信号与系统试卷及参考答案
信号与系统期末试卷-含答案全

一.填空题(本大题共10空,每空2分,共20分。
) 1.()*(2)k k εδ-= (2)k ε- 。
2.sin()()2td πτδττ-∞+=⎰()u t 。
3. 已知信号的拉普拉斯变换为1s a-,若实数a a >0 或 大于零 ,则信号的傅里叶变换不存在.4. ()()()t h t f t y *=,则()=t y 2 ()()t h t f 222* .5. 根据Parseval 能量守恒定律,计算⎰∞∞-=dt t t 2)sin (π 。
注解: 由于)(sin 2ωπg t t⇔,根据Parseval 能量守恒定律,可得πωππωωππ===⎪⎭⎫⎝⎛⎰⎰⎰-∞∞-∞∞-d d g dt t t 11222221)(21sin6. 若)(t f 最高角频率为m ω,则对)2()4()(tf t f t y =取样,其频谱不混迭的最大间隔是 m T ωπωπ34max max ==注解:信号)(t f 的最高角频率为m ω,根据傅立叶变换的展缩特性可得信号)4/(t f 的最高角 频率为4/m ω,信号)2/(t f 的最高角频率为2/m ω。
根据傅立叶变换的乘积特性,两信号时域相乘,其频谱为该两信号频谱的卷积,故)2/()4/(t f t f 的最高角频率为m mmωωωω4324max =+=根据时域抽样定理可知,对信号)2/()4/(t f t f 取样时,其频谱不混迭的最大抽样间隔m axT 为mT ωπωπ34max max ==7. 某因果线性非时变(LTI )系统,输入)()(t t f ε=时,输出为:)1()()(t t e t y t--+=-εε;则)2()1()(---=t t t f εε时,输出)(t y f =)1()2()()1()2()1(t t e t t e t t -----+-----εεεε。
8. 已知某因果连续LTI 系统)(s H 全部极点均位于s 左半平面,则∞→t t h )(的值为0 。
信号及系统期末考试试题及答案

信号及系统期末考试试题及答案一、选择题(每题2分,共20分)1. 信号x(t)=3cos(2π(5t+π/4))是一个:A. 周期信号B. 非周期信号C. 随机信号D. 确定性信号2. 系统分析中,若系统对单位阶跃函数的响应为u(t)+2,则该系统为:A. 线性时不变系统B. 线性时变系统C. 非线性时不变系统D. 非线性时变系统3. 下列哪个是连续时间信号的傅里叶变换:A. X(k)B. X(n)C. X(f)D. X(z)4. 信号通过线性时不变系统后,其频谱:A. 仅发生相位变化B. 仅发生幅度变化C. 发生幅度和相位变化D. 不发生变化5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. e^(-st)D. 1/s二、简答题(每题5分,共10分)1. 解释什么是卷积,并给出卷积的数学表达式。
2. 说明傅里叶变换与拉普拉斯变换的区别。
三、计算题(每题15分,共30分)1. 给定连续时间信号x(t)=e^(-t)u(t),求其傅里叶变换X(f)。
2. 给定离散时间信号x[n]=u[n]-u[n-3],求其z变换X(z)。
四、分析题(每题15分,共30分)1. 分析信号x(t)=cos(ωt)+2cos(2ωt)通过理想低通滤波器后输出信号的表达式,其中滤波器的截止频率为ω/2。
2. 讨论线性时不变系统的稳定性,并给出判断系统稳定性的条件。
五、论述题(每题10分,共10分)1. 论述信号的采样定理及其在数字信号处理中的应用。
参考答案一、选择题1. A2. A3. C4. C5. A二、简答题1. 卷积是信号处理中的一种运算,它描述了信号x(t)通过系统h(t)时,输出信号y(t)的计算过程。
数学表达式为:y(t) = (x * h)(t) = ∫x(τ)h(t-τ)dτ。
2. 傅里叶变换用于连续时间信号的频域分析,而拉普拉斯变换则适用于连续时间信号,并且可以处理有初始条件的系统。
三、计算题1. X(f) = 3[δ(f-5) + δ(f+5)]。
(完整版)信号与系统练习及答案

