湖北省黄冈市启黄中学2018年中考二模考试数学试卷(含解析)
黄冈市启黄中学2018年春季九年级二模考试数学试卷答案解析

2018年九年级二模数学试题参考答案一、选择题(每小题3分,共24分)1.A.解析:从左面看易得上面一层左边有1个正方形,下面一层有2个正方形.2.C.解析:把点P(b,a)代入抛物线y=x2+1,得a=b2+1.②中,把点A(1,3)代入抛物线y=ax2+bx+1,得a+b+1=3.把a=b2+1,代入得b2+b﹣1=0,△=1+4=5>0,则方程有解.故原命题为真命题.③中,把点B(﹣2,1)代入抛物线y=ax2﹣bx+1,得a(﹣2)2﹣b×(﹣2)+1=1,即4a+2b=0.把a=b2+1代入,得4b2+4+2b=0,△=4﹣4×4×4=﹣60<0,则方程无解.故原命题为假命题.3.C.解析:同一尺寸最多的是39cm,共有5件,所以,众数是39cm,14件衬衫按照尺寸从小到大排列,第7,8件的尺寸是40cm,所以中位数是40cm.4.C.解析:∵∠A=100°,∠C=30°,∴∠B=50°,∵∠BDO=∠BEO,∴∠DOE=130°,∴∠DFE=65°.5.B.解析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示.:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°.6.A.解析:如图,CH是AB边上的高,与AB相交于点H,∵∠C=90°,∠BAC=30°,AB=8,∴AC=AB×cos30°=8×=4,BC=AB×sin30°=8×=4,∴CH=AC×,AH=,(1)当0≤t≤2时,S==t2;(2)当2时,S=﹣=t2[t2﹣4t+12]=2t﹣2(3)当6<t≤8时,S=[(t﹣2)•tan30°]×[6﹣(t﹣2)]×[(8﹣t)•tan60°]×(t﹣6)=[]×[﹣t+2+6]×[﹣t]×(t﹣6)=﹣t2+2t+4﹣t2﹣30=﹣t2﹣26综上所述,S=∴正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是A图象.二、填空题(每小题3分,共24分)7.1.22×10﹣6.8.2(x﹣8)(x+2).9.2.解析:扇形的弧长==2π(cm),∴圆锥的底面半径==1(cm),∴圆锥的高==2cm.10..解析:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a,∴∠AEC=90°,∵∠ACE=∠ACG=∠BCG=60°,∴E、C、B共线,在Rt△AEB中,tan∠ABC===.11.3﹣.解析:∵△ABD与△ACE是等腰直角三角形,∴∠BAD=∠CAE=90°,∴∠DAC=∠BAE,在△DAC与△BAE中,,∴△DAC≌△BAE,∴∠ADC=∠ABE,∴∠PDB+∠PBD=90°,∴∠DPB=90°,∴P在以BC为直径的圆上,∵△ABC的外心为O,∠BAC=60°,∴∠BOC=120°,如图,当PO⊥BC时,OP的值最小,∵BC=6,∴BH=CH=3,∴OH=,PH=3,∴OP=3﹣.12..解析:连接DG,连接AC交BG于O,∵四边形ABCD是菱形,BG⊥EF,AF=CE=AB,BC=4,∴B,G,D在一条直线上,CD=4,DE=3,∵∠BCD=120°,∴∠ADC=60°,∴∠ODC=30°,∴OD=OB=CD=2,DG=DE=,∴BG=2+2﹣=.13.5.解析:连接CG.在△CGD与△CEB中,,∴△CGD≌△CEB(SAS),∴CG=CE,∠GCD=∠ECB,∴∠GCE=90°,即△GCE是等腰直角三角形.又∵CH⊥GE,∴CH=EH=GH.过点H作AB、BC的垂线,垂足分别为点M、N,则∠MHN=90°,又∵∠EHC=90°,∴∠1=∠2,∴∠HEM=∠HCN.在△HEM与△HCN中,,∴△HEM≌△HCN(ASA).∴HM=HN,∴四边形MBNH为正方形.∵BH=8,∴BN=HN=4,∵tan∠FCB==2,∴CN=2.在Rt△HCN中,CH==2.∴GH=CH=2.∵HM∥AG,∴∠1=∠3,∴∠2=∠3.又∵∠HNC=∠GHF=90°,∴Rt△HCN∽Rt△GFH.∴,即,∴FG=5.14.﹣2.解析:x A、x B是方程=x+m即x2+2mx﹣2k=0的两根,∴x A+x B=﹣2m,x A•x B=﹣2k.∵点A、B在反比例函数y=的图象上,∴x A•y A=x B•y B=k.∵S△PAE=S△PBF,∴y A(x P﹣x A)=(﹣x B)(y B﹣y P),整理得x P•y A=x B•y P,∴﹣=x B•y P,∴﹣k=x A•x B•y P=﹣2ky P,.∵k≠0,∴y P=,∴×(﹣)+m=,∴m=.∵x A﹣x B=﹣3,∴(x A﹣x B)2=(x A+x B)2﹣4x A•x B=(﹣2×)2+8k=9,∴k=﹣2.三、解答题(共78分)15.(5分)解:4sin60°﹣|﹣2|﹣+(﹣1)2018=4×﹣2﹣2+1=2﹣2﹣2+1=﹣1.…………………………………………………..5分16.(6分)解:设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:﹣=3,…………………………………………………..3分解得:x=120,经检验x=120是原方程的解,…………………………………………………..1分则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.………………………………………………….1.分17.(6分)解:(1)抽样调查.…………………………………………………..1分(2)所调查的4个班征集到的作品数为:6÷=24件,平均每个班=6件,C班有10件,∴估计全校共征集作品6×30=180件.条形图如图所示,…………………………………………………..2分(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中一男一女的概率为:=.…………………………………………………..3分18.(6分)(1)证明:∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;…………………………………………………..3分(2)解:∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=OB=BD=3,。
2018年湖北省黄冈市中考数学试卷含答案解析(Word版)

黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C.32 D.232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.236.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
湖北省黄冈市2018年中考数学试卷(含解析)-精选

黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C.32 D.232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.23(第5题图)6.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________.8.因式分解:x 3-9x=___________________________.9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________.11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A型和B型两种粽子。
2018年黄冈市中考数学模拟试题(可编辑修改word版)

81 9 2 3 2 AD…学校: ______________姓名: _____________班级: _______________考号: ______________________42018 年黄冈市中考模拟试题数 学本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.8.分解因式:mn 2-6mn+9m= m (n-3)2.9.计算- + ( - 1)0 = - 2 .10.PM2.5 是指大气中直径小于或等于 0.0000025m 的颗粒物, 将0.0000025 用科学记数法表示为 2.5×10—6。
a 2 - 4行四边形。
理由:∵点 D 是线段 AC 的中点,BE =2BD ∴AD=CD,DE =BD ,∴四边形 ABCE 是平行四边形( 2 )①∵四边形 ABCE 是平行四边形 ∴CE=AB∵∠MEC=∠EMC ,∴CM=AB本试卷总分 120 分,考试时间为 120 分钟.11.化简: (a - 2) ⋅a 2- 4a + 4的结果是 a+2 .∵∠CMB=∠CAB=90°∠MNC=∠ANB ∴△ABN≌△MCN 卷Ⅰ(选择题,共 18 分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填 涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.12. 如图,在 Rt△ABC 中,∠ACB=90°,点 D ,E ,F 分别为 AB ,AC ,BC1 ②的中点.若 CD=5,则 EF 的长为 5 .22.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本题共 6 小题,第小题 3 分,共 18 分.每小题给出的 4 个选项中,有且只有一个答案是正确的) 1.2018 的相反数的倒数是( C ). A .2018B .C .﹣D .﹣20182.下列计算正确的是( D ).A . 4 = ± 2B . 2x (3x -1) = 6x 2 -1C . a 2 +a 3 =a 5D . a 2 ⋅ a 3 =a 53.下列体育运动标志中,从图案看不是轴对称图形的有( C)个.A .4B .3C .2D .14. 我市某连续 7 天的最高气温为:28°,27°,30°,33°,30°,3012 题图 13 题图 14 题图13. 如图,AB 是⊙O 直径,CD 切⊙O 于E ,BC⊥CD,AD⊥CD 交⊙O 于F ,∠A= 60°,AB =4,求阴影部分面积 3 -.314. 如图,正三角形 ABC 的边长为 2,点 A ,B 在半径为的圆上,点 C 在圆内,将正三角形 ABC 绕点 A 逆时针旋转,当边 AC 第一次与圆相切时,旋转角为 75° 。
2018年湖北省黄冈市中考数学试卷(含详细答案)

数学试卷 第1页(共30页) 数学试卷 第2页(共30页)绝密★启用前湖北省黄冈市2018年初中毕业会考、高级中等学校招生考试数 学(考试时间120分钟 满分120分)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题每小题选出答案后,请用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷上无效。
3.非选择题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
答在试题卷上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的4个选项中,只有一项是符合题目要求的)1.23-的相反数是( ) A .32-B .23-C .23D .322.下列运算结果正确的是( )A .326=623a a aB . 22(2)=4a a -- C . 452=2tan ︒ D . 303=2cos ︒ 3.函数11y x x =+-中自变量x 的取值范围是( )A .11x x ≥-≠且B .1x ≥-C .1x ≠D .11x -≤<4.如图,在ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°5.如图,在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD =2,CE =5,则CD =( )A .2B .3C .4D .23 6.当1a x a ≤≤+时,函数221y x x =-+的最小值为1,则a 的值为( )A .1-B .2C .0或2D .1-或2第Ⅱ卷(非选择题 共102分)二、填空题(本大题共8小题,每小题3分,共24分.把答案填写在题中的横线上) 7.实数16800 000用科学计数法表示为 . 8.因式分解:39x x -== .9.化简0231(21)()9272--+-+-= .10.若16a a -=,则221a a+值为 .11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB =60°,弦AD 平分∠CAB ,若AD =6,则AC = .12.一个三角形的两边长分别为3和6,第三边长是方程210210x x -+=的根,则三角形的周长为 . 13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为 cm (杯壁厚度不计). 14.在-4,-2,1,2四个数中,随机取两个数分别作为函数21y ax bx =++中a ,b 的值, 则该二次函数图象恰好经过第一、二、四象限的概率为 .三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分5分)求满足不等式组:()133281322x x x x ---≤⎧<-⎪⎨⎪⎩的所有整数解.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共30页)数学试卷 第4页(共30页)16.(本小题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子.A 型粽子28元/千克,B 型粽子24元/千克.