清华大学—电路原理(完全版) (28)

合集下载

清华大学电路原理_于歆杰共135页文档

清华大学电路原理_于歆杰共135页文档

谢谢!
135
清华大学电路原理_于歆杰
41、俯仰终宇宙,不乐复何如。 42、夏日长抱饥,寒夜无被眠。 43、不戚戚于贫贱,不汲汲于富贵。 44、欲言无予和,挥杯劝孤影。 45、盛年不重来,一日难再晨。及时 当勉励 ,岁月 不待人 。

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。—上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华

《电路原理》(江辑光主编,清华大学出版社,1996

《电路原理》(江辑光主编,清华大学出版社,1996
3.2 回路电流法
3.3 节点电压法
习题
第4章 电路的若干定理
4.1 叠加定理
4.2 替代定理
4.3 戴维南定理和诺顿定理
4.4 特勒根定理
4.5 互易定理
4.6 对偶电路与对偶原理
习题
第5章 含运算放大器的电阻电路
5.1 运算放大器和它的静态特性
5.2 含运算放大器的电阻电路分析
习题
第6章 电容元件和电感元件
6.1 电容元件
6.2 电容的串联与并联电路
6.3 电感元件
6.4 电感的串联与并联电路
习题
第7章 一阶电路
7.1 动态电路概述
7.2 电路中起始条件的确定
7.3 一阶电路的零输入响应
7.4 一阶电路的零状态响应
7.5 一阶电路的全响应
7.6 求解一阶电路的三要素法
7.7 脉冲序列作用下的RC电路
习题
第8章 二阶电路
8.1 线性二阶电路的微分方程及其标准形式
8.2 二阶电路的零输入响应
8.3 二阶电路的零状态响应和全响应
8.4 一个线性含受控源电路的分析
习题
第9章 阶跃响应、冲激响应和卷积积分的应用
第2章 简单电阻电路的分析方法
2.1 串联电阻电路
2.2 联电阻电路
2.3 星形联接与三角形联接的电阻的等效变换(Y-△变换)
2.4 理想电源的串联和并联
2.5 电压电源与电流电源的等效转换
2.6 两个电阻电路的例子
习题
第3章 线性电阻电路的一般分析方法
3.1 支路电流法
书籍介绍:

清华大学827电路原理考研参考书目、考研真题、复试分数线

清华大学827电路原理考研参考书目、考研真题、复试分数线

(第三版)
7-121-00863-7
阎石 (美) Donald A. Neamen 著; 赵毅强, 姚素英, 谢晓东等译
《理论力学》
清华大学出版社
李俊峰
833 理论力学及材 《材料力学》
料力学
《材料力学》
高等教育出版社,2002 年 高等教育出版社
范钦珊等 刘鸿文
《材料力学》
高等教育出版社
孙训方
834 工程热力学 《工程热力学》
中国建筑工业出版社
潘谷西
《外国建筑史》
中国建筑工业出版社
陈志华
《外国近现代建筑史》中国建筑工业出版社
罗小未
603 数学分析
《数学分析新讲》 《数学分析》
北京大学出版社 上海科学技术出版社
张筑生 周民强,方企勤
604 普通物理
《大学物理》(第二版) 清华大学出版社
第一册至四册
张三慧
《无机化学》(上下册) 高等教育出版社,2004
Linguistics 》
//166.111.107.7 下载)
616 艺术美学
《现代艺术哲学》 四川人民出版社 《美学与艺术欣赏》 高等教育出版社
H.G.布洛克 肖鹰
《新闻学概论》
中国传媒大学出版社,2007
刘建明
《转型中的新闻学》 南方日报出版社,2005
李希光
618 新闻与传播史 论
《麦奎尔大众传播理 论》 《中国新闻传播史》 《全球新闻传播史》
四版) 816 环境微生物学
《微生物学教程》 高等教育出版社
《环境微生物学》 高等教育出版社
《环境规划学》
高等教育出版社
《环境与资源经济学 高等教育出版社
817 环境系统与管 概论》