信号与系统练习及答案一、单项选择题1.已知信号f (t )的波形如题1图所示,则f (t )的表达式为( )A .tu(t)B .(t-1)u(t-1)C .tu(t-1)D .2(t-1)u(t-1)2.积分式⎰-δ+δ++4422)]dt -(t 2(t))[23(t t 的积分结果是( ) A .14 B .24 C .26 D .283.已知f(t)的波形如题3(a )图所示,则f (5-2t)的波形为( )4.周期矩形脉冲的谱线间隔与( )A .脉冲幅度有关B .脉冲宽度有关C .脉冲周期有关D .周期和脉冲宽度有关 5.若矩形脉冲信号的宽度加宽,则它的频谱带宽( ) A .不变 B .变窄 C .变宽D .与脉冲宽度无关 6.如果两个信号分别通过系统函数为H (j ω)的系统后,得到相同的响应,那么这两个信号()A .一定相同 B .一定不同 C .只能为零 D .可以不同7.f(t)=)(t u e t 的拉氏变换为F (s )=11-s ,且收敛域为( ) A .Re[s]>0B .Re[s]<0C .Re[s]>1D .Re[s]<1 8.函数⎰-∞-δ=2t dx )x ()t (f 的单边拉氏变换F (s )等于( ) A .1 B .s 1 C .e -2s D .s1e -2s 9.单边拉氏变换F (s )=22++-s e )s (的原函数f(t)等于( ) A .e -2t u(t-1) B .e -2(t-1)u(t-1) C .e -2t u(t-2)D .e -2(t-2)u(t-2)答案: BCCCBDCDA二.填空题1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。
2.已知x(t)的傅里叶变换为X (j ω),那么x (t-t 0)的傅里叶变换为_________________。
3.如果一线性时不变系统的输入为f(t),零状态响应为y f (t )=2f (t-t 0),则该系统的单位冲激响应h(t)为_________________。
信号与系统期末考试试卷(有详细答案)

《信号与系统》考试试卷(时间120分钟)院/系专业姓名学号题号一二三四五六七总分得分一、填空题(每小题2分,共20分)得分1.系统的激励是e(t),响应为r(t),若满足de(t)r(t),则该系统为线性、时不变、因果。
dt(是否线性、时不变、因果?)2的值为5。
2.求积分(t1)(t2)dt3.当信号是脉冲信号f(t)时,其低频分量主要影响脉冲的顶部,其高频分量主要影响脉冲的跳变沿。
4.若信号f(t)的最高频率是2kHz,则f(2t)的乃奎斯特抽样频率为8kHz。
5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为一常数相频特性为_一过原点的直线(群时延)。
6.系统阶跃响应的上升时间和系统的截止频率成反比。
7.若信号的F(s)=3s(s+4)(s+2) ,求该信号的F(j)j3(j+4)(j+2)。
8.为使LTI连续系统是稳定的,其系统函数H(s)的极点必须在S平面的左半平面。
19.已知信号的频谱函数是0)()F((,则其时间信号f(t)为0j)sin(t)j。
10.若信号f(t)的s1F(s),则其初始值f(0)1。
2(s1)得分二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)《信号与系统》试卷第1页共7页1.单位冲激函数总是满足(t)(t)(√)2.满足绝对可积条件f(t)dt的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
(×)3.非周期信号的脉冲宽度越小,其频带宽度越宽。
(√)4.连续LTI系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
(√)5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
(×)得分三、计算分析题(1、3、4、5题每题10分,2题5分,6题15分,共60分)t 1.信号f(t)2eu(t)1,信号10t1,f,试求f1(t)*f2(t)。
(完整word版)信号与系统考试试题及答案,推荐文档

长沙理工大学拟题纸课程编号 1拟题教研室(或老师)签名 教研室主任签名 符号说明:)sgn(t 为符号函数,)(t δ为单位冲击信号,)(k δ为单位脉冲序列,)(t ε为单位阶跃信号,)(k ε为单位阶跃序列。
一、填空(共30分,每小题3分)1. 已知)()4()(2t t t f ε+=,求_______)("=t f 。
)('4)(2)("t t t f δε+2. 已知}4,2,4,3{)(},1,2,2,1{)(=-=k h k f ,求______)()(=*k h k f 。
}4,6,8,3,4,10,3{)()(-=*k h k f3. 信号通过系统不失真的条件为系统函数_______)(=ωj H 。
0)(t j Kej H ωω-=4. 若)(t f 最高角频率为m ω,则对)4(t f 取样的最大间隔是______。