若B 型粽子的数量比A 型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.17.(本小题满分8分)央视“经典咏流传”开播以来受到社会广泛关注.我市某校就“中华文化我传承——地方戏曲进校园”的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A 表示“很喜欢”,B 表示“喜欢”,C 表示“一般”,D 表示“不喜欢”. (1)被调查的总人数是_____________人,扇形统计图中C 部分所对应的扇形圆心角的度数为_______.(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A 类有__________人;(4)在抽取的A 类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率. 18.(本小题满分7分)如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,过B 点的切线交OP 于点C .(1)求证:∠CBP =∠ADB .(2)若OA =2,AB =1,求线段BP 的长.19.(本小题满分6分)如图,反比例函数ky x(x >0)过点A (3,4),直线AC 与x 轴交于点C (6,0),过点C 作x 轴的垂线BC 交反比例函数图象于点B .(1)求k 的值与B 点的坐标;(2)在平面内有点D ,使得以A,B ,C ,D 四点为顶点的四边形为平行四边形,试写出符合条件的所有D 点的坐标.20.(本小题满分8分)如图,在口ABCD中,分别以边BC,CD作等腰△BC F,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证:△ABF≌△EDA;(2)延长AB与CF相交于G,若AF⊥AE,求证BF⊥BC.21.(本小题满分7分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.22.(本小题满分8分)已知直线l:1y kx=+与抛物线24y x x=-(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当2k=时,求△OAB的面积.23.(本小题满分9分)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:()(418,20)912,y x x xx x x=+≤≤⎧⎨+≤≤⎩为整数为整数,每件产品的利润z(元)与月份x(月)的关系如下表:(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?24.(本题满分14分)如图,在直角坐标系XOY中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8,点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB—BC—CO以每秒2个单位长的速度作匀速运动.过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围x 123456789101112z191817161514131211101010数学试卷第5页(共30页)数学试卷第6页(共30页)数学试卷第7页(共30页)数学试卷第8页(共30页)5 / 15湖北省黄冈市2018年初中毕业会考、高级中等学校招生考试数学答案解析第Ⅰ卷(选择题 共18分)一、选择题 1.【答案】C 【解析】因为23与23-是符号不同的两个数.所以23-的相反数是23.故选C 2.【答案】D【解析】A .根据同底数幂的乘法,325326a a a =•,故本选项错误;B . 根据幂的乘方,22( )24a a -=,故本选项错误;C .根据特殊角的三角函数值,451tan ︒=,故本选项错误;D .根据特殊角的三角函数值,30cos ︒=故本选项正确. 3.【答案】A解. 4.【答案】B【解析】解:由三角形的内角和定理,得180180602595BAC B C ∠=︒-∠-∠=︒-︒-︒=︒. 又由垂直平分线的性质,知25C DAC ∠∠=︒=,2595BAC BAD DAC BAD C BAD ∴∠=∠+∠=∠+∠=∠+︒=︒ 952570BAD ∴∠=︒-︒=︒故选B . 5.【答案】C【解析】由直角三角形斜边上的中线等于斜边的一半,可得5CE AE ==,又知2AD =,可得523DE AE AD =-=-=,在Rt CDE △中,运用勾股定理可得直角边CD 的长.6.【答案】D【解析】解:∵当21,211a x a y x x ≤≤+=-+时函数的最小值为,数学试卷 第11页(共30页)数学试卷 第12页(共30页)22211,20,y x x x x ∴=-+≥-≥即 20,x x ∴≥≤或2,,2,x a x a ≥≤=当时由可得0,1,10,1x x a a a ≤≤++==-当时由可得即综上,21a -的值为或, 故选D .第Ⅱ卷(非选择题 共102分)二、填空题 7.【答案】71.6810⨯【解析】716 800 000 1.6810=⨯ 8.【答案】()(33)x x x +-【解析】解:3299()()(33.)x x x x x x x -=-=+-9.【答案】1-【解析】解: 022*********(2)(231)--+-+-=+--=- 10.【答案】8【解析】解:1=6a a -,2()61a a ∴-=,2218a a∴+=. 11.【答案】23 【解析】解:BD 连结,60,AB O CAB AD CAB ∠=︒∠为的直径弦平分,30ABC DAB ∴∠=∠=︒,Rt ABC Rt ABD BD AC AB ∴==在△和△中22222212,6(),Rt ABD AB BD AD AB AB =+=+在△中即,43AB ∴=,23AC ∴=.12.【答案】167 / 15AE A E ='12BQ =⨯在Rt A QB '△14.【答案】【解析】解:列表得:一共有数学试卷 第15页(共30页)数学试卷 第16页(共30页)【解析】解:设A 型粽子x 千克,B 型粽子y 千克,由题意得:22028242560y x x y =-⎧⎨+=⎩,解得:4060x y =⎧⎨=⎩,并符合题意. ∴A 型粽子40千克,B 型粽子60千克. 17.【答案】(1)50216︒(2)补全图形如下:(3)180 (4)25【解析】解:(1)被调查的总人数为510%50÷=人,扇形统计图中C 部分所对应的扇形圆心角的度数为3036021650︒⨯=︒, 故答案为:50、216︒;(2)B 类别人数为505305(10)++=﹣人, 补全图形如下:(3)估计该校学生中A 类有180010%180⨯=人, 故答案为:180; (4)列表如下:9 / 15女1 女2 女3 男1 男2 女1 ﹣﹣﹣ 女2女1 女3女1 男1女1 男2女1 女2 女1女2 ﹣﹣﹣ 女3女2 男1女2 男2女2 女3 女1女3 女2女3 ﹣﹣﹣ 男1女3 男2女3 男1 女1男1 女2男1 女3男1 ﹣﹣﹣ 男2男1 男2女1男2女2男2女3男2男1男2﹣﹣﹣所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8, ∴被抽到的两个学生性别相同的概率为82205=.18.