清华大学电路原理课件--电路原理_skja_06

清华大学电路原理课件--电路原理_skja_06


1 Gi
8
注意
i
iS
+
iS
Gii S
u _
i
+
uS _
+
iu
Ri
_
(1) 变换关系 数值关系; 方向:电流源电流方向与电压源压升方向相同。
(2) 所谓的等效是对外部电路等效,对内部电路是不等效的。
开路的电压源中无电流流过 Ri; 开路的电流源可以有电流流过并联电导Gi 。
电压源短路时,电阻Ri中有电流; 电流源短路时, 并联电导Gi中无电流。
2019/9/22
课件
5
二、实际电流源
实际电流源,当它向外电路供给电流时,并不
是全部流出,其中一部分将在内部流动,随着端电 压的增加,输出电流减小。
I
u
GiU
U
iS
+
Gi U _
0
I IS
i
I = iS – Gi U Gi: 电源内电导,一般很小。
一个实际电流源,可用一个电流为 iS 的理想电流源
3
例1
uS
iS
uS
例2
uS
iS
iS
2019/9/22
课件
4
返回首页
电压源和电流源的等效变换
一、实际电压源 实际电压源,当它向外电路提供电流时,它的
端电压总是小于其电动势,电流越大端电压越小。
u US RiI
U
I
+
US _
+
U
Ri
_
0
Ii
U=US – Ri I
R Ri: 电源内阻, 一般很小。
一个实际电压源,可用一个理想电压源uS与一个电阻Ri 串联的支路模型来表征其特性。

电路原理参考答案-电路原理-张燕君-清华大学出版社

电路原理参考答案-电路原理-张燕君-清华大学出版社

《电路原理》课后参考答案第一章一、略二、10~22:BCBBB ,ABACD ,ACC ;23:ABCD ;24:AAA ;25:ABD ;26:BB ;27:D ;28:D 三、29:(a )U s =U R =8V ,2A I =,16W s U P =(发出),P R =16W(吸收)。