m T ωπωπ4max max ==5. 信号t t t f ππ30cos 220cos 4)(+=的平均功率为______。
101122222=+++==∑∞-∞=n n F P6. 已知一系统的输入输出关系为)3()(t f t y =,试判断该系统是否为线性时不变系统______。
故系统为线性时变系统。
7. 已知信号的拉式变换为)1)(1(1)(2-+=s s s F ,求该信号的傅立叶变换)(ωj F =______。
故傅立叶变换)(ωj F 不存在。
8. 已知一离散时间系统的系统函数2121)(---+=z z z H ,判断该系统是否稳定______。
故系统不稳定。
9. =+-+⎰∞∞-dt t t t )1()2(2δ______。
310. 已知一信号频谱可写为)(,)()(3ωωωωA e A j F j -=是一实偶函数,试问)(t f 有何种对称性______。
关于t=3的偶对称的实信号。
二、计算题(共50分,每小题10分)1. 已知连续时间系统的单位冲激响应)(t h 与激励信号)(t f 的波形如图A-1所示,试由时域求解该系 统的零状态响应)(t y ,画出)(t y 的波形。
信号与系统考试试题及答案

长沙理工大学拟题纸课程编号 1 拟题教研室(或老师)签名 教研室主任签名 符号说明:)sgn(t 为符号函数,)(t δ为单位冲击信号,)(k δ为单位脉冲序列,)(t ε为单位阶跃信号,)(k ε为单位阶跃序列。
一、填空(共30分,每小题3分)1. 已知)()4()(2t t t f ε+=,求_______)("=t f 。
)('4)(2)("t t t f δε+2. 已知}4,2,4,3{)(},1,2,2,1{)(=-=k h k f ,求______)()(=*k h k f 。
}4,6,8,3,4,10,3{)()(-=*k h k f3. 信号通过系统不失真的条件为系统函数_______)(=ωj H 。
0)(t j Ke j H ωω-=4. 若)(t f 最高角频率为m ω,则对)4(t f 取样的最大间隔是______。
m T ωπωπ4max max == 5.信号t t t f ππ30cos 220cos 4)(+=的平均功率为___。
101122222=+++==∑∞-∞=n n F P6. 已知一系统的输入输出关系为)3()(t f t y =,试判断该系统是否为线性时不变系统 ______。
故系统为线性时变系统。
7. 已知信号的拉式变换为)1)(1(1)(2-+=s s s F ,求该信号的傅立叶变换)(ωj F =______。
故傅立叶变换)(ωj F 不存在。
8. 已知一离散时间系统的系统函数2121)(---+=z z z H ,判断该系统是否稳定______。
故系统不稳定。
9. =+-+⎰∞∞-dt t t t )1()2(2δ______。
310. 已知一信号频谱可写为)(,)()(3ωωωωA e A j F j -=是一实偶函数,试问)(t f 有何种对称性______。
关于t=3的偶对称的实信号。
二、计算题(共50分,每小题10分)1. 已知连续时间系统的单位冲激响应)(t h 与激励信号)(t f 的波形如图A-1所示,试由时域求解该系统的零状态响应)(t y ,画出)(t y 的波形。
信号与系统期末考试试卷(有详细答案).doc

格式《信号与系统》考试试卷(时间 120 分钟)院 / 系专业姓名学号题号一二三四五六七总分得分一、填空题(每小题 2 分,共 20 分)得分1.系统的激励是 e(t) ,响应为 r(t) ,若满足de(t)r ( t) ,则该系统为线性、时不变、因果。
dt(是否线性、时不变、因果?)2 的值为 5。
2.求积分 (t1)(t2)dt3.当信号是脉冲信号f(t)时,其低频分量主要影响脉冲的顶部,其高频分量主要影响脉冲的跳变沿。
4.若信号f(t)的最高频率是2kHz,则 f(2t)的乃奎斯特抽样频率为8kHz。
5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为一常数相频特性为 _一过原点的直线(群时延)。
6.系统阶跃响应的上升时间和系统的截止频率成反比。
.若信号的F(s)=3s j37。
,求该信号的 F ( j)(s+4)(s+2) (j+4)(j+2)8.为使LTI 连续系统是稳定的,其系统函数H(s ) 的极点必须在S 平面的左半平面。
1。
9.已知信号的频谱函数是0)()F(( ,则其时间信号f(t)为0j)sin(t)js110.若信号 f(t)的F ( s ) ,则其初始值f(0)1。
