON = 500 mΩ)■带查表功能的可编程驱动电流曲线表格: 9 级5位精度■内置PWM电流调整器和电流传感器■可编程的步进模式:全步、半步、细步、微步■可编程摆率控制:改善EMC性能降低功耗■可编程的高速-, 低速-,混合- 和自动衰减模式■ 3位精度的全范围可编程电流■可编程堵转检测■降低对微处理器要求的步进时钟输入■待机模式下功耗很低IS < 3 μA, typ. Tj ≤85 °C■所有输出均带:短路保护,负载开路,过载,温度预警和热关断功能■内部PWM控制器的PWM信号可以当做数据输出使用。
.■在下列工作范围内所有指标都会保证3 V < Vcc <5.3 V and for 7 V < Vs < 20 V用途双极步进电机驱动器在汽车上的应用:如灯光的水平控制,灯光方向调整,节气门控制。
描述L9942是一款集成的双极步进电机驱动器,具有细分模式和可编程电流配置表,能灵活适应步进电机的特性和预期的工作情况。
可以根据目标情况选用不同的电流配置表:噪音,振动,转速或者转矩。
衰减模式用在PWM-电流控制电路中,可以编程设置成低速-,高速-,混合-和自动衰减模式。
在自动衰减模式下,如果下一步电流是增加的,器件会采用低速模式,如果下一步电流是衰减的,则会采用高速或者混合模式。
可编程堵转检测在前灯水平调整和弯道调整应用中非常有用,可以防止堵转时电机为了转到位置而长时间的运行。
如果检测到堵转,对准过程被关闭,并且噪声被最小化。
表1 器件概要2009年5月文档编号11778 Rev6目录1 框图与引脚 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 器件描述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.3 诊断功能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 过压与欠压检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.5 温度报警与热关断 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.6 感性负载 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.7 交叉电流保护 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.8 PWM 电流调整 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.9 衰减模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.10 过流检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.11 负载开路检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.12 步进模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.13 衰减模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 电气参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 绝对最大额定值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 ESD 静电保护 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 热参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4 电气特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.1 电源 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.2 过压和欠压检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4.3 参考电流输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4.4 电荷泵输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4.5 输出: Qxn (x = A; B n = 1; 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.4.6 PWM 控制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 SPI的逻辑功能描述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1 电机步进时钟输入 (STEP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 PWM 输出 (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3 串行外设接口 (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214.4 芯片反相片选 (CSN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.5 串行数据输入 (DI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.6 串行数据输出 (DO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.7 串行时钟 (CLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.8 数据寄存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 SPI –控制和状态寄存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235.3 寄存器 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.4 寄存器 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.5 寄存器 4 和 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.6 寄存器 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.7 寄存器 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.8 辅助逻辑模块 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.8.1 故障条件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.8.2 SPI 通讯监视 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275.8.3 用于堵转检测的PWM 监视 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 SPI 逻辑的电气特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.1 输入: CSN, CLK, STEP, EN 和 DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.2 DI 的时序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.3 输出: DO, PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.4 输出: DO 的时序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.5 CSN 的时序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296.6 STEP 的时序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 附录 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337.1 堵转检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337.2 步进时钟输入 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337.3 负载电流控制和过流检测(输出短路) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 包装信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 历史版本 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39表格列表表 1. 器件概要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 表 2. 引脚描述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 表 3. 真值表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 表 4. 绝对最大额定值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 表 5. ESD 静电保护 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 表 6. 工作时的结温 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15表 9. 过压和欠压检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 表 10. 参考电流输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 表 11. 电荷泵输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 表 12. 输出: Qxn (x = A; B n =1; 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 表 13. PWM 控制 (见图 4 和图 7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 表 14. 寄存器 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 表 15. 寄存器 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 表 16. 寄存器 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 表 17. 寄存器 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 表 18. 寄存器 4 和 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 表 19. 寄存器 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 表 20. 寄存器 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 表 21. 输入: CSN, CLK, STEP, EN and DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 表 22. DI 的时序 (见图 11 和图 13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 表 23. 输出: DO, PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 表 24. 输出: DO 的时序(见图 12 和图 13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 表 25. CSN 的时序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 表 26. STEP 的时序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 表 27. 文档历史版本 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39插图列表图 1. 方框图. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6图 2. 引脚图 (顶视) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6图 3. 步进模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12图 4. 衰减模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13图 5. 封装的热数据 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15图 6. VS 监视 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17图 7. 设置负载电流限制的逻辑 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19图 8. 最小切换时间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20图 11. 输入时序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 图 12. SPI - DO 有效的数据延迟时间和有效时间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 图 13. DO 使能和禁止时间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 图 14. 状态位 0 的时序 (故障条件) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 图 15. 堵转检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 图 16. PWM 控制的参考产生 (接通) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 图 17. PWM控制的参考产生 (衰减) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 图 18. PowerSSO24 机械尺寸和包装规格 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 框图与引脚图图 1. 框图图 2. 引脚图 (顶视)2 芯片描述2.1 双电源供电: VS 和 VCC电源引脚VS脚给半桥供电。
Amtax Compact II