(b )I =I s =5A ,U =20V ,100W s I P =(发出),P R =100W(吸收)。

(c )流过电压源的电流为I s =5A ,而电流源两端的电压为U s =8V ,40W s I P =(关联参考方向,吸收40W),40W s U P =(非关联参考方向,发出40W)30:(a )流过电压源、电阻的电流为电流源电流5A ,U R =50V ,U '=60V ,P R =250W (吸收250W),300W s I P =-(发出300W),50W s U P =(吸收50W)(b )电阻电流源端电压均为10V ,R 5A I =,电压源电流S -10A I '=,100W s U P =-(发出100W),50W s I P =(吸收50W),P R =50W(吸收50W)(c )1R 5A I =,2R 10V U =,2R 5A I =,s 0A I '=,20V U '=,0W s U P =,100W s I P =-(发出100W),150W R P =(吸收50W),250W R P =(吸收50W)(d )25A I =,U 1=-10V ,s 10A I '=,U '=0V ,100W s U P =-(发出100W),0W s I P =(吸收0W),P 1=50W(吸收50W),P 2=50W(吸收50W)31:图(a):u =Ri +u s ;图(b):u =-Ri +u s ;图(c):u =Ri -u s ;图(d):u =-Ri -u s 32:11A 3I =,27A 3I =,34A 3I =,45A 3I =33:220()L S R L Lu u p R R μ==34:P 3A =36W(吸收36W),436 W P Ω=(吸收36W),P 受控源=72W(发出72W)35:I 1=3A ,U 3=18V 36:U =5V ,I =-1.5A ,323R =Ω二、18~37:BDCAC ,ADABA ,CCDAB ,DBCDA 三、38:R 1=2Ω、R 2=18Ω、R 3=180Ω39:R L =24Ω40: 1.44A I =,345.6W P =41:1VU =-42:(a)10ab R =Ω;(b)2ab R =Ω;(c) 6.6ab R =Ω;(d)53ab R =Ω;(e)30ab R =Ω;43:150V U =,15V U =44:0.5AI =45:11A I =,2 2.2A I =,独立电流源吸收功率为16W -;受控电流源吸收功率为1.2W ,5Ω、3Ω和2Ω吸收功率分别为5W 、0.12W 和9.68W 46:12.8W P =47:67R =Ω48:080VU =49:120V 电压源发出功率约为113.49W ,60V 电压源发出功率约为59.14W 50:115V 4U =51:18A I =、210A I =,32A I =、40A I =、52A I =-52:09A,3A s I I ==-53:14WP =54:受控电压源吸收功率为0;受控电流源吸收功率为9W -55:8V ab U =-56:2α=57:21V 19ab U =-二、9~20:DACBC ,DCACB ,CB 三、21:(a )U 4.5x =V ;(b )I 1x =-A 22:1I 1.4=A 23:3U 19.6=V 24:os0.364U U =25:(1)I x =37.5A ;(2)I x =40A 26:(a)(b)27:0.2I =A 28:29:1Ax I =-30:R =R eq =8Ω时,R 上得到最大功率为max 4.5P =W 31:U s2=100V 32:1 1 VU ∧=二、14~18:ABCDA 三、19:(1))(t u 波形为:(2)s t st s s t t t t t t i t u t p 22110 0 1624122 )()()(23><<<<⎪⎩⎪⎨⎧-+-=⋅=,,,(3)当s t 1=时,V u 1)1(=,(1)0.5()W J =当s t 2=时,0)2(=u ,(2)0W =当∞=t 时,0)(=∞u ,()0W ∞=20:t =1s 时,(1) 2.5(A)i =,t =2s 时,(2)5(A)i =,t =3s 时,(3)5(A)i =,t =4s 时,(4) 3.75(A)i =21:2.5F ;10H22:(a)V 10)0(=+c u .5A 1)0()0(-==++i i c (0)15V R u +=-(b)(0)1A L i +=,(0)5V R u +=,V 5)0(-=+L u 23:(a)A 34)0(1=+i ,1A )0(2=+i ,A 37)0(=+i (b)A 3)0(1=+i ,(0)18V u +=-,(0)21.6V L u +=-(c)1(0)A 6c i +=-,11(0)A 6i +=(d)(0) 3.33A c i +=,(0)66.6A u +=24:1(0)4L u V +=-,2(0)0L u V+=25:(1)1(0)0u +=2(0)0u +=,(2)101s t duU dtCR +==,200t du dt+==,(3)222021s t d u R U dtLCR +==26:2()4V tc u t e-=,2()0.04mAt i t e -=27:(1):1.024kV (2)652.6610R =⨯Ω(3)4588.44s t ≥(4)()50kA i t ≤,75.010W p -=⨯(5)7.5s28:(1)V )e 1(100200tc u --=(0≥t ),2000.2e A (0)ti t -=≥(2)18.045 mst =29:()50010000.24Att i ee --=-30:50()14eV tL u t -=,()50614e Wt p -=--31:()6102121Vt c u t e -⎛⎫=- ⎪ ⎪⎝⎭32:2()1A Rt s L L u i t e R -⎛⎫=- ⎪⎝⎭,211W2Rt S Lu p e R -⎛⎫=- ⎪⎝⎭33:(1)()2A L i t =(2)48W p =34:()40.8tC u t e V-=+35:2() 1.50.75t i t e A-=-36:2()(22)()t L i t e t A ε-=-,21()(3)()t i t e t A ε-=+37:23()[5 e] A (0)ti t t -=-≥38:(1)()L i t =591.22.4e A (0) t t --≥(2)591()[1.8 1.6] A (0)t i t et -=-≥39:43[2.5 2.5e ] V (0)t c u t -=-+≥40:()54.1710180.667A ti e-⨯=-,()54.17100.833A t c i t e -⨯=,()54.17104Vt c u t e -⨯=-41:(1)在20≤≤t 区间,RC 电路的零状态响应为()()V110100tc e t u --=在32<≤t 区间,RC 的全响应为()()10022030V t c u t e--=-+在∞<≤t 3区间,RC 的零输入响应为()()100320Vt c u t e --=-(2)()()()()()()()1002100310010130122013V t t t c u t e t e t e t εεε-----⎡⎤⎡⎤=----+--⎣⎦⎣⎦42:(2)(6)()[10(1e )()15(1e )(2)5(1e )(6)] V t t t c u t t t t εεε-----=----+--43:(1)()()()201001V tc u t et ε-=-,()2010mAt cie t ε-=(2)()()2080V t c u t e t ε-=,()()()200.48mAtc i t t e t δε-⎡⎤=-⎣⎦44:()L i t =10 5eε() Att -⋅45:200 ()(1.5e ) ε() Vtu t t -=-第五章一、略二、20~36:C(ACB)CBA,CCBBC,(CA)BABC,BC 三、37:(1)波形图如题5-37图(a)所示。

