2011年上海市高考数学试题(理科)
2011年上海高考理科数学试卷

2011年上海高考理科数学试卷一、填空题:每题4分,共14题56分。
1.函数1()2f x x =-的反函数为1()f x -=.2. 若全集U R=,集合{|1}{|0}A x x x x =≥≤,则U C A =.3. 设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = . 4.不等式13x x+<的解为 .5. 在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 .6. 在相距2千米的A 、B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A 、C 两点之间的距离是千米.7. 若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 . 8.函数sin()cos()26y x x ππ=+-的最大值为 .9. 马老师从课本上抄录一个随机变量ε的概率分布律如下表:?!?321P(ε=x )x请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案E ε= .10. 行列式ab cd(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 .11. 在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅= .12. 随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001).13. 设()g x 是定义在R 上、以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 .14. 已知点(0,0)O 、0(0,1)Q 和0(3,1)R ,记0Q R 的中点为1P ,取01Q P 和1P R 中的一条,记其端点为1Q 、1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和的充要条件为( )A.{}na 是等比数列B.1321,,,,n a a a -或242,,,,n a a a 是等比数列 C.1321,,,,n a a a -和242,,,,n a a a 均是等比数列 D.1321,,,,n a a a -和242,,,,n a a a 均是等比数列,且公比相同三、解答题:本大题满分74分.本大题共有5题,解答应写出文字说明、证明过程或演算步骤.19.(本题满分12分)已知复数1z 满足1(2)(1)1z i i -+=-(i 为虚数单位),复数2z 的虚部为2,12z z ⋅是实数,求2z .20.(本题满分12分) 已知函数()23xxf x a b =⋅+⋅,其中常数,a b 满足0ab ≠.(1)若0ab >,判断函数()f x 的单调性; ⑵ 若0ab <,求(1)()f x f x +>时x 的取值范围.21.(本题满分14分)已知1111ABCD A B C D -是底面边长为1的正四棱柱,1O 是11A C 和11B D 的交点.⑴ 设1AB 与底面1111A B C D 所成的角的大小为α,二面角111A B D A --的大小为β.DB求证:tan 2βα=;⑵ 若点C 到平面11AB D 的距离为43,求正四棱柱1111ABCD A B C D -的高.22.(本题满分18分)已知数列{}na 和{}nb 的通项公式分别为36nan =+,27n b n =+(*n N ∈),将集合**{|,}{|,}nn x x a n N x x b n N =∈=∈中的元素从小到大依次排列,构成数列123,,,,,n c c c c .⑴ 求1234,,,c c c c ;⑵ 求证:在数列{}nc 中、但不在数列{}nb 中的项恰为242,,,,n a a a ;⑶ 求数列{}nc 的通项公式.23.(本题满分18分)已知平面上的线段l 及点P ,在l 上任取一点Q ,线段PQ 长度的最小值称为点P 到线段l 的距离,记作(,)d P l .⑴ 求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; ⑵ 设l 是长为2的线段,求点集{|(,)1}D P d P l =≤所表示图形的面积;⑶ 写出到两条线段12,l l 距离相等的点的集合12{|(,)(,)}P d P l d P l Ω==,其中12,lAB l CD==,,,,A B C D是下列三组点中的一组。
上海(理科)历年高考数学试卷及答案(-)-试题.doc

2011年普通高等学校招生全国统一考试(上海卷)理科数学一、填空题(56分) 1.函数1()2f x x =-的反函数为1()f x -= 。
2.若全集U R =,集合{|1}{|0}A x x x x =≥≤U ,则U C A = 。
3.设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = 。
4.不等式13x x+<的解为 。
5.在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 。
6.在相距2千米的A .B 两点处测量目标C ,若075,60CAB CBA ∠=∠=,则A .C 两点之间的距离是 千米。
7.若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 。
8.函数sin()cos()26y x x ππ=+-的最大值为 。
9.马老师从课本上抄录一个随机变量ε的概率分布律如下表请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯 定这两个“?”处的数值相同。