2(s1 )得分二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题 2 分,共 10 分)《信号与系统》试卷第1页共 7页专业资料整理格式1.单位冲激函数总是满足 ( t )( t ) (√)2.满足绝对可积条件 f ( t ) dt 的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
(×)3.非周期信号的脉冲宽度越小,其频带宽度越宽。
(√)4.连续 LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
(√)5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
(×)得分三、计算分析题(1、 3、 4、 5 题每题 10 分, 2 题 5 分,6 题15 分,共 60 分)t 10t11.信号f(t)2eu(t) ,1,信号 f ,试求 f 1 (t)*f 2 (t)。
信号与系统试题及答案

信号与系统试题1第一部分 选择题(共32分)一、单项选择题(本大题共16小题,每小题2分,共32分。
在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内)1.积分e d t --∞⎰2τδττ()等于( )A .δ()tB .ε()tC .2ε()tD .δε()()t t +2.已知系统微分方程为dy t dt y t f t ()()()+=2,若y f t t t (),()sin ()012+==ε,解得全响应为y t e t t ()sin()=+-︒-54242452,t ≥0。
全响应中24245sin()t -︒为( ) A .零输入响应分量 B .零状态响应分量C .自由响应分量D .稳态响应分量3.系统结构框图如图示,该系统的单位冲激响应h(t)满足的方程式为( )A .dy t dt y t x t ()()()+= B .h t x t y t ()()()=- C .dh t dt h t t ()()()+=δ D .h t t y t ()()()=-δ4.信号f t f t 12(),()波形如图所示,设f t f t f t ()()*()=12,则f()0为( )A .1B .2C .3D .45.已知信号f t ()的傅里叶变换F j ()()ωδωω=-0,则f t ()为( )A .120πωe j t B .120πωe j t - C .120πεωe t j t () D .120πεωe t j t -()6.已知信号f t ()如图所示,则其傅里叶变换为( )A .τωττωτ2422Sa Sa ()()+B .τωττωτSa Sa ()()422+ C .τωττωτ242Sa Sa ()()+ D .τωττωτSa Sa ()()42+7.信号f t 1()和f t 2()分别如图(a )和图(b)所示,已知 [()]()f t F j 11=ω,则f t 2()的 傅里叶变换为( )A .F j e j t 10()--ωωB .F j e j t 10()ωω-C .F j e j t 10()-ωωD .F j e j t 10()ωω8.有一因果线性时不变系统,其频率响应H j j ()ωω=+12,对于某一输入x(t)所得输出信号的傅里叶变换为Y j j j ()()()ωωω=++123,则该输入x(t)为( ) A .--e t t 3ε()B .e t t -3ε()C .-e t t 3ε()D .e t t 3ε()9.f t e t t ()()=2ε的拉氏变换及收敛域为( )A .122s s +>-,Re{} B .122s s +<-,Re{} C .122s s ->,Re{} D .122s s -<,Re{} 10.f t t t ()()()=--εε1的拉氏变换为( ) A .11s e s ()--B .11s e s ()-C .s e s ()1--D .s e s ()1-11.F s s s s s ()Re{}=+++>-25622的拉氏反变换为( )A .[]()e e t t t --+322εB .[]()e e t t t ---322εC .δε()()t e t t +-3D .e t t -3ε()12.图(a )中ab 段电路是某复杂电路的一部分,其中电感L 和电容C 都含有初始状态,请在图(b )中选出该电路的复频域模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。
(8分)t-1 0 1 2 3(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。
