专题6:二次函数与几何综合备战2020年中考数学能力提升训练(图片)复习课件

合集下载

专题 二次函数的综合提升-2023年中考数学第一轮总复习课件(全国通用)

专题 二次函数的综合提升-2023年中考数学第一轮总复习课件(全国通用)
2.如图,二次函数y=-x2+4与x轴交于A,B两点(点A在点B的左侧),等腰直角
△ACD的直角顶点D在x轴上,AD=3.现将△ACD沿x轴的正方向平移,则当点C
在函数图象上时,△ACD的平移距离为_4_或__6__.
y
y
A
C
DP
C
B0
x
D
AO B x
培优训练
抛物线的变换
知识点二
3.如图,抛物线y=x2-4x(0≤x≤4)记为l1,l1与x轴分别交于点O,A1;将l1绕
=
x1
+ 2
x2
时,
函数值为q,则p-q的值为( A ) A.a B.c C.-a+c
D.a-c
2.已知A(x1,2022),B(x2,2022)是抛物线y=ax2+bx+2021(a≠0)上的两点,则
当x=x1+x2时,二次函数的值是( D )
A. 2b2 5
a
B. b2 5
4a
C.2022
D.2021
2.如图,抛物线
y
=
1 4p
x
2
(
p
>
0)
,点F(0,p),直线l:y=-p,已知抛物线上的点到点
F的距离与到直线l的距离相等,过点F的直线与抛物线交于A,B两点,AA1⊥l
于点A1,BB1⊥l于点B1,连接A1F,B1F,A1O,B1O,若A1F=a,B1F=b,则△A1OB1的面
积=_14_a_b_(只用a,b表示). A C B
9.若P1(x1,x1),P2(x2,x2)是抛物线y=ax2-4ax上两点,则当|x1-2|>|x2-2|时, 下列不等式一定正确的是( D )

中考数学专题:二次函数应用专题(共17张ppt)

中考数学专题:二次函数应用专题(共17张ppt)

解:当S=288时
s
-2(x-15)2+450=288
500
450
∴x1=6,x2=24
400 300
288
当S≥288时,
200
由图象可知 6≤x≤24. 又∵墙长为36m,
100
6
24
O 5 10 15 20 25 30 x
∴ 12≤x<30
综上所述:12≤x≤24.
变式5.如图,若将60m的篱笆改为79m,墙长为36m, 为了方便进出,在平行于墙的一边开一个1m宽的门. (1)求菜园的最大面积;(2)若菜园面积不小于750m2,求 x的取值范围.
解:设矩形垂直墙的一边为xm,
则平行墙的一边为(60-2x)m.
S=(60-2x)x=-2x2+60x
s
=-2(x-15)2+450
500
450
400
∵x>0且60-2x>0,∴ 0<x<30 300
Hale Waihona Puke ∵a=-2<0, ∴S有最大值
200 100
当x=15时,S的最大值是450m2 O
则:60-2x=30(m)
墙20m
解:S=(60-2x) x=-2x2+60x
=-2(x-15)2+450
s
∵x>0且0<60-2x≤20
500
450
∴ 20≤x<30
400 300
∵a=-2<0,对称轴x=15.
200
∴当x>15时,S随x的增大而减小. 100
∵20≤x<30,
O 5 10 15 20 25 30 x
∴当x=20时,S的最大值是400m2.

中考数学复习课件:二次函数的综合应用(共21张PPT)

中考数学复习课件:二次函数的综合应用(共21张PPT)

∵∠DME=∠OCB,∠DEM=∠BOC,
������������ ������������ ∴△DEM∽△BOC,∴ = , ������������ ������������ 4 ∵OB=4,OC=3,∴BC=5,∴DE= DM 5 3 12 3 12 ∴DE=﹣ a2+ a=﹣( (a﹣2)2+ , 5 5 5 5 12 当 a=2 时,DE 取最大值,最大值是 , 5
∵点 B(4,1),直线 l 为 y=﹣1, ∴点 B′的坐标为(4,﹣3). 设直线 AB′的解析式为 y=kx+b(k≠0), 将 A(1, )、B′(4,﹣3)代入 y=kx+b,得:
,解得:

∴直线 AB′的解析式为 y=﹣
x+

当 y=﹣1:x=

∴点 P 的坐标为(
【例3】如图,在平面直角坐标系 ∠ACB=90°,OC=2OB,tan∠ABC=2,点B 的坐标为(1,0).抛物线y=﹣x2+bx+c经 过A、B两点. (1)求抛物线的解析式;
解题过程 (1)∵B(1,0), ∴OB=1, ∵OC=2OB=2, ∴C(﹣2,0), Rt△ABC中,tan∠ABC=2
当x=-0.75时y=6.625即M2(-0.75,6.625)
例4.如图,抛物线y=-x2+bx+c
与x 轴的两个交点分别为A(3,0),D(-1, 0),与y轴交于点C,点B在y轴正半轴上, 且OB=OD(1)求抛物线的解析式
解:(1)把A(3,0),D(﹣1,0)代入
y=﹣x2+bx+c得到, 解得,
K
E D
解:S△ABP=
PE×BC =
△APE △BPE=

中考数学总复习专题二次函数与几何图形综合题课件

中考数学总复习专题二次函数与几何图形综合题课件

题型一 最值(或取值范围 )问题
(2)①设直线PQ的表达式为y=kx+1.b把 P
-1,7
24
,Q
7,-9
24
两点的坐标代入,得
7 = -1 ??+
42
-9 = 7 ??+
42
?1?,解得 ?1?.
??= ?1? =
-1,
5 4
.
∴直线PQ的表达式为y=-x+5.过点D 作DF⊥x 轴于E,交PQ于 F.
题型一 最值(或取值范围 )问题
例 1 [201·盐8 城] 如图 Z8-1①,在平面直角坐标系 xOy中,抛物线 y=ax2+bx+3 经过点 A(-1,0),B(3,0)两点,
且与 y 轴交于点 C.
(2)如图②,用宽为 4 个单位长度的直尺垂直于 x 轴,
并沿 x 轴左右平移 ,直尺的左右两边所在的直线与抛
y=x2-2x+1.
4
(2)当 b=2 时,y=x2+2x+c,对称轴为直线 x=-22=-1,
如图,在抛物线上取与 N 关于对称轴 x=-1 对称的点 Q,
由 N(2,y2),得 Q(-4,y2).
又∵M(m,y1)是抛物线上的点 ,且 y1>y2,由函数增减性 ,得 m<-4 或 m>2.
S△BCP=12PQ·(3-x)+12PQ·
x-3
2
=1PQ·(3-x+x-3)=3PQ=- 3x2+9 3x-9 3.
2
24
2
44
∴当
x=9(满足3
4
2
<94<3)时,S△BCP
有最大值,则四边形

中考数学专题《二次函数》复习课件(共18张PPT)

中考数学专题《二次函数》复习课件(共18张PPT)
(3)抛物线与y轴的交点坐标是(0,c) c决定抛物线与y轴的交点位置
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5