清华大学电路原理电子课件

清华大学电路原理电子课件

三相交流电路的分析方法
总结词
掌握三相交流电路的分析方法
详细描述
分析三相交流电路时,需要使用相量法、对称分量法等 数学工具,以便更好地理解电路的工作原理和特性。
三相交流电路的应用
总结词
了解三相交流电路的应用领域
详细描述
三相交流电在工业、电力、交通、通信等领域得到广泛应用,如电动机控制、输电线路、电力系统自动化等。
瞬态响应是指电路在输入信号的作用下, 电压和电流随时间从零开始变化至稳态的 过程。稳态响应是指电路达到稳定状态后 ,电压和电流不再随时间变化的状态。一 阶动态电路的响应可以通过求解一阶常微 分方程得到。
一阶动态电路的应用
总结词
一阶动态电路在电子工程、通信工程、自动 控制等领域有着广泛的应用。
详细描述
电路元件和电路模型
总结词
掌握电路元件和电路模型是分析电路的基本方法。
详细描述
电路元件包括电阻、电容、电感等,它们具有特定的电气特性。电路模型是用 图形符号表示电路元件及其连接关系的一种抽象表示方法。
电路的工作状态和电气参数
总结词
了解电路的工作状态和电气参数是评估电路性能的关键。
详细描述
电路的工作状态可以分为有载、空载和短路等,不同的工作状态对电路的性能产 生影响。电气参数包括电压、电流、功率等,它们是描述电路性能的重要指标。
二阶动态电路的应用
要点一
总结词
二阶动态电路在电子设备和系统中的应用
要点二
详细描述
二阶动态电路广泛应用于各种电子设备和系统中,如振荡 器、滤波器、放大器等,用于实现特定的信号处理和控制 系统功能。
06
三相交流电路分析
三相交流电的基本概念
总结词