据此,小牛给出了正确答案E ε= 。
10.行列式a b c d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。
11.在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅=u u u r u u u r。
12.随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。
13.设()g x 是定义在R 上.以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 。
?!?321P(ε=x )x14.已知点(0,0)O .0(0,1)Q 和0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10PR 中的一条,记其端点为1Q .1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q .2R ,使之满足22(||2)(||2)0OQ OR --<;依次下去,得到点12,,,,n P P P L L ,则0lim ||n n Q P →∞= 。
2011年上海高考理科数学试卷

2011年上海高考理科数学试卷一、填空题:每题4分,共14题56分。
1.函数1()2f x x =-的反函数为1()f x -=.2. 若全集U R=,集合{|1}{|0}A x x x x =≥≤U ,则U C A =.3. 设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = . 4.不等式13x x+<的解为 .5. 在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 .6. 在相距2千米的A 、B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A 、C 两点之间的距离是千米.7. 若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 . 8.函数sin()cos()26y x x ππ=+-的最大值为 .9. 马老师从课本上抄录一个随机变量ε的概率分布律如下表:?!?321P(ε=x )x请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案E ε= .10. 行列式ab cd(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 .11. 在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅=u u u r u u u r .12. 随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001).13. 设()g x 是定义在R 上、以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 .14. 已知点(0,0)O 、0(0,1)Q 和0(3,1)R ,记0Q R 的中点为1P ,取01Q P 和1P R 中的一条,记其端点为1Q 、1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q 、2R ,使之满足22(||2)(||2)0OQ OR --<;依次下去,得到点12,,,,nP P P L L ,则0lim ||nn Q P →∞= .二、选择题:本大题满分20分.本大题共有4题,每题5分15. 若,a b R ∈,且0ab >,则下列不等式中,恒成立的是( )A.222a b ab +> B.2a b ab+≥C.11a bab+> D.2b aa b+≥ 16. 下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( )A.1ln||y x = B.3y x =C.||2x y = D.cos y x =17. 设12345,,,,A A A A A 是空间中给定的5个不同的点,则使123450MA MA MA MA MA ++++=u u u u r u u u u r u u u u r u u u u r u u u u r r 成立的点M 的个数为( )A.0B.1C.5D.1018. 设{}na 是各项为正数的无穷数列,iA 是边长为1,i i a a +的矩形面积(1,2,i =L ),则{}nA 为等比数列的充要条件为( ) A.{}na 是等比数列B.1321,,,,n a a a-L L 或242,,,,na a aL L 是等比数列 C.1321,,,,n a a a -L L 和242,,,,na a a L L 均是等比数列 D.1321,,,,n a a a-L L和242,,,,na a aL L均是等比数列,且公比相同三、解答题:本大题满分74分.本大题共有5题,解答应写出文字说明、证明过程或演算步骤.19.(本题满分12分)已知复数1z 满足1(2)(1)1z i i -+=-(i 为虚数单位),复数2z 的虚部为2,12z z ⋅是实数,求2z .20.(本题满分12分)已知函数()23xxf x a b =⋅+⋅,其中常数,a b 满足0ab ≠.(1)若0ab >,判断函数()f x 的单调性; ⑵ 若0ab <,求(1)()f x f x +>时x 的取值范围.21.(本题满分14分)已知1111ABCD A B C D -是底面边长为1的正四棱柱,1O 是11A C 和11B D 的交点.⑴ 设1AB 与底面1111A B C D 所成的角的大小为α,二面角111A B D A --的大小为β.