(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h(t)(8分)(3). f(k)=1, k=0,1,2,3, h(k)=1, k=0,1,2,3,y(k)=f(k)*h(k) (8分)(4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分)(5)y’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=?(8分)(6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)=2,y(-2)= -1/2,试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t,求当激励f(t)=δ(t)时的响应)(t h 。
(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。
(10分)六某一连续非时变系统的传输函数为H(s)=Y(s)/X(s)=(2s2+6s+4)/(s3+5s2+8s+6) (1)出该系统的结构图;(2)判定该系统的稳定性(10分)信号与系统试卷(2)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共2页1 (每小题7分,共14分)绘出下列函数的图形(1)试概略画出信号y(t)=u(t2-4) 的波形图。
(2)一个线性连续时不变系统,输入为)(tut x 时)(tsin的零状态响应如下图所示,求该系统的冲击响应)(t h,并画出示意图。
0 1 2 t题1(2)图2. (每小题5分,共10分) 考虑具有下列输入输出关系的三个系统:系统1; ()()n f n y =系统2; ()()()()241121-+-+=n f n f n f n y 系统3; ()()n f n y 2=(1) 若按下图那样连接,求整个系统的输入输出关系。
(2) 整个系统是线性吗?是时不变的吗?()n f()n y 题2 图3. (本题共10分)已知系统的传输函数为H(s)=3422++s s s ,零输入响应)(t y x 的初始值2)0(',1)0(-==x x y y ,欲使系统的全响应为0,求输入激励)(t f 。
4. (每小题8分,共16分) 某一离散非时变系统的传输函数为H(z)=Y(z)/X(z)=(2z 2+6z+4)/(4z 4-4z 3+2z-1)(1) 画出该系统的结构图。
(2) 判定该系统的稳定性。
5.(本题共10分)已知),()1()()('t u e t t f t f t--=*试求信号)(t f 。
6.(每小题10分,共20分)已知线性连续系统的系统函数为 ,系统完全响应的初始条件为 , ,系统输入为阶跃函数)()(t u t f =,(1)求系统的冲激响应 ;(2)求系统的零输入响应 ,零状态响应 ,完全响应)(t y 。
7.(本题共10分)某线性连续系统的阶跃响应为)(t g ,已知输入为因果信号)(t f 时,系统零状态响应为 ,求系统输入)(t f 。
8.(本题共10分)已知一个LTI 离散系统的单位响应为⎩⎨⎧==为其它k k k h 03,2,11][,试求:(1)试求该系统的传输函数)(z H ;(2)当输入为⎩⎨⎧≥=为其它为偶数,且k k k k f 001][时的零状态响应][k yf 。
信号与系统试卷(3)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共3页一、计算以下各题:(每小题8分,共80分)1. 已知f(1-2t)的波形如图所示,试画出f(t)的波形并写出其表达式。
2. 图示电路,求u(t)对f(t)的传输算子H( p)及冲激响应h(t)。
2H3. 求图示系统的阶跃响应4. 求信号f(t)的频谱函数F(j ω)5.图示系统,已知)()(2t et f t j ε-=,t t x 20cos )(=,试求:)(ωj F 、)(ωj X 和)(ωj Y 。
6. 理想低通滤波器的)(ωj H 的图形如图所示,求其单位冲激响应h(t),并画出其波形。
7.图示系统由三个子系统组成,其中,1)(,21)(,1)(321+=+==-s e s H s s H s s H s求整个系统的冲激响应(t f )(t y t )h(t)。
8、已知某系统的信号流图,试求解系统函数)(s H 。
9.已知系统函数的零、极点分布如图所示,试写出该系统的系统函数H(s),画出其幅频特性曲线并指明系统的特性。