中考复习专题:二次函数与几何的综合题PPT课件

中考复习专题:二次函数与几何的综合题PPT课件

10
即y=∴∴13x–二23–次=a函83(0x数+–13的).(0解–析9),式解为4分得y=a=13(x3+1,)(x–9),
(2011资阳)已知抛物线C:y=ax2+bx+c(a<0)过原点,与x 轴的另一个交点为B(4,0),A为抛物线C的顶点.
(1) 如图14-1,若∠AOB=60°,求抛物线C的解析式;(3分)
2008年资阳24.(本小题满分12分)如图10,已知点A的坐标是(-1,0),
点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、 BC,过A、B、C三点作抛物线. (1)求抛物线的解析式;
解:(1) ∵以AB为直径作⊙O′,交y轴的负半轴于点C,
∴∠OCA+∠OCB=90°,
3.联立函数表达式.
互转化的基础是:点坐标与线段长。 一般解题思路是:
解析式方程组的解是图像交点坐标
(1)已知点坐标 线段长,线段长 点
坐标;
(2)用待定系数法求函数解析式;
(3)解析式 点坐标 线段长 面积
及其它。
(压轴题07) 点P为抛物线 y x2 2mx m2 (m为常数, )上任m一点0,将抛物线绕顶点G逆时针旋转90度后得到的 新图象与y轴交于A、B两点(点A在点B的上方),点Q 为点P旋转后的对应点.
(2) (3分) 求点D的坐标;
三垂直:横平竖直
F
O'D=O'A=2,DC=AC=4 ∆DO'F∽∆CDM,类似比1:2 设O'F=a,DF=b。 则DM=2a,CM=2b。 所以,2a+b=4.且2+a=2b。
DN=DF-FN=3/5
N

中考二次函数复习课件【优质PPT】

中考二次函数复习课件【优质PPT】

x=2,y最大值=3
练习 根据下列条件,求二次函数的解析式。
(1)、图象经过(-1,3), (1,3) , (2,6) 三点;
(2)、图象的顶点(2,3), 且经过点(3,1) ;
(3)、图象经过(0,0), (12,0) ,且最高点
的纵坐标是3 。
顶点(6,3)
解法一设解析式为y=a(x-0)(x-12)
令y=1.4,则-0.2x2+3.2=1.4
B x解得x=-3或x=3 ∴M(-3,1.4),N(3,1.4) ∴MN=6 20 答:横向活动范围是6米。
练习、已知二次函数y=ax2-5x+c的图象如图。
(1)、当x为何值时,y随x的增大而增大; (2)、当x为何值时,y<0。 (3)、求它的解析式和顶点坐标y ;
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
2021/10/10
14
5一.待般定式系数y法=a求x解2+b析x式+c (a≠0) 顶点式 y=a(x-h)2+k (a≠0)
交点式 y=a(x-x1)(x-x2) (a≠0)
6–
3–
-2 -1
12
练习 根据下列条件,求二次函数的解析式。
二次函数的图象是一条 对称轴平行于 y 轴.
抛物线
,它是 轴
对称图形,其
2021/10/10
2
y 3.二次函数的图象及性质y
0
x
0
x
抛物线 顶点坐标 对称轴 开口方向
y=ax2+bx+c(a>0)
b 2a
,
4acb2 4a
直线x b
2a

二次函数复习(共36张PPT)

二次函数复习(共36张PPT)

y=ax2+bx+c的图 方程ax2+bx+c=0
象和x轴交点
的根
b2-4ac
有两个交点
方程有两个不相等的 b2-4ac>0
实数根
只有一个交点
方程有两个相等的 b2-4ac=0
实数根
没有交点
方程没有实数根 b2-4ac<0
函数的图象
y
.
. ox
y
o
x
y
o
x
根据下列表格中二次函数y=ax2+bx+c的自变量与函数 值的对应值,判断方程ax2+bx+c =0
(4)函数的自变量x的取值范围:任意实数
当二次函数表示某个实际问题时,还必须根据题意确定自变量的取值范
围.
二次函数的一般形式:
• 函数y=ax2+bx+c
– 其中a、b、c是常数 – 切记:a≠0 – 右边一个x的二次多项式(不能是分式或根式)
二次函数的特殊形式:
当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
向上
直线X=-h
(-h,k)
a < 0 向下
图象的平移规律:
对于抛物线y=a(x+h)2+k的平移有以下规律: (1)、平移不改变 a 的值; (2)、h决定图象沿x轴方向左右平移,左+右— (3)、k决定图象沿y轴方向上下平移,上+下—
知识运用
(坐1标)是抛物线,图(y0象=,0过)x32 第2的开口向一象、,限对上二称;轴是
二次函数 开 口 方 向 对 称 轴 顶 点 坐 标
y = ax 2
a > 0 向上 直线X=0 a < 0 向下 (或y轴)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档