6.1.1 显示模式.......................................................................................................................... 25 6.1.1.1 测量模式.......................................................................................................................25 6.1.1.2 菜单模式.......................................................................................................................26 6.1.1.3 图形模式......................................................................................................................26 6.2 菜单..............................................................................................................................................27 6.2.1主菜单.................................................................................................................................27 6.2.2 设定菜单...........................................................................................................................28 6.2.3 信号菜单............................................................................................................................30 6.2.4 服务菜单...........................................................................................................................31 6.2.5 功能测试............................................................................................................................33
ZMM16中文资料

FEATURES♦Silicon Planar Zener Diodes♦In Mini-MELF case especially for automatic insertion.♦The Zener voltages are graded according to the international E 24 standard. Smaller voltagetolerances and other Zener voltages are available upon request.♦These diodes are also available in DO-35 case with the type designation ZPD1 … ZPD51.MECHANICAL DATACase:Mini-MELF Glass Case (SOD-80)Weight:approx. 0.05 gMAXIMUM RATINGSRatings at 25°C ambient temperature unless otherwise specified.SYMBOL VALUE UNITZener Current (see Table “Characteristics”)Power Dissipation at T amb = 25°C P tot 500(1)mW Junction Temperature T j 175°C Storage Temperature RangeT S– 55 to +175°CZENER DIODES.142 (3.6).019 (0.48)∅Cathode Mark.063 (1.6).134 (3.4).055 (1.4).011 (0.28)Dimensions are in inches and (millimeters)ZMM1(3)0.7 ... 0.8 6.5 (< 8)< 50– 26 ... – 23–280340ZMM2.7 2.5 ... 2.975 (< 83)< 500– 9 ... – 4–135160ZMM3 2.8 ... 3.280 (< 95)< 500– 9 ... – 3–117140ZMM3.3 3.1 ... 3.580 (< 95)< 500– 8 ... – 3–109130ZMM3.6 3.4 ... 3.880 (< 95)< 500– 8 ... – 3–101120ZMM3.9 3.7 ... 4.180 (< 95)< 500– 7 ... – 3–92110ZMM4.3 4.0 ... 4.680 (< 95)< 500– 6 ... – 1–85100ZMM4.7 4.4 ... 5.070 (< 78)< 500– 5 ... +2–7690ZMM5.1 4.8 ... 5.430 (< 60)< 480– 3 ... +4> 0.86780ZMM5.6 5.2 ... 6.010 (< 40)< 400– 2 ... +6> 15970ZMM6.2 5.8 ... 6.6 4.8 (< 10)< 200– 1 ... +7> 25464ZMM6.8 6.4 ... 7.2 4.5 (< 8)< 150+2 ... +7> 34958ZMM7.57.0 ... 7.9 4 (< 7)< 50+3 ... +7> 54453ZMM8.27.7 ... 8.7 4.5 (< 7)< 50+4 ... +7> 64047ZMM9.18.5 ... 9.6 4.8 (< 10)< 50+5 ... +8> 73643ZMM109.4 ... 10.6 5.2 (< 15)< 70+5 ... +8> 7.53340ZMM1110.4 ... 11.6 6 (< 20)< 70+5 ... +9> 8.53036ZMM1211.4 ... 12.77 (< 20)< 90+6 ... +9> 92832ZMM1312.4 ... 14.19 (< 25)< 110+7 ... +9> 102529ZMM1513.8 ... 15.611 (< 30)< 110+7 ... +9> 112327ZMM1615.3 ... 17.113 (< 40)< 170+8 ... +9.5> 122024ZMM1816.8 ... 19.118 (< 50)< 170+8 ... +9.5> 141821ZMM2018.8 ... 21.220 (< 50)< 220+8 ... +10> 151720ZMM2220.8 ... 23.325 (< 55)< 220+8 ... +10> 171618ZMM2422.8 ... 25.628 (< 80)< 220+8 ... +10> 181316ZMM2725.1 ... 28.930 (< 80)< 250+8 ... +10> 201214ZMM3028 ... 3235 (< 80)< 250+8 ... +10> 22.51013ZMM3331 ... 3540 (< 80)< 250+8 ... +10> 25912ZMM3634 ... 3840 (< 90)< 250+8 ... +10> 27911ZMM3937 ... 4150 (< 90)< 300+10 ... +12> 29810ZMM4340 ... 4660 (< 100)< 700+10 ... +12> 3279.2ZMM4744 ... 