八年级数学下册第六章平行四边形性质-公开课.ppt
合集下载
人教版八年级下册 第六章 平行四边形 课件(共22张PPT)

2.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______. 3.如图所示,已知平行四边形ABCD,AC、BD相交于点O,P是平行四边形ABCD 外一点,且∠APC=∠BPD=90°.求证:平行四边形ABCD是矩形.
三、菱形
1.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 注意:菱形的定义的两个要素:
二、矩形
3.矩形的判定 (1)定义法:有一个角是直角的平行四边形叫做矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形.
例题:矩形的判定 1.已知:平行四边形ABCD中,E、F分别是AB、CD的中点,连接AF、CE. (1)求证:△BEC≌△DFA; (2)连接AC,若CA=CB,判断四边形AECF是什么特殊四边形?并证明你的结 论.
一、平行四边形
3.如图所示,在 平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF= 60°,BE=2 ,DF=3 ,求AB,BC的长及平行四边形 ABCD的面积.
一、平行四边形
4.三角形的中位线 (1)连接三角形两边中点的线段叫做三角形的中位线. (2)定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 注意: (1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小 三角形的周长为原三角形周长的 ,每个小三角形的面积为原三角形面积的 . (3)三角形的中位线不同于三角形的中线,注意区分.
例题:矩形的性质
1、如图所示,在矩形ABCD中,E、F分别是BC、AD上的点,且BE=DF. 求证△ABE≌△CDF.
二、矩形
2.如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的延长线于G, DE⊥AG于E,且DE=DC,根据上述条件,请你在图中找出一对全等三角形, 并证明你的结论.
三、菱形
1.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 注意:菱形的定义的两个要素:
二、矩形
3.矩形的判定 (1)定义法:有一个角是直角的平行四边形叫做矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形.
例题:矩形的判定 1.已知:平行四边形ABCD中,E、F分别是AB、CD的中点,连接AF、CE. (1)求证:△BEC≌△DFA; (2)连接AC,若CA=CB,判断四边形AECF是什么特殊四边形?并证明你的结 论.
一、平行四边形
3.如图所示,在 平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF= 60°,BE=2 ,DF=3 ,求AB,BC的长及平行四边形 ABCD的面积.
一、平行四边形
4.三角形的中位线 (1)连接三角形两边中点的线段叫做三角形的中位线. (2)定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 注意: (1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小 三角形的周长为原三角形周长的 ,每个小三角形的面积为原三角形面积的 . (3)三角形的中位线不同于三角形的中线,注意区分.
例题:矩形的性质
1、如图所示,在矩形ABCD中,E、F分别是BC、AD上的点,且BE=DF. 求证△ABE≌△CDF.
二、矩形
2.如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的延长线于G, DE⊥AG于E,且DE=DC,根据上述条件,请你在图中找出一对全等三角形, 并证明你的结论.
八年级数学下册第六章《平行四边形》PPT课件(共181张ppt)

1 1 OE OA, OF OC , 2 2
D E A O F B
C
OE OF .
BEO DFO ( SAS) .
Q BOE DOF ,
BE DF .
课堂小结
平行四 边形
对角线 的性质
对角线互相平分
第六章 平行四边形
6.2 平行四边形的判定
第1课时 利用四边形边的关系判定 平行四边形
思考:不添加辅助线,你能否直接 运用平行四边形 的定义,证明其对角相等? 证明:∵AB∥DC ∠ABC+∠BCD=180° AD∥BC ∴∠BAD+∠ABC=180° ∴∠BCD=∠BAD 同理 ∠ABC=∠ADC A B C D
知识要点
A B 几何语言 ∵ 四边形ABCD是平行四边形, ∴ AD∥BC ,AB∥DC. C
4.已知点A(3,0)、B(-1,0)、C(0,2),以 A、B、C为顶点画平行四边形,你能求出第四个顶点 D吗?
2 -1
O
2 3 2 -1
O
-1
O
3
3
课堂小结
定义
两组对边分别平行的四边 形是平行四边形 中心对称图形,两条对 角线的交点是它的对称 中心 对边平行, 对边相等, 对角相等
平行四 边形
对称性
性质
第六章 平行四边形
6.1 平行四边形的性质
第2课时 平行四边形对角线的性质
学习目标 1.探索并掌握平行四边形对角线性质;(重点) 2.灵活运用平行四边形的性质进行推理和计算.
导入新课
分 享 蛋 糕 的 故 事
视频中的小朋友所说的那块蛋糕是最大的吗? 为什么?
讲授新课
一 平行四边形的对角线的性质 我们知道平行四边形的边角这两个基本要素的性 质,那么平行四边形的对角线又具有怎样的性质呢? 如图,在□ABCD中,连 接AC,BD,并设它们相交于点O. 猜一猜
D E A O F B
C
OE OF .
BEO DFO ( SAS) .
Q BOE DOF ,
BE DF .
课堂小结
平行四 边形
对角线 的性质
对角线互相平分
第六章 平行四边形
6.2 平行四边形的判定
第1课时 利用四边形边的关系判定 平行四边形
思考:不添加辅助线,你能否直接 运用平行四边形 的定义,证明其对角相等? 证明:∵AB∥DC ∠ABC+∠BCD=180° AD∥BC ∴∠BAD+∠ABC=180° ∴∠BCD=∠BAD 同理 ∠ABC=∠ADC A B C D
知识要点
A B 几何语言 ∵ 四边形ABCD是平行四边形, ∴ AD∥BC ,AB∥DC. C
4.已知点A(3,0)、B(-1,0)、C(0,2),以 A、B、C为顶点画平行四边形,你能求出第四个顶点 D吗?
2 -1
O
2 3 2 -1
O
-1
O
3
3
课堂小结
定义
两组对边分别平行的四边 形是平行四边形 中心对称图形,两条对 角线的交点是它的对称 中心 对边平行, 对边相等, 对角相等
平行四 边形
对称性
性质
第六章 平行四边形
6.1 平行四边形的性质
第2课时 平行四边形对角线的性质
学习目标 1.探索并掌握平行四边形对角线性质;(重点) 2.灵活运用平行四边形的性质进行推理和计算.
导入新课
分 享 蛋 糕 的 故 事
视频中的小朋友所说的那块蛋糕是最大的吗? 为什么?
讲授新课
一 平行四边形的对角线的性质 我们知道平行四边形的边角这两个基本要素的性 质,那么平行四边形的对角线又具有怎样的性质呢? 如图,在□ABCD中,连 接AC,BD,并设它们相交于点O. 猜一猜