考研专业课之清华大学电路原理简介

考研专业课之清华大学电路原理简介

考研专业课之清华大学电路原理简介第一讲专业信息介绍一、清华大学电机系简介:1.概况:清华大学电机工程与应用电子技术系即原电机工程系,创建于1932年。

随着科学技术的发展,本系早已突破了传统的学科范围,在电气工程的基础上,扩展到计算机、电子技术、自动控制、系统工程、信息科学等新科技领域,开拓了许多新的研究方向。

电机系拥有一级学科"电气工程"下属的全部五个二级学科:电力系统及其自动化、高电压与绝缘技术、电机与电器、电工理论与新技术、电力电子与电力传动。

五个二级学科均各自首批获得硕士和博士学位授予权,前四个在1989年和2002年均被评为全国重点学科。

1996年,电机系成为国家首批一级学科博士学位授权的试点单位。

在2003年电气工程一级学科评估中,电机系电气工程学科不仅整体水平获得全国第一,并在学术队伍、科研成果、人才培养、学术声誉所有四个单项中均名列全国第一。

2006年电机系电气工程学科又以满分100分的成绩获得一级学科评估全国第一。

电机系拥有"电力系统与发电设备控制与仿真"国家重点实验室。

2.研究机构:目前电机系共有五个研究所和两个教学组,如下:研究所/教学组名称所长/组长副所长/副组长电力系统研究所闵勇康重庆、梅生伟、鲁宗相柔性输配电系统研究所刘文华沈斐、陆超高电压及绝缘技术研究所何金良张贵新、高文胜电力电子与电机系统研究所肖曦孙宇光、王善铭电工新技术研究所袁建生朱桂萍、黄松岭电工学教学组唐庆玉计算机硬件及应用教学组刘建政3.师资力量:电机系拥有中科院院士1 位(卢强,瑞典皇家工程科学院外籍院士)、中国工程院院士1 位(韩英铎),IEEE Fellow 3 位(蔡宣三、卢强、何金良),IEE Fellow 1 位(关志成),长江学者特聘教授1 位(孙元章),国家杰出青年基金获得者4 人(孙元章、梁曦东、何金良、梅生伟),教育部跨世纪优秀人才1人(袁建生),教育部新世纪优秀人才6人(周远翔、孙宏斌、曾嵘、刘文华、康重庆、姜齐荣),清华大学"百名人才引进计划"教授1名(江伟华)。

清华大学电路原理课件 期末复习

清华大学电路原理课件 期末复习

重要的分析方法(2)
L11
• 三要素法分析一阶动态电路
• 卷积积分法求任意激励作用下的零状
态响应
L13
• 正弦交流稳态电路的相量法
L15
• 对称三相电路抽单相
L17
• 互感的去耦等效
L18
Principles of Electric Circuits Final Review Tsinghua University 2005
Principles of Electric Circuits Final Review Tsinghua University 2005
后半学期的几个重点和难点(6)
• 相量图
–什么时候用?
• 给定有效值,求元件参数
–多边形法 –参考相量选取的3个原则
• 串联电路选电流 • 并联电路选电压 • 串并联电路选末端并联电压
后半学期的几个重点和难点(10)
• 谐振的定义
– 入端阻抗/导纳为实数 (入端阻抗/导纳的虚部为0或∞)
• 求谐振频率和谐振时入端电阻
– 写入端阻抗/导纳表达式 – 虚部为0Æ求出串联谐振角频率 – 虚部为∞Æ求出并联谐振角频率 – 谐振角频率时的入端阻抗
• LC串联总电压为0,分电压不为0; LC并联总电流为0,分电流不为0
Principles of Electric Circuits Final Review Tsinghua University 2005
8
后半学期的几个重点和难点(11)
• 周期性非正弦激励作用下电路分析的 三部曲
–傅立叶级数展开 –不同频率下分别计算有效值和平均功率 –求总有效值和总平均功率
• 总有效值:不同频率下有效值平方和开方 • 总平均功率:不同频率下平均功率之和
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Rm——表示铁心损耗
返回首页
I1
100 V
o
1
1 : 10
+ * * U1 –
I2
I 2 0, I 1 0
U oc 10U 1 10U S 1000 o V
+
+ U oc –

求R0: 1 1 : 10
* *
R0 戴维南等效电路: 100
1000 o V
+ +

R0=1021=100
50

U2

1000 o U2 50 33.330 o V 100 50
变压器的电路模型
实际变压器是有损耗的,也不是全耦合, L1,L2 , 除了用具有互感的电路来分析计算以外,还常用含有理想 变压器的电路模型来表示。 1. 理想变压器(全耦合,无损,m= 线性变压器) i1
U1

j L1
j L2 U 2


U1 N 1 电压关系 U2 N2
L1 / M n
L1 M n
电流关系: U 1 I 1 jL1 I 2 jM
I2 L1 ' I1 U 1 I 1 jL1 j I 2 n n U1 1 jL1 ( I 1 I 1' ) ' U I1 I1 jL1
U 2 33.330 o V

方法2:阻抗变换

I1 1
+
+

100 V
o
U1


方法3:戴维南等效

1 2 ( ) 50 10 U 2 nU 1 10 U 1 1 33.330 o V Ω 2 求U :
oc

100 o 1 10 o U1 0 V 1 1/ 2 2 3
由此可以看出,理想变压器既不储能,也不耗能, 在电路中只起传递信号和能量的作用。
4.含理想变压器电路的分析



100 o V
I1
1
1 : 10
+ * * U1 –
I2
+

50
+ U2

求U2 .