5070 (< 100)< 750+10 ... +12> 3568.5ZMM5148 (54)70 (< 100)< 750+10 ... +12> 3867.8ZMM5652.0 … 60.0(4)<135(4)<1000(5)typ. +10(4)–––ZMM6258.0 … 66.0(4)<150(4)<1000(5)typ. +10(4)–––ZMM6864.0 … 72.0(4)<200(4)<1000(5)typ. +10(4)–––ZMM7570.0 … 79.0(4)<250(4)<1500(5)typ. +10(4)–––NOTES:(1) Tested with pulses t p = 5 ms(2) Valid provided that electrodes are kept at ambient temperature(3) The ZMM1 is a silicon diode operated in forward direction. Hence, the index of all parameters should be “F” instead of “Z”Connect the cathode electrode to the negative pole (4) at I Z = 2.5 mA (5) at I Z = 0.5 mAELECTRICAL CHARACTERISTICSRatings at 25°C ambient temperature unless otherwise specified.TypeZener Voltage (1)at I Z = 5 mAV Z Vat I Z = 5 mA f = 1 kHz r zj Ωat I Z = 1 mA f = 1 kHz r zj ΩTemp. Coeff.of Zener Voltageat I Z = 5 mA αVZ 10–4/K Reverse Voltage atI R = 100 nAV R V atT amb = 45°C I Z = mA Admissable Zener current (2)atT amb = 25°C I Z = mA Dynamic Resistance。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GENERAL DESCRIPTIONThe HMS2M32M16V/Z16V is a high-speed static random access memory (SRAM) module containing 2,097,152 words organized in a x32-bit configuration. The module consists of sixteen 1M x 4 SRAMs mounted on a 72-pin, double-sided, FR4-printed circuit board.PD0 to PD3 identify the module’s density allowing interchangeable use of alternate density, industry- standard modules. Four chip enable inputs, (/CE1, /CE2, /CE3 and /CE4) are used to enable the module’s 4 bytes independently. Output enable (/OE) and write enable (/WE) can set the memory input and output.Data is written into the SRAM memory when write enable (/WE) and chip enable (/CE) inputs are both LOW. Reading is accomplished when /WE remains HIGH and /CE and output enable (/OE) are LOW.For reliability, this SRAM module is designed as multiple power and ground pin. All module components may be powered from a single +3.3V DC power supply and all inputs and outputs are fully LVTTL-compatible.FEATURESw Access times: 10, 12, 15, 17 and 20nsw High-density 8MByte designw High-reliability, high-speed designw Single + 3.3V ±10% power supplyw Easy memory expansion /CE and /OE functions w All inputs and outputs are LVTTL-compatiblew Industry-standard pinoutw FR4-PCB designw Low profile 72-pinw Part identification- HMS2M32M16V : SIMM Design, Gold Lead - HMS2M32Z16V: ZIP Design, Solder Pin Lead ( The both are pin-to-pin compatible)OPTIONS MARKINGw Timing10ns access -1012ns access -1215ns access -1517ns access -1720ns access -20w Packages72-pin SIMM M72-pin ZIP Z PIN SYMBOL PIN SYMBOL PIN SYMBOL1 Vcc 25 DQ13 49 DQ272 NC 26 DQ5 50 DQ193 Vss 27 DQ14 51 A34 NC 28 DQ6 52 A105 Vss 29 DQ15 53 A46 NC 30 DQ7 54 A117 Vss 31 Vss 55 A58 DQ0 32 /WE 56 A129 DQ8 33 A15 57 Vcc10 DQ1 34 A14 58 A1311 DQ9 35 /CE2 59 A612 DQ2 36 /CE1 60 DQ2013 DQ10 37 /CE4 61 DQ2814 DQ3 38 /CE3 62 DQ2115 DQ11 39 A17 63 DQ2916 Vcc 40 A16 64 DQ2217 A0 41 /OE 65 DQ3018 A7 42 Vss 66 DQ2319 A1 43 DQ24 67 DQ3120 A8 44 DQ16 68 Vss21 A2 45 DQ25 69 A1822 A9 46 DQ17 70 A1923 DQ12 47 DQ26 71 NC24 DQ4 48 DQ18 72 VccPIN ASSIGNMENT72-PIN SIMM TOP VIEWFUNCTIONAL BLOCK DIAGRAMTRUTH TABLEMODE/OE /CE /WE OUTPUT POWER STANDBY X H X HIGH-Z STANDBY NOT SELECTED H L H HIGH-Z ACTIVE READ L L H D OUT ACTIVE WRITE XLLD INACTIVEABSOLUTE MAXIMUM RATINGSPARAMETERSYMBOL RATING Voltage on Any Pin Relative to Vss V IN,OUT -0.5V to +4.6V Voltage on Vcc Supply Relative to Vss V CC -0.5V to +4.6VPower Dissipation P D 16W Storage Temperature T STG -65o C to +150o C Operating TemperatureT A0o C to +70oCw Stresses greater than those