【答案】(1)见解析 (2)7【解析】(1)证明:连接OB ,如图,∵AD O 是的直径,∴90ABD ∠=︒, ∴90A ADB ∠+∠=︒, ∵BC 为切线, ∴OB BC ⊥, ∴90OBC ∠=︒, ∴90OBA CBP ∠+∠=︒, 而OA OB =, ∴A OBA ∠=∠, ∴CBP ADB ∠=∠; (2)解:OP AD ⊥, ∴90POA ∠=︒, ∴90P A ∠+∠=︒,数学试卷 第19页(共30页)数学试卷 第20页(共30页)∴P A ∠=∠, ∴AOP ABD △∽△, ∴AP AO AD AB=,即1241PB +=, ∴7BP =.19.【答案】(1)12,k =()6,2B (2)1233,23,()()(69,2)D D D -或或 【解析】解:(1)把点()3,4A 代入(0)ky x x=>,得 3412,k xy ==⨯=故该反比例函数解析式为:12y x=.∵()6,0,C BC x ⊥点轴, ∴把6x =代入反比例函数12y x=,得 126y x==. 则()6,2B .综上所述,12,k =,B 点的坐标是(6,2).(2)①如图,当四边形ABCD 为平行四边形时, AD BC AD BC =∥且. ∵3,46,()(),(2)60A B C 、、,∴点D 的横坐标为3,AD B C y y y y =﹣﹣即420D y =﹣﹣,故2D y =. 所以()3,2D .②如图,当四边形ACBD′为平行四边形时,AD CB AD CB ''=∥且. ∵3,46,()(),(2)60A B C 、、,∴点D 的横坐标为3,D A B C y y y y '=﹣﹣即420D y =﹣﹣,故6D y '=. 所以6()3,D '.③如图,当四边形ACD″B 为平行四边形时,AC BD AC BD ="="且. ∵3,46,()(),(2)60A B C 、、,∴D B C A x x x x "=﹣﹣即663D x "=﹣﹣,故9D x "=.11 / 15D B C A y y y y "=﹣﹣即204D y "=﹣﹣,故2D y "=﹣. 所以)2(9,D "﹣.综上所述,符合条件的点D 的坐标是:3,23,6()()(2)9,或或﹣.20.【答案】(1)见解析(2)见解析【解析】(1)证明:∵四边形ABCD 是平行四边形,∴,,AB CD AD BC ABC ADC ==∠=∠,∵,BC BF CD DE ==,∴,BF AD AB DE ==,∵360,360,ADE ADC EDC ABF ABC CBF EDC CBF ∠+∠+∠=︒∠+∠+∠=︒∠=∠, ∴ADE ABF ∠=∠,∴ABF EDA △≌△.(2)证明:延长FB 交AD 于H .∵AE ⊥AF ,∴∠EAF=90°,∵△ABF ≌△EDA ,∴∠EAD=∠AFB ,∵∠EAD +∠F AH=90°,∴∠F AH +∠AFB=90°,∴90,AHF FB AD ∠=︒⊥即,∵AD BC ∥,∴FB BC ⊥.21.【答案】(1)203(2)80310(2)CD 的长为﹣米数学试卷 第23页(共30页)数学试卷 第24页(共30页) 【解析】(1)在直角ABC 中,90,60,60BAC BCA AB ∠=︒∠=︒=米,则60203603AB AC tan ===︒(米) 答:坡底C 点到大楼距离AC 的值是203米.(2)设2CD x =,则,DE x CE x ==,在,45Rt BDF BDF ∠=︒中,∴BF DF =,∴6020x x =+﹣,∴40360x =﹣,∴2803120CD x ==﹣,∴8031()20CD 的长为﹣米.22.【答案】(1)见解析(2)2【解析】(1) 解:(1)联立214y kx y x x =+=-⎧⎨⎩化简可得:()2410x k x +=﹣﹣,∴()2440k =++>,故直线与该抛物线总有两个交点;(2)当2k =﹣时,∴21y x =+﹣过点,A AF x F B BE x E ⊥⊥作轴于过点作轴于,∴联立2421y x xy x =-=-+⎧⎨⎩解得:12122x y =+=--⎧⎪⎨⎪⎩ 或12221x y =-=-⎧⎪⎨⎪⎩∴12,221,()()12,122A B +﹣﹣﹣﹣∴221,122AF BE ==+﹣易求得:直线21y x =+﹣与x 轴的交点C 为1(2,0)13 / 15∴12OC = ∴AOB AOC BOC S S S =+11••22OC AF OC BE =+ ()12OC AF BE =+ 112211()2222=⨯⨯++﹣ 2=23.【答案】(1)()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩取整数取整数 (2)()()()2168018,w 1219102001012,x x x x x x x x ⎧-++≤≤⎪==⎨⎪-+≤≤⎩取整数取整数 (3)当x 为8时,月利润w 有最大值,最大值144万元【解析】解;(1)当19x ≤≤时,设每件产品利润z (元)与月份x (月)的关系式为z kx b =+,19218k b k b +=⎧⎨+=⎩,得120k b =-⎧⎨=⎩, 即当19x ≤≤时,每件产品利润z (元)与月份x (月)的关系式为z =﹣x +20,当1012x ≤≤时,10z =,由上可得,()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩取整数取整数;(2)当18x ≤≤时, ()2()4201680w x x x x =++=++﹣﹣,当9x =时,()(9209201)12w =+⨯+=﹣﹣,当1012x ≤≤时,201010(0)20w x x =+⨯=+﹣﹣,由上可得,()()()2168018,w 1219102001012,x x x x x x x x ⎧-++≤≤⎪==⎨⎪-+≤≤⎩取整数取整数; (3)当18x ≤≤时,221680814)4(w x x x =++=+﹣﹣﹣,∴当8x =时,w 取得最大值,此时144w =;数学试卷 第27页(共30页)数学试卷 第28页(共30页)当9x =时,121w =,当1012x ≤≤时,10200w x =+﹣,则当10x =时,w 取得最大值,此时100w =,由上可得,当x 为8时,月利润w 有最大值,最大值144万元.【解析】解:(1)当2,2t OM ==时,在,60Rt OPM POM ∠=︒中, ∴•60PM OM tan =︒=在,30Rt OMQ QOM ∠=︒中,∴•30QM OM tan =︒=, ∴33PQ CN QM ===﹣﹣. (2)由题意:()84224t t ++=﹣,解得203t =. (3)①104,22t S t =••当<<时. ②当2014,842[()(832)]t S tt ≤=⨯⨯=<时﹣﹣﹣﹣. ③当[(2018.4288)32()]t S t t=⨯+⨯=<<时﹣﹣﹣ [(2018.4288)32()]t S t t =⨯+⨯<<时﹣﹣﹣④当812,AON ABP PNC ABCO t S S S S S ≤≤==菱形时﹣﹣﹣2()[11(24284421)]()(6125622)t t t t t t •••••=+﹣﹣﹣﹣﹣﹣﹣﹣﹣.15/ 15。