10.两个有限长序列)(),(k h k f 如图所示,求其卷积和)()(k f k y =(s F )(s Y二、(10分) 图示系统,已知)(t f 的频谱函数)(ωj F 和)(ωj H 的波形。
试求:(1) 求解并画出)(1t y 的频谱)(1ωj Y ; (2) 画出)(2t y 的频谱)(2ωj Y ;(3) 求解并画出)(t y 的频谱)(ωj Y 。
三、(10分) 图示电路,f(t)为激励,u C (t)为响应。
(1) 求系统函数H(s),并画出其零、极点图;(2) 若f(t)=ε (t)A ,V ,2)0( A,1)0(==--C L u i 求零输入响应u C (t)。
信号与系统试卷(4)00u C (t )(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共2页一一线性非时变系统,具有一初始状态x(0),当激励为f(t)时,响应为y(t)=e-t+cosπtu(t);若初始状态不变,当激励为2f(t)时,响应为y(t)=2cosπtu(t);试求当初始状态不变,激励为3f(t)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。
(8分)t-1 0 1 2 3 (2). 试概略画出信号y(t)=u(t2-4) 的波形图。
(8分)三试计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2)+ 2δ(t+5))dt (4分)(2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h(t)(8分)(3). f(k)=1, k=0,1,2,3, h(k)=1, k=0,1,2,3,y(k)=f(k)*h(k) (8分)(4). 已知f(t)=e -2t u(t), 求y(t)=[cost f(2t)] 的富立叶变换(8分)(5) 试证 ⎰∞(sinx/x)dx=π/2 (8分) (6)y(k)-5y(k-1)+6y(k-2)= f(k) , 试求系统的单位抽样响应h(k)及零状态响应y f (k)=? (8分)四 2y”(t)+3/2 y’(t)+1/2 y(t)=x(t), y(0)=1,y’(0)=0, x(t)=5e -3t (t), 试求零输入响应,零状态响应,及全响应y(t)=? (10分)五 已知系统的传输函数为H(s)=3422++s s s ,零输入响应)(t y x 的初始值2)0(',1)0(-==x x y y ,欲使系统的全响应为0,求输入激励)(t f 。
(10分)六 某一离散非时变系统的传输函数为 (10分)H(z)=Y(z)/X(z)=(2z 2+6z+4)/(4z 4-4z 3+2z-1)(1)画出该系统的结构图;(2)判定该系统的稳定性信号与系统试卷(5)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共3页1(每小题8分,共16分)绘出下列函数的图形(1)已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。
2 3 t题1(1)图(2) 一个线性时不变系统的输入)(t f和冲击响应)(th如下图所示,试求系统的零状态响应,并画出波形。
)(t h 10 2 t 0 2 t题 1(2)图2. (每小题10分,共50分)计算题(1) 已知一个线性时不变系统的方程为)(2)()(3)(4)(22t f dt t df t y dt t dy dt t y d +=++ 试求其系统函数)(ωj H 和冲击响应)(t h 。
(2)如下图所示系统,其中:t t t h π2sin )(1=,tt t t t h πππsin 2sin 2)(2= 试求其系统的冲击响应)(t h 和幅频特性|)(|ωj H 、相频特性)(ωϕj 。
(20分))(t f )(t y f题 2(2)图(3)已知线性连续系统的初始状态一定。
当输入为 时,完全响应为 ;当输入为)()(2t u t f =时,完全响应为 ;若输入为)()(3t tu t f =时,求完全响应 。
(4)某线性连续系统的S 域框图如图所示,其中 , 。
欲使该系统为稳定系统,试确定K 值的取值范围。
题 2(4)图(5) 某线性连续系统的阶跃响应为g(t),已知输入为因果信号f(t)时,系统零状态响应为 ,求系统输入f(t)。
(10分)3(本题共14分) 设⎩⎨⎧==其它01,01][k k f ,试求其离散时间傅立叶变换)(ωj e F ;若将以][k f 为4周期进行周期延拓,形成周期序列,试求其离散傅立叶级数系数nF 和离散傅立叶变换DFT 。