求证:tan 2βα=;DCBA⑵ 若点C 到平面11AB D 的距离为43,求正四棱柱1111ABCD A B C D 的高.22.(本题满分18分)已知数列{}na 和{}nb 的通项公式分别为36nan =+,27n b n =+(*n N ∈),将集合**{|,}{|,}nnx x a n N x x b n N =∈=∈U 中的元素从小到大依次排列,构成数列123,,,,,nc c c c L L .⑴ 求1234,,,c c c c ;⑵ 求证:在数列{}nc 中、但不在数列{}nb 中的项恰为242,,,,na a aL L;⑶ 求数列{}nc 的通项公式.23.(本题满分18分)已知平面上的线段l 及点P ,在l 上任取一点Q ,线段PQ 长度的最小值称为点P 到线段l 的距离,记作(,)d P l .⑴ 求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; ⑵ 设l 是长为2的线段,求点集{|(,)1}D P d P l =≤所表示图形的面积;⑶ 写出到两条线段12,l l 距离相等的点的集合12{|(,)(,)}P d P l d P l Ω==,其中12,lAB l CD==,,,,A B C D是下列三组点中的一组。
2011年上海高考数学试题(理科)

高一数学期末综合测试(2012-06-13)一、选择题:(5′×12)1.sin2400的值是 [ ]A.-21B.21C.23D.-232. 有编号为1,2,…,700的产品,现需从中抽取所有编号能被7整除的产品作为样品进行检验.下面是四位同学设计的程序框图,其中正确的是()3.设sin α=-53,cos α=54,那么下列的点在角α的终边上的是 [ ]A.(-3,4)B.(-4,3)C.(4,-3)D.(3,-4)4. 在如图所示的算法流程图中,若f (x )=2x,g (x )=x 3,则h (2)的值为()[来源:学&科&网Z&X&X&K]A .9B .8C .6D .45.cos150·cos1050-cos750·sin1050的值是 [ ]A.0B.-21C.21D.±216一位同学种了甲、乙两种树苗各1株,分别观察了9次、10次后,得到树苗高度的数据的茎叶图如图(单位:厘米),则甲、乙两种树苗高度的数据的中位数之和是( )A .44B .54C .50D .527.函数f(x)=sin2x ·cos2x 是 [ ]A.周期为π的偶函;B.周期为π的奇函数;C.周期为2π的偶函数;D.周期为2π的奇函数.8.若=(1,2),=(-3,2),且(k +)∥(-3),则实数k 的值是 [ ]A.-31B.19C.911D.-29.函数f(x)=3cosx-sinx(0≤x ≤6π)的值域是 [ ] A.[-3,1] B.[1,3] C.[-3,2] D.[1,2] 10.如图, △ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线, 它们交于点G ,则下列各等式中不正确的是 [ ] A.BE BG 32=;B.21=;C.2-= ;D.213231=+. 11.对于函数f(x)=sin(2x+6π),下列命题: ①函数图象关于直线x=-12π对称;②函数图象关于点(125π,0)对称;③函数图象可看作是把y=sin2x 的图象向左平移个6π单位而得到;④函数图象可看作是把y=sin(x+6π)的图象上所有点的横坐标缩短到原来的21倍(纵坐标不变)而得到;其中正确的命题的个数是 [ ] G DFE B A12.已知a 、b 是两个非零向量,则a ⊥b 是(a +b )2 =(a -b )2的 [ ] A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 二、填空题:(5′×4) 13.已知向量a =(x+3,x 2-3x-4)与AB 相等,若A(1,2),B(3,2),则x= ;14. 某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:s = . 15. 图是一个算法的流程图,最后输出的W .16. 某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是 。
上海(理科)历年高考数学试卷及答案(2011-2015)

2011年普通高等学校招生全国统一考试(上海卷)理科数学一、填空题(56分) 1.函数1()2f x x =-的反函数为1()f x -= 。
2.若全集U R =,集合{|1}{|0}A x x x x =≥≤,则U C A = 。
3.设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = 。
4.不等式13x x+<的解为 。
5.在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 。
6.在相距2千米的A .B 两点处测量目标C ,若075,60CAB CBA ∠=∠=,则A .C 两点之间的距离是 千米。
7.若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 。
8.函数sin()cos()26y x x ππ=+-的最大值为 。
9.马老师从课本上抄录一个随机变量ε的概率分布律如下表请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯 定这两个“?”处的数值相同。
据此,小牛给出了正确答案E ε= 。
10.行列式a b c d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。
11.在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅= 。