【精品】湖北省黄冈市2018年中考数学试卷(含解析)

黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C. 32D. 232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.23(第5题图)6.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x=___________________________.9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________.11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
(完整版)2018年湖北省黄冈市中考数学试卷含答案解析(Word版)

黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C.32 D.232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.236.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
黄冈市启黄中学2018年中考二模考试数学试卷含解析

黄冈市启黄中学2018年中考二模考试数学试卷含解析黄冈市启黄中学2018 年春季九年级二模考试数学试题时间:120 分钟满分:120 分一、选择题(每小题3 分,共18 分)1.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()A.B.C.D.2.给出三个命题:①点P(b,a)在抛物线y=x2+1 上;②点A(1,3)能在抛物线y=ax2+bx+1上;③点B(-2,1)能在抛物线y=ax2-bx+1 上.若①为真命题,则()A.②③都是真命题B.②③都是假命题C.②是真命题,③是假命题 D.②是假命题,③是真命题3.商店某天销售了14 件衬衫,其领口尺寸统计如下表:则这14 件衬衫领口尺寸的众数是和平均数分别是().4. 如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是()A.55°B.60°C.65°D.70°5.如图,点P 是∠AOB内任意一点,OP=5cm,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°6.如图,R t△ABC中∠C=90°,∠BAC=30°,AB=8,以DEFG 的一边CD 在直线AB 上,且点D 与点A 重合,现将正方形DEFG 沿A-B 的方向以每秒1 个单位的速度匀速运动,当点D 与点B 重合时停止,则在这个运动过程中,正方形DEFG 与△ ABC的重合部分的面积S 与运动时间t 之间的函数关系图象大致是( )二、填空题(每小题3 分,共24 分)7.我国本土科学家屠呦呦创制的新型抗疟疾青蒿素为人类作出了突出贡献,她因此荣获2015 年诺贝尔生理学和医学奖.疟原虫早期滋养体的直径约为0.00000122 米,这个数字用科学记数法表示为米.8.分解因式:2x2-12x-32= .9.用一个圆心角为 120°,半径为 3cm 的扇形做一个圆锥的侧面,这个圆锥的高为.10.(2016· 福州)如图,6 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C 都在格点上,则tan∠ABC的值是_ .11.如图,已知△ABC,外心为 O ,BC=6,∠BA C=60°,分别以 AB 、AC 为腰向形外作等腰直角三角形△ABD 与△ACE ,连接 BE 、CD 交于点 P ,则 OP 的最小值是.12.菱形 ABCD 中,∠C=1200,BC=4,E ,F 分别为 CD ,AD 上的点,且 AF=CE= 14AB ,连接EF ,过 B 作 BG⊥EF,垂足为 G ,则 BG= .13.如图,在正方形 ABCD 中,E 是 AB 边上一点,G 是 AD 延长线上一点,BE=DG ,连接 EG ,CF⊥EG 交 EG 于点 H ,交 AD 于点 F ,连接 CE ,BH .若 BH=8,tan ∠FCB=2,则 FG= .14.如图 ,函 数 y =k x ( x <0)的图 象与 直 线 y =12x +m 相 交于 点 A 和点 B .过 点 A 作 AE ⊥x 轴于 点 E ,过点 B 作 BF ⊥ y 轴于点 F ,P 为线 段 AB 上 的一 点,连接 PE 、PF .若 △PAE 和 △PBF 的面 积相 等,且 x P =- 52,x A -x B=-3,则 k 的 值是.三、解答题(共 78 分)15.(5 分)计算:4sin600-|-2|- 201816.(6 分)张老师从黄冈出发到外地参加教育信息化应用技术提高培训,他可以乘坐普通列车,也可以乘坐高铁,已知高铁的行驶路程是400 千米,普通列车的行驶路程是高铁行驶路程的1.3 倍.若高铁的平均速度(千米/小时)是普通列车平均速度的2.5 倍,且乘坐高铁所需时间比乘坐普通列车所需时间少3 小时,求高铁的平均速度.17.(6 分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校 30 个班中随机抽取了 4 个班(用A,B,C,D 表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是_(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5 件获得一等奖,其中有3 名作者是男生,2 名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.18.如图AE∥BF,AC 平分BAE 交BF 于C,BD 平分ABC 交AE 于点D,AC、BD 相交于点O,连接CD.求证:四边形ABCD 是菱形.19.(6 分)已知:关于x 的一元二次方程x2-(2m+1)x+2m=0. (1)求证:方程一定有两个实数根;(2)若方程的两根为x1,x2,且|x1|=|x2|,求m 的值.20.(8 分)(2014•黔南州)如图,AB 是⊙O的直径,弦CD⊥AB于点G,点F 是CD 上一点,且满足CF=1,连接AF 并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.FD 3(1)求证:△ADF∽△AED;(2)求FG 的长;(3)求证:tan21.