方法1:列方程 U 1 100 o 1 I1 解得 50 I 2 U 2 0 1U U1 2 10 I 1 10I 2
I1 N2 2 I N1
i1 N2 i2 N1
u1 nu2
i1
+
n:1
* *
i2
+
i1 1 i 2 n
u1

u2

电路符号


U 1 nU 2
I1
+

n:1
* *
I2
+

I1 1 I 2 n
U1

U2

相量模型
3. 理想变压器的性质: (a) 阻抗变换性质
U1 ' ' I1 I1 I 0 I1 jL1 激磁电流

I2 I n
' 1

I1
+

n:1
I0
j L1
I2
+

' I1
* *
U1 nU 2
I1 1 U 1I 1 2 jL 1 n
U1

U2

理想变压器 全耦合变压器的等值电路图
N 111 N 1 ( S 1 21 ) N 1 S 1 N 1 N 2 21 i1 i1 i1 N 2 i1
激磁电感
L1 S nM
漏电感
同理: L N 222 N 2 ( S 2 12 ) N 2 S 2 N 2 N 112 2 i2 N 1 i2 i2 i2
有互感的电路
第四讲 (总第三十讲)
理想变压器 变压器的电路模型
理想变压器、变压器的电路模型
一、理想变压器
11
i1 + u1 – i2 + u2 – 1. 理想条件 13) 当L1 , L2 , L1/L2 =n2 (磁导率m )
N1
N2
2. 定义



I1
+

n:1
* *
I2
I1
+

+

U1
U2
Z
U1

n2Z


U1 nU 2 U2 n 2 ( ) n2 Z I 1 1 / nI 2 I2

n:1
* *
I2
+

Z
U2
Z副
Z副

1 2Z n
例: 放大器
n:1
* *
设RS=800
8
RS
n:1
L2 S
i1
M n
L1S
+
u1 –
M
* *
L2
S
i2 + u2 –
nM
M n
全耦合变压器
由此得无损非全耦合变压器的电路模型:
i1 + u1 – L1S + L2 +
S
n:1
* * u2 '

i2
+
u1' nM

u2

全耦合变压器
4. 考虑导线电阻(铜损)和铁心损耗的非全耦合变压器(k1, m) i1 R1 R2 i2 L2 L1S n:1 + S + • • Rm u2 u1 LM R1, R2——表示线圈导线损耗(铜损) LM——激磁电感。由于铁心材料的非线性, LM通 常为非线性 -
L1:激磁电感
3. 无损非全耦合变压器(忽略损耗,k1,m, 线性)

I1
+

j M * L1

I2
+

* L2
U1

U2

11 s1 21 22 s 2 12
2S N 2 2S L2S i2 i2
1S N 11S 定义漏电感: L1S i1 i1 L1
2) 电流关系
u1 N1 u2 N 2
U1 N 1 U2 N2
U1 I1 jL1 I 2 jM
U1 I 2 jM I1 jL1 jL1
全耦合时有:
M L1 L1 L2 L1 L2 1 N 2 L1 n N 1
1 M I 2 I L1
22
1) 电压关系 i1 11
线圈1匝链磁通: 1 11 12 22
s1 21
i2 22
s2 12
11 线圈2匝链磁通 2 22 21
1 2
d u1 N 1 1 dt u N d 2 2 2 dt
**
RS
+ RL
+
uS –
uS –
n2RL
当 n2RL=RS时匹配,扬声器获最大功率 8n2=800 n2=100, n=10 .
(b) 功率性质:
u1 nu2
i1
+
n:1
* *
i2
+
i1 1 i 2 n
u1

u2

1 p u1 i1 u2 i 2 u1 i1 u1 ( ni1 ) 0 n
+
n:1
* *
i2
+
u1 nu2
U1 nU 2
u1

u2

i1 1 i 2 n
I1 1 I 2 n
2. 全耦合变压器(k=1,无损 ,m, 线性)

I1
+

j M *

I2
+
*
与理想变压器不同之处是要考 虑自感L1 、L2和互感M。
全耦合时 : M L1 L2 , k 1
相关文档
最新文档