12.随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。
13.设()g x 是定义在R 上.以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 。
!321P(ε=x )x14.已知点(0,0)O .0(0,1)Q 和0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10P R 中的一条,记其端点为1Q .1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q .2R ,使之满足22(||2)(||2)0OQ OR --<;依次下去,得到点12,,,,n P P P ,则0lim ||n n Q P →∞= 。
2011年高考理科数学(上海卷)(2021年整理)

2011年高考理科数学(上海卷)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2011年高考理科数学(上海卷)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2011年高考理科数学(上海卷)(word版可编辑修改)的全部内容。
2011年上海市高考数学试题(理科)一、填空题(56分)1、函数1()2f x x =-的反函数为1()f x -= 。
2、若全集U R =,集合{|1}{|0}A x x x x =≥≤,则U C A = .3、设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = 。
4、不等式13x x+<的解为 。
5、在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 。
6、在相距2千米的A 、B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A 、C 两点之间的距离是 千米。
7、若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 .8、函数sin()cos()26y x x ππ=+-9、马老师从课本上抄录一个随机变量ε请小牛同学计算ε的数学期望,尽管“!"处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同。
据此,小牛给出了正确答案E ε= . 10、行列式a b c d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。
11、在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅= 。
12、随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。
2011年上海高考数学试题(理科)

六年级数学毕业考试试卷考试时间:90分钟总分:100分学校___班级:___姓名___一、填空题(每空0.5分,共20分)1、一个数由60个百万,20个万,6个千,5个百和30个1组成,这个数写作()。
改写成用万作单位的数是(),省略万位后的尾数四舍五入是()。
2、5/7的分数单位是(),再增加()个这样的分数单位后是1.3、常见的统计图有条形统计图、()统计图、()统计图。
4、正方体的棱长为m厘米,它的棱长和是()厘米,表面积是()平方厘米。
5、4.5升=()毫升=()立方分米 1/4米=()分米 2平方分米2平方厘米=()平方分米 0.5公顷=()平方米 36分=()小时 5.06立方米=()立方分米6、已知圆锥的体积是15立方厘米,与它等底等高的圆柱的体积是()立方厘米,如果它们的底面积是5平方厘米,圆锥的高是()厘米。
7、3X=4y,那么x:y=( )8、a减去8再乘5的积是()。
9、一个圆锥的底面半径是2分米,高是0.6米,体积是()立方分米。
10、一个圆的周长是6.28分米,面积是()平方分米。
11、+9.3读作(),负十点五写作()。
12、金星表面的最高温度是四百六十五摄氏度,写作()°,汽油凝固的温度是在零下十八摄氏度,写作()°。
13、圆柱的上下两个底面是大小相等的两个(),上、下两个底面之间的距离叫做圆柱的()。
14、今年植树节,同学们种了180棵树,有20棵没有成活,后来同学们又补种了20棵,全部成活。
今年同学们植树的成活率是().15、3:00时,时针和分针的夹角是90°再过10分钟,时针和分针的夹角是()°16、平角的一半是()度,这个角是()角。
17、12和16的最大公因数是(),最小的公倍数是()。
18、4:9=20:45写成分数形式是(),根据比例的基本性质写成乘法形式是()。
19、去掉9.36的小数点,原数就扩大了()倍,9.36的计数单位是()。
2011年上海高考数学试题(理科)

山东邹平陷1000亿元高利贷漩涡 30余人已死来源:大众网 | 日期:2012-06-11 |近日,全国百强县山东邹平被传出涉高利贷漩涡中。
媒体称自2010年开始,本次大规模民间借贷总规模高达1000亿元,而该县2011年的生产总值为 630.2亿元。
2012年年初,民间借贷开始崩盘,借贷者纷纷跑路。
据接近警方的人士称,因民间借贷造成死者30多人。
民间金融、地市级有温州、鄂尔多,县级看邹平。
作为全国百强县,邹平拥有8家上市公司,其中,中国最大玉米油企业、亚洲最大棉纺企业、山东首富等均给其贴上经济强县的标签。
如今,在炫耀的光环下,它正陷入民间借贷的漩涡中,难以自拔,死亡悲剧、疯狂跑路等不断上演,让当地最为担忧的是,更大的暴风雨还在后面。
邹平已处在风口浪尖。
作为全国百强县,邹平拥有8家上市公司,其中,中国最大玉米油企业、亚洲最大棉纺企业、山东首富等均给其贴上经济强县的标签。