如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b 的图象和反比例函数y mx的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB的面积;(3)求不等式kx+b-mx<0 的解集(请直接写出答案).22.(8 分)(2012•太原一模)如图,在一个平台远处有一座古塔,小明在平台底部的点 C 处测得古塔顶部B 的仰角为60°,在平台上的点E 处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2 米,DC=20 米,求古塔AB 的高(结果保留根号)23.(12 分)月电科技有限公司用160 万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4 元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中 AB 为反比例函数图象的一部分,BC 为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1)请求出y(万件)与x(元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在 8 元以上(x>8),当第二年的年利润不低于 103 万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.24.(13 分)如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P 为二次函数图象上的一个动点,过点P 作x 轴的垂线,垂足为D(m,0),并与直线OA 交于点C.(1)求出直线OA 和二次函数的解析式;(2)当点P 在直线OA 的上方时,①当PC 的长最大时,求点P 的坐标;②当S△PCO =S△CDO时,求点P 的坐标.2018 年九年级二模数学试题参考答案一、选择题(每小题3分,共24分)1.A.解析:从左面看易得上面一层左边有1个正方形,下面一层有2个正方形.2.C.解析:把点P(b,a)代入抛物线y=x2+1,得a=b2+1.②中,把点A(1,3)代入抛物线y=ax2+bx+1,得a+b+1=3.把a=b2+1,代入得b2+b﹣1=0,△=1+4=5>0,则方程有解.故原命题为真命题.③中,把点B(﹣2,1)代入抛物线y=ax2﹣bx+1,得a(﹣2)2﹣b×(﹣2)+1=1,即4a+2b=0.把a=b2+1代入,得4b2+4+2b=0,△=4﹣4×4×4=﹣60<0,则方程无解.故原命题为假命题.3.C.解析:同一尺寸最多的是39cm,共有5件,所以,众数是39cm,14 件衬衫按照尺寸从小到大排列,第 7,8 件的尺寸是 40cm,所以中位数是 40cm.4.C.解析:∵∠A=100°,∠C=30°,∴∠B=50°,∵∠BDO=∠BEO,∴∠DOE=130°,∴∠DFE=65°.5.B.解析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示.:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN 周长的最小值是 5 cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即 CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°.6.A.解析:如图,CH是AB边上的高,与AB相交于点H,∵∠C=90°,∠BAC=30°,AB=8,∴AC=AB×cos30°=8×=4,BC=AB×sin30°=8×=4,∴CH=AC×,AH=,(1)当0≤t≤2时,S==t2;(2)当2时,S=﹣=t2 [t2﹣4t+12]=2t﹣2(3)当6<t≤8时,S= [(t﹣2)•tan30°]×[6﹣(t﹣2)]×[(8﹣t)•tan60°]×(t﹣6)= []×[﹣t+2+6]×[﹣t]×(t﹣6)=﹣t2+2t+4﹣t2﹣30 =﹣t2﹣26综上所述,S=∴正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是A图象.二、填空题(每小题3分,共24分)7.1.22×10﹣6.8.2(x﹣8)(x+2).9.2.解析:扇形的弧长==2π(cm),∴圆锥的底面半径==1(cm),∴圆锥的高==2cm.10..解析:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a,∴∠AEC=90°,∵∠ACE=∠ACG=∠BCG=60°,∴E、C、B 共线,在Rt△AEB中,tan∠ABC===.11.3﹣.解析:∵△ABD与△ACE是等腰直角三角形,∴∠BAD=∠CAE=90°,∴∠DAC=∠BAE,在△DAC与△BAE中,,∴△DAC≌△BAE,∴∠ADC=∠ABE,∴∠PDB+∠PBD=90°,∴∠DPB=90°,∴P 在以 BC 为直径的圆上,∵△ABC 的外心为 O,∠BAC=60°,∴∠BOC=120°,如图,当PO⊥BC时,OP的值最小,∵BC=6,∴BH=CH=3,∴OH=,PH=3,∴OP=3﹣.12..解析:连接DG,连接AC交BG于O,∵四边形ABCD是菱形,BG⊥EF,AF=CE=AB,BC=4,∴B,G,D 在一条直线上,CD=4,DE=3,∵∠BCD=120°,∴∠ADC=60°,∴∠ODC=30°,∴OD=OB=CD=2,DG=DE=,∴BG=2+2﹣=.13.5.解析:连接CG.在△CGD与△CEB中,,∴△CGD≌△CEB(SAS),∴CG=CE,∠GCD=∠ECB,∴∠GCE=90°,即△GCE 是等腰直角三角形.又∵CH⊥GE,∴CH=EH=GH.过点H作AB、BC的垂线,垂足分别为点M、N,则∠MHN=90°,又∵∠EHC=90°,∴∠1=∠2,∴∠HEM=∠HCN.在△HEM与△HCN中,,∴△HEM≌△HCN(ASA).∴HM=HN,∴四边形 MBNH 为正方形.∵BH=8,∴ BN=HN=4,∵tan∠FCB==2,∴CN=2.在Rt△HCN中,CH==2.∴GH=CH=2.∵HM∥AG,∴∠1=∠3,∴∠2=∠3.又∵∠HNC=∠GHF=90°,∴Rt△HCN∽Rt△GFH.∴,即,∴FG=5.14.﹣2.解析:x A、x B是方程=x+m 即 x2+2mx﹣2k=0 的两根,∴x A+x B=﹣2m,x A•x B=﹣2k.∵点A、B在反比例函数y=的图象上,∴x A•y A=x B•y B=k.∵S△PAE=S△PBF,∴y A(x P﹣x A)=(﹣x B)(y B﹣y P),整理得x P•y A=x B•y P,∴﹣=x B•y P,∴﹣k=x A• x B•y P=﹣2ky P,.∵k≠0,∴y P=,∴×(﹣)+m=,∴m=.