listed under " Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.A(20) /CE1 /CE2 /CE3 /CE4/LCE1 /HCE1 /LCE2/HCE2 /LCE3 /HCE3 /LCE4 /HCE4RECOMMENDED DC OPERATING CONDITIONS ( T A=0 to 70 o C )PARAMETER SYMBOL MIN TYP. MAX Supply Voltage V CC 3.0V 3.3V 3.6V Ground V SS0 0 0Input High Voltage V IH 2.0 - Vcc+0.3V** Input Low Voltage V IL-0.3* - 0.8V* V IL(Min.) = -2.0V (Pulse Width ≤ 10ns) for I ≤ 20 mA** V IH(Min.) = Vcc+2.0V (Pulse Width ≤ 10ns) for I ≤ 20 mADC AND OPERATING CHARACTERISTICS (1)(0o C ≤ T A ≤ 70 o C ; Vcc = 3.3V ± 0.3V ) PARAMETER TEST CONDITIONS SYMBOL MIN MAX UNITS Input Leakage Current V IN = Vss to Vcc IL I-32 32 µAOutput Leakage Current /CE=V IH or /OE =V IH or /WE=V ILV OUT=Vss to V CCIL0-32 32 µAOutput High Voltage I OH = -4.0Ma V OH 2.4 V Output Low Voltage I OL = 8.0mA V OL0.4 V * Vcc=3.3V, Temp=25 o CDC AND OPERATING CHARACTERISTICS (2)MAX DESCRIPTION TEST CONDITIONS SYMBOL-10 -12 -15UNITPower Supply Current: Operating Min. Cycle, 100% Duty/CE=V IL, V IN=V IH or V IL,I OUT=0mAl CC 2960 2880 2800 mA Min. Cycle, /CE=V IH l SB800 800 800 mAPower SupplyCurrent: Standbyf=0MHZ, /CE≥V CC-0.2V,V IN≥ V CC-0.2V or V IN≤0.2Vl SB1160 160 160 mACAPACITANCEDESCRIPTION TEST CONDITIONS SYMBOL MAX UNIT Input /Output Capacitance V I/O=0V C I/O 128 pF Input Capacitance V IN=0V C IN112 pF * NOTE : Capacitance is sampled and not 100% testedAC CHARACTERISTICS (0o C ≤ T A ≤ 70 o C ; Vcc = 3.3V ± 0.3V, unless otherwise specified) Test conditionsPARAMETERVALUE Input Pulse Level 0 to 3V Input Rise and Fall Time3ns Input and Output Timing Reference Levels 1.5V Output LoadSee belowREAD CYCLE-10-12-15PARAMETERSYMBOLMINMAX MIN MAX MIN MAX UNITRead Cycle Time t RC 10 12 15ns Address Access Time t AA 10 12 15 ns Chip Select to Output t CO 10 12 15 ns Output Enable to Output t OE 5 6 7 ns Output Enable to Low-Z Output t OLZ 0 0 0 ns Chip Enable to Low-Z Output t LZ 3 3 3 ns Output Disable to High-Z Output t OHZ 0 5 0 6 0 7 ns Chip Disable to High-Z Output t HZ 0 5 0 6 0 7 ns Output Hold from Address Change t OH 3 3 3 ns Chip Select to Power Up Time t PU 0 0 0 ns Chip Select to Power Down Time t PD101215ns319Ω 5pF*D OUTOutput Load (B)for t HZ , t LZ , t WHZ , t OW , t OLZ & t OHZ50Ω30pFD OUTOutput Load (A)WRITE CYCLE-12 -15 -20UNIT PARAMETER SYMBOLMIN MAX MIN MAX MIN MAXWrite Cycle Time t WC10 12 15 ns Chip Select to End of Write t CW7 8 10 ns Address Set-up Time t AS0 0 0 ns Address Valid to End of Write t AW7 8 10 ns Write Pulse Width t WP7 8 10 ns Write Recovery Time t WR0 0 0 ns Write to Output High-Z t WHZ0 5 0 6 0 7 ns Data to Write Time Overlap t DW 5 6 7 ns Data Hold from Write Time t DH0 0 0 ns End of Write to Output Low-Z t OW 3 3 3 nsTIMING DIAGRAMSPlease refer to timing diagram chart(II)FUNCTIONAL DESCRIPTION/CE /WE /OE MODE I/O PIN SUPPLY CURRENTH X* X Not Select High-Z l SB, l SB1L H H Output Disable High-Z l CCL H L Read D OUT l CCL L X Write D IN l CCNote: X means Don't CarePACKAGE DIMENSIONS SIMM Design(Solder & Gold Plating Lead) ZIP DesignORDERING INFORMATIONPart Number Density Org. Package ComponentNumberVcc SPEEDHMS2M32M16V 8MByte 2M×32bit 72Pin-SIMM 16EA 3.3V 10ns HMS2M32M16V8MByte 2M×32bit 72Pin-SIMM 16EA 3.3V 12ns HMS2M32M16V8MByte 2M×32bit 72Pin-SIMM 16EA 3.3V 15ns HMS2M32M16V8MByte 2M×32bit 72Pin-SIMM 16EA 3.3V 17ns HMS2M32M16V8MByte 2M×32bit 72Pin-SIMM 16EA 3.3V 20ns HMS2M32Z16V8MByte 2M×32bit 72Pin-ZIP 16EA 3.3V 10ns HMS2M32Z16V8MByte 2M×32bit 72Pin-ZIP 16EA 3.3V 12ns HMS2M32Z16V8MByte 2M×32bit 72Pin-ZIP 16EA 3.3V 15ns HMS2M32Z16V8MByte 2M×32bit 72Pin-ZIP 16EA 3.3V 17ns HMS2M32Z16V8MByte 2M×32bit 72Pin-ZIP 16EA 3.3V 20ns。