如今,在炫耀的光环下,它正陷入民间借贷的漩涡中,难以自拔,死亡悲剧、疯狂跑路等不断上演,更是让其心力交瘁。
新金融记者调查获悉,此次大规模的民间借贷始于2010年,来自民间的推算,其总规模高达1000亿元,而该县2011年的生产总值则为630.2亿元,在业界流传着“民间借贷,全国县级城市看邹平”。
随着各种事件的频发,让业界最为担忧的是,更大的暴风雨还在后面。
战战兢兢的躲债者5月29日,邹平。
在县城街头,不时有挂着当地车牌号的宝马、英菲尼迪、保时捷等豪车驶过。
“现在少了,原来满街都是(豪车)。
”出租车司机说,在民间借贷高峰期,大街上随时都能看到年轻人开的各种豪车,而当地人也已习以为常。
自2012年年初,民间借贷开始崩盘后,借贷者纷纷跑路,豪车渐少。
当天,邹平县城的街头显得平静,但在路边等公共场所仍能看到“贷款”、“快速融资”等字样的小广告,当地人交谈的话题也总是绕不开民间借贷这一话题。
然而,焦亮(化名)的内心却没有那么平静。
此时,他已在临近的淄博市周村区多日,每天闲下来就是与朋友打牌,用以打发时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年上海市高考数学试题(理科)一、填空题(56分) 1、函数1()2f x x =-的反函数为1()f x -= 。
2、若全集U R =,集合{|1}{|0}A x x x x =≥≤ ,则U C A = 。
3、设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = 。
4、不等式13x x+<的解为 。
5、在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 。
6、在相距2千米的A 、B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A 、C 两点之间的距离是千米。
7、若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 。
8、函数sin()cos()26y x x ππ=+-的最大值为 。
9、马老师从课本上抄录一个随机变量ε的概率分布律如下表请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同。
据此,小牛给出了正确答案E ε= 。
10、行列式a bc d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。
11、在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅=。
12、随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。
13、设()g x 是定义在R 上、以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 。
14、已知点(0,0)O 、0(0,1)Q 和0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10PR 中的一条,记其端点为1Q 、1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q 、2R ,使之满足22(||2)(||2)0OQ OR --<;依次下去,得到点12,,,,n P P P ,则0lim ||n n Q P →∞= 。
?!?321P(ε=x )x二、选择题(20分)15、若,a b R ∈,且0ab >,则下列不等式中,恒成立的是( )A 222a b ab +> B a b +≥ C11a b +>D 2b a a b +≥ 16、下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A 1ln||y x = B 3y x = C ||2x y = D cos y x = 17、设12345,,,,A A A A A 是空间中给定的5个不同的点,则使123450MA MA MA MA MA ++++=成立的点M 的个数为( )A 0B 1C 5D 1018、设{}n a 是各项为正数的无穷数列,i A 是边长为1,i i a a +的矩形面积(1,2,i = ),则{}n A 为等比数列的充要条件为 )A {}n a 是等比数列。
B 1321,,,,n a a a - 或242,,,,n a a a 是等比数列。
C 1321,,,,n a a a - 和242,,,,n a a a 均是等比数列。
D 1321,,,,n a a a - 和242,,,,n a a a 均是等比数列,且公比相同。
三、解答题(74分)19、(12分)已知复数1z 满足1(2)(1)1z i i -+=-(i 为虚数单位),复数2z 的虚部为2,12z z ⋅是实数,求2z 。
20、(12分)已知函数()23xxf x a b =⋅+⋅,其中常数,a b 满足0ab ≠。
⑴ 若0ab >,判断函数()f x 的单调性;⑵ 若0ab <,求(1)()f x f x +>时x 的取值范围。
21、(14分)已知1111ABCD A BC D -是底面边长为1的正四棱柱,1O 是11AC 和11B D 的交点。
⑴ 设1AB 与底面1111A B C D 所成的角的大小为α,二面角111A B D A --的大小为β。
求证:tan βα; ⑵ 若点C 到平面11AB D 的距离为43,求正四棱柱1111ABCD A BC D -的高。
DB D 11B22、(18分)已知数列{}n a 和{}n b 的通项公式分别为36n a n =+,27n b n =+(*n N ∈),将集合**{|,}{|,}n n x x a n N x x b n N =∈=∈ 中的元素从小到大依次排列,构成数列123,,,,,n c c c c 。