∵x A﹣x B=﹣3,∴(x A﹣x B)2=(x A+x B)2﹣4x A•x B=(﹣2×)2+8k=9,∴k=﹣2.三、解答题(共78分)15.(5分)解:4sin60°﹣|﹣2|﹣+(﹣1)2018=4×﹣2﹣2+1=2﹣2﹣2+1=﹣1.…………………………………………………..5分16.(6分)解:设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:﹣=3,…………………………………………………..3分解得:x=120,经检验x=120是原方程的解,…………………………………………………..1 分则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.………………………………………………….1.分17.(6分)解:(1)抽样调查.…………………………………………………..1 分(2)所调查的4个班征集到的作品数为:6÷=24 件,平均每个班 =6 件,C 班有 10 件,∴估计全校共征集作品6×30=180件.条形图如图所示,…………………………………………………..2 分(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中一男一女的概率为: =.…………………………………………………..3分18.(6分)(1)证明:∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形 ABCD 是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;…………………………………………………..3分(2)解:∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=OB=BD=3,∵∠ADB=30°,∴cos∠ADB==,∴AD==2.……………………………3分19.(6分)解:(1)关于x的方程x2﹣(2m+1)x+2m=0,∴△=(2m+1)2﹣8m=(2m﹣1)2≥0 恒成立,故方程一定有两个实数根;…………………………………………………..2 分(2)①当x1≥0,x2≥0时,即x1=x2,∴△=(2m﹣1)2=0,解得m=;……….1 分②当x1≥0,x2≤0或x1≤0,x2≥0时,即x1+x2=0,∴x1+x2=2m+1=0,解得m=﹣;...1分③当x1≤0,x2≤0时,即﹣x1=﹣x2,∴△=(2m﹣1)2=0,解得m=;………………..1分综上所述:当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.…………………………………………………..1 分20.(8分)解:(1)∵AB是⊙O的直径,弦CD⊥AB,∴DG=CG,∴=,∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;………………………………………..3 分(2)∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2;3分(3)∵AF=3,FG=2,∴AG=,tan∠E=tan∠ADG=.………2分21.(8分)解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b 经过 A(﹣4,2),B(2,﹣4),∴.解之得.∴一次函数的解析式为y=﹣x﹣2.………………………………………………….3.分(2)∵C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=6.………………………………………3 分(3)不等式的解集为:﹣4<x<0或x>2.……………………………2.分22.(8分)解:如图,延长EF交AB于点G.设AB=x米,则BG=AB﹣2=(x﹣2)米.…………………………………………………..2分则 EG=(AB﹣2)÷tan∠BEG=(x﹣2),CA=AB÷tan∠ACB= x.………………2 分则 CD=EG﹣AC=(x﹣2)﹣x=20.…………………………………………………..2 分解可得:x=10 +3.…………………………………………………..1 分答:古塔AB的高为(10 +3)米.…………………………………………………..1 分23.(12分)解:(1)当4≤x≤8时,设y=,将A(4,40)代入得k=4×40=160,∴y 与 x 之间的函数关系式为 y=;当8<x≤28时,设y=k'x+b,将B(8,20),C(28,0)代入得,,解得,∴y 与 x 之间的函数关系式为 y=﹣x+28,综上所述,y=;…………………………………………………..4 分(2)当4≤x≤8时,s=(x﹣4)y﹣160=(x﹣4)•﹣160=﹣,∵当4≤x≤8时,s随着x的增大而增大,∴当x=8时,s max=﹣=﹣80;当8<x≤28时,s=(x﹣4)y﹣160=(x﹣4)(﹣x+28)﹣160=﹣(x﹣16)2﹣16,∴当x=16时,s max=﹣16;∵﹣16>﹣80,∴当每件的销售价格定为16元时,第一年年利润的最大值为﹣16万元....……………4分21(3)∵第一年的年利润为﹣16万元,∴16万元应作为第二年的成本,又∵x>8,∴第二年的年利润s=(x﹣4)(﹣x+28)﹣16=﹣x2+32x﹣128,令s=103,则103=﹣x2+32x﹣128,解得x1=11,x2=21,在平面直角坐标系中,画出s与x的函数示意图可得:观察示意图可知,当s≥103时,11≤x≤21,∴当11≤x≤21时,第二年的年利润s不低于103万元.…………………….…………4分24.(13分)解:(1)∵二次函数的图象经过原点O,∴设二次函数解析式为y=ax2+bx,把A(3,3)、B(4,0)代入得,解得,∴函数的解析式为y=﹣x2+4x,22设直线OA的解析式为y=kx,把A(3,3)代入得k=1,∴直线OA的解析式为y=x;4分(2)解:∵D(m,0),PD⊥x轴,P在y=﹣x2+4x上,C在y=x上,∴P(m,﹣m2+4m),C(m,m),∴CD=OD=m,PD=﹣m2+4m,∴PC=PD﹣CD=﹣m2+4m﹣m=﹣m2+3m,…………………………………………………..3 分①∵﹣1<0,∴当m=﹣=时,PC的长最大,∴P(,);……………...3分②当S△PCO=S△CDO时,即PC=CD,当PC=CD时,则有﹣m2+3m=m,解得m1=2,m2=0(舍去),∴P(2,4).…………………………………………………..3 分23。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄冈市启黄中学2018 年春季九年级二模考试
数学试题
时间:120 分钟满分:120 分
一、选择题(每小题3 分,共18 分)
1.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()
A.B.C.D.
2.给出三个命题:①点P(b,a)在抛物线y=x2+1 上;②点A(1,3)能在抛物线y=ax2+bx+1上;③点B(-2,1)能在抛物线y=ax2-bx+1 上.若①为真命题,则()
A.②③都是真命题
B.②③都是假命题
C.②是真命题,
③是假命题 D.②是假命题,③是真命题
3.商店某天销售了14 件衬衫,其领口尺寸统计如下表:
则这14 件衬衫领口尺寸的众数是和平均数分别是().
4. 如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是()
A.55°
B.60°
C.65°
D.70°
5.如图,点P 是∠AOB内任意一点,OP=5cm,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()
A.25°
B.30°
C.35°
D.40°
6.如图,R t△ABC中∠C=90°,∠BAC=30°,AB=8,以DEFG 的一边CD 在直线AB 上,且点D 与点A 重合,现将正方形DEFG 沿A-B 的方向以每秒1 个单位的速度匀速运动,当点D 与点B 重合时停止,则在这个运动过程中,正方形DEFG 与△ ABC 的重合部分的面积S 与运动时间t 之间的函数关系图象大致是( )
二、填空题(每小题3 分,共24 分)
7.我国本土科学家屠呦呦创制的新型抗疟疾青蒿素为人类作出了突出贡献,她因此荣获2015 年诺贝尔生理学和医学奖.疟原虫早期滋养体的直径约为0.00000122 米,这个数字用科学记数法表示为米.
8.分解因式:2x2-12x-32= .
9.用一个圆心角为 120°,半径为 3cm 的扇形做一个圆锥的侧面,这个圆锥的高为
.
10.(2016· 福州)如图,6 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C 都在格点上,则tan∠ABC的值是_ .
11.如图,已知△ABC,外心为 O ,BC=6,∠BA C=60°,分别以 AB 、AC 为腰向形外作等腰
直角三角形△ABD 与△ACE ,连接 BE 、CD 交于点 P ,则 OP 的最小值是
.
12.菱形 ABCD 中,∠C=1200,BC=4,E ,F 分别为 CD ,AD 上的点,且 AF=CE= 14
AB ,连接
EF ,过 B 作 BG⊥EF,垂足为 G ,则 BG= .
13.如图,在正方形 ABCD 中,E 是 AB 边上一点,G 是 AD 延长线上一点,BE=DG ,连接 EG ,
CF⊥EG 交 EG 于点 H ,交 AD 于点 F ,连接 CE ,BH .若 BH=8,tan ∠FCB=2,则 FG= .
14.如图 ,函 数 y =k x ( x <0)的图 象与 直 线 y =12x +m 相 交于 点 A 和点 B .过 点 A 作 AE ⊥x 轴于 点 E ,过点 B 作 BF ⊥ y 轴于点 F ,P 为线 段 AB 上 的一 点,连接 PE 、
PF .若 △PAE 和 △PBF 的面 积相 等,且 x P =- 52,x A -x B
=-3,则 k 的 值是
.
三、解答题(共 78 分)
15.(5 分)计算:4sin600
-|-2|- 2018
16.(6 分)张老师从黄冈出发到外地参加教育信息化应用技术提高培训,他可以乘坐普通列车,也可以乘坐高铁,已知高铁的行驶路程是400 千米,普通列车的行驶路程是高铁行驶路程的1.3 倍.若高铁的平均速度(千米/小时)是普通列车平均速度的2.5 倍,且乘坐高铁所需时间比乘坐普通列车所需时间少3 小时,求高铁的平均速度.
17.(6 分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校 30 个班中随机抽取了4 个班(用A,B,C,D 表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(1)杨老师采用的调查方式是_(填“普查”或“抽样调查”);
(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?
(3)如果全校征集的作品中有5 件获得一等奖,其中有3 名作者是男生,2 名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
18.如图AE∥BF,AC 平分BAE 交BF 于C,BD 平分ABC 交AE 于点D,AC、BD 相交于点O,连接CD.求证:四边形ABCD 是菱形.
19.(6 分)已知:关于x 的一元二次方程x2-(2m+1)x+2m=0.
(1)求证:方程一定有两个实数根;
(2)若方程的两根为x
1,x
2
,且|x
1
|=|x
2
|,求m 的值.
20.(8 分)(2014•黔南州)如图,AB 是⊙O的直径,弦CD⊥AB于点G,点F 是CD 上
一点,且满足CF
=
1
,连接AF 并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.FD 3
(1)求证:△ADF∽△AED;(2)求FG 的长;
(3)求证:tan
21.如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b 的图象和反比例函数y m
x
的
图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB 与x 轴的交点C 的坐标及△AOB的面积;
(3)求不等式kx+b-m
x
<0 的解集(请直接写出答案).
22.(8 分)(2012•太原一模)如图,在一个平台远处有一座古塔,小明在平台底部的点
C 处测得古塔顶部B 的仰角为60°,在平台上的点E 处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2 米,DC=20 米,求古塔AB 的高(结果保留根号)
23.(12 分)月电科技有限公司用160 万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为 4 元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中 AB 为反比例函数图象的一部分,BC 为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)
(1)请求出y(万件)与x(元/件)之间的函数关系式;
(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.
(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在 8 元以上(x>8),当第二年的年利润不低于 103 万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.
24.(13 分)如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P 为二次函数图象上的一个动点,过点P 作x 轴的垂线,垂足为D(m,0),并与直线OA 交于点C.
(1)求出直线OA 和二次函数的解析式;
(2)当点P 在直线OA 的上方时,
①当PC 的长最大时,求点P 的坐标;
②当S
△PCO =S
△CDO
时,求点P 的坐标.。