⑴ 求1234,,,c c c c ;⑵ 求证:在数列{}n c 中、但不在数列{}n b 中的项恰为242,,,,n a a a ; ⑶ 求数列{}n c 的通项公式。
23、(18分)已知平面上的线段l 及点P ,在l 上任取一点Q ,线段PQ 长度的最小值称为点P 到线段l 的距离,记作(,)d P l 。
⑴ 求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; ⑵ 设l 是长为2的线段,求点集{|(,)1}D P d P l =≤所表示图形的面积;⑶ 写出到两条线段12,l l 距离相等的点的集合12{|(,)(,)}P d P l d P l Ω==,其中12,l AB l CD ==,,,,A B C D 是下列三组点中的一组。
对于下列三组点只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种的情形,则按照序号较小的解答计分。
① (1,3),(1,0),(1,3),(1,0)A B C D --。
② (1,3),(1,0),(1,3),(1,2)A B C D ---。
③ (0,1),(0,0),(0,0),A B C D 。
2011年上海高考数学理科(参考答案)一、填空题 1、12x +;2、{|01}x x <<;3、16;4、0x <或12x ≥;5、;67;89、2;10、6;11、152;12、0.985;13、[15,11]-;14二、选择题15、D ;16、A ;17、B ;18、D 。
三、解答题19、解: 1(2)(1)1z i i -+=-⇒12z i =-………………(4分)设22,z a i a R =+∈,则12(2)(2)(22)(4)z z i a i a a i =-+=++-,………………(12分) ∵ 12z z R ∈,∴ 242z i =+ ………………(12分)20、解:⑴ 当0,0a b >>时,任意1212,,x x R x x ∈<,则121212()()(22)(33)x x x xf x f x a b -=-+- ∵ 121222,0(22)0xxxxa a <>⇒-<,121233,0(33)0xxxxb b <>⇒-<, ∴ 12()()0f x f x -<,函数()f x 在R 上是增函数。
当0,0a b <<时,同理,函数()f x 在R 上是减函数。
⑵ (1)()223xx f x f x a b +-=⋅+⋅>当0,0a b <>时,3()22x a b >-,则 1.5log ()2a x b >-;当0,0a b ><时,3()22x a b <-,则 1.5log ()2ax b<-。
21、解:设正四棱柱的高为h 。
⑴ 连1AO ,1AA ⊥底面1111A B C D 于1A ,∴ 1AB 与底面1111A B C D 所成的角为11AB A ∠,即11AB A α∠=∵ 11AB AD =,1O 为11B D 中点,∴111AO B D ⊥,又1111AO B D ⊥,∴ 11AO A ∠是二面角111A B D A --的平面角,即11AO A β∠= ∴ 111tan AA h A B α==,111tan AA AO βα===。
⑵ 建立如图空间直角坐标系,有11(0,0,),(1,0,0),(0,1,0),(1,1,)A h B D C h11(1,0,),(0,1,),(1,1,0)AB h AD h AC =-=-=设平面11AB D 的一个法向量为(,,)n x y z =,B 1D 1BD∵ 11110n AB n AB n AD n AD ⎧⎧⊥⋅=⎪⎪⇔⎨⎨⊥⋅=⎪⎪⎩⎩,取1z =得(,,1)n h h = ∴ 点C 到平面11AB D的距离为||43||n AC d n ⋅=== ,则2h =。
22、⑴ 12349,11,12,13c c c c ====; ⑵ ① 任意*n N ∈,设213(21)66327n k a n n b k -=-+=+==+,则32k n =-,即2132n n a b --=② 假设26627n k a n b k =+==+⇔*132k n N =-∈(矛盾),∴ 2{}n n a b ∉ ∴ 在数列{}n c 中、但不在数列{}n b 中的项恰为242,,,,n a a a 。
⑶ 32212(32)763k k b k k a --=-+=+=,3165k b k -=+,266k a k =+,367k b k =+∵ 63656667k k k k +<+<+<+ ∴ 当1k =时,依次有111222334,,,b a c b c a c b c =====,……∴ *63(43)65(42),66(41)67(4)n k n k k n k c k N k n k k n k +=-⎧⎪+=-⎪=∈⎨+=-⎪⎪+=⎩。
23、解:⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则||5)PQ x ==≤≤,当3x =时,min (,)||d P l PQ =⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系, 则(1,0),(1,0)A B -,点集D 由如下曲线围成12:1(||1),:1(||1)l y x l y x =≤=-≤,222212:(1)1(1),:(1)1(1)C x y x C x y x ++=≤--+=≥其面积为4S π=+。
⑶ ① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω== ② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---。