2014年高考真题——文科数学(新课标II)

合集下载

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·安徽卷(文科数学)

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·安徽卷(文科数学)

2014·安徽卷(文科数学)1. [2014·安徽卷] 设i 是虚数单位,复数i 3+2i1+i =( )A .-iB .iC .-1D .11.D [解析]i 3+2i1+i=-i +2i (1-i )2=1.2. [2014·安徽卷] 命题“∀x ∈R ,|x |+x 2≥0”的否.定是( ) A .∀x ∈R ,|x |+x 2<0B .∀x ∈R ,|x |+x 2≤0C .∃x 0∈R ,|x 0|+x 20<0D .∃x 0∈R ,|x 0|+x 20≥02.C [解析]易知该命题的否定为“∃x 0∈R ,|x 0|+x 20<0”. 3. [2014·安徽卷] 抛物线y =14x 2的准线方程是( )A .y =-1B .y =-2C .x =-1D .x =-23.A [解析]因为抛物线y =14x 2的标准方程为x 2=4y ,所以其准线方程为y =-1.4. [2014·安徽卷] 如图1-1所示,程序框图(算法流程图)的输出结果是( )图1-1A .34B .55C .78D .894.B [解析]由程序框图可知,列出每次循环过后变量的取值情况如下: 第一次循环,x =1,y =1,z =2; 第二次循环,x =1,y =2,z =3; 第三次循环,x =2,y =3,z =5; 第四次循环,x =3,y =5,z =8; 第五次循环,x =5,y =8,z =13; 第六次循环,x =8,y =13,z =21; 第七次循环,x =13,y =21,z =34;第八次循环,x =21,y =34,z =55,不满足条件,跳出循环. 5. [2014·安徽卷] 设a =log 37,b =21.1,c =0.83.1,则( ) A .b <a <c B .c <a <b C .c <b <a D .a <c <b5.B [解析]因为2>a =log 37>1,b =21.1>2,c =0.83.1<1,所以c <a <b .6. [2014·安徽卷] 过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π3C.⎣⎡⎦⎤0,π6 D.⎣⎡⎦⎤0,π36.D [解析]易知直线l 的斜率存在,所以可设l :y +1=k (x +3),即kx -y +3k -1=0.因为直线l 圆x 2+y 2=1有公共点,所以圆心(0,0)到直线l 的距离|3k -1|1+k 2≤1,即k 2-3k ≤0,解得0≤k ≤3,故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3.7. [2014·安徽卷] 若将函数f (x )=sin2x +cos2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π47.C [解析]方法一:将f (x )=2sin ⎝⎛⎭⎫2x +π4的图像向右平移φ个单位,得到y =2sin ⎝⎛⎭⎫2x +π4-2φ的图像,由所得图像关于y 轴对称,可知sin ⎝⎛⎭⎫π4-2φ=±1,即sin ⎝⎛⎭⎫2φ-π4=±1,故2φ-π4=k π+π2,k ∈Z ,即φ=k π2+3π8,k ∈Z ,又φ>0,所以φmin =3π8.8. [2014·安徽卷] 一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2A.233B.476C .6D .7 8.A [解析]如图所示,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其体积V =8-2×13×12×1×1×1=233.9. [2014·安徽卷] 若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8B .-1或5 C .-1或-4D .-4或8 9.D [解析]当a ≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1(x >-1),x +a -1⎝⎛⎭⎫-a 2≤x ≤-1,-3x -a -1⎝⎛⎭⎫x <-a 2.由图可知,当x =-a2时,f min (x )=f ⎝⎛⎭⎫-a 2=a 2-1=3,可得a =8. 当a <2时,f (x )⎩⎪⎨⎪⎧3x +a +1⎝⎛⎭⎫x >-a2,-x -a +1⎝⎛⎭⎫-1≤x ≤-a 2,-3x -a -1(x <-1).由图可知,当x =-a2时,f min (x )=f ⎝⎛⎭⎫-a 2=-a 2+1=3,可得a =-4.综上可知,a 的值为-4或8.10. [2014·安徽卷] 设a ,b 为非零向量,|b |=2|a |,两组向量x 1,x 2,x 3,x 4和y 1,y 2,y 3,y 4均由2个a 和2个b 排列而成,若x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4所有可能取值中的最小值为4|a |2,则a 与b 的夹角为( )A.2π3B.π3C.π6D .0 10.B [解析]令S =x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4,则可能的取值有3种情况:S 1=2+2,S 2=++2a ·b ,S 3=4a ·b .又因为|b |=2|a |.所以S 1-S 3=2a 2+2b 2-4a ·b =2()a -b 2>0,S 1-S 2=a 2+b 2-2a ·b =(a -b )2>0,S 2-S 3=(a -b )2>0,所以S 3<S 2<S 1,故S min =S 3=4a·b .设a ,b 的夹角为θ,则S min =4a·b =8|a |2cos θ=4|a |2,所以cos θ=12.又θ∈[0,π],所以θ=π3.11. [2014·安徽卷] ⎝⎛⎭⎫1681-34+log 354+log 345=________.11.278 [解析]原式=⎣⎡⎦⎤⎝⎛⎭⎫234-34+log 3⎝⎛⎭⎫54×45=⎝⎛⎭⎫23-3=278. 12. [2014·安徽卷] 如图1-3,在等腰直角三角形ABC 中,斜边BC =22,过点A 作BC 的垂线,垂足为A 1;过点A 1作AC 的垂线,垂足为A 2;过点A 2作A 1C 的垂线,垂足为A 3;….依此类推,设BA =a 1,AA 1=a 2,A 1A 2=a 3,…,A 5A 6=a 7,则a 7=________.图1-312.14 [解析]在等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,由题易知A 1A 2=a 3=12AB =1,…,A 6A 7=a 7=⎝⎛⎭⎫123·AB =2×⎝⎛⎭⎫123=14.13. [2014·安徽卷] 不等式组⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.13.4 [解析]不等式组所表示的平面区域如图中阴影部分所示,S △ABD =S △ABD +S △BCD=12×2×(2+2)=4.14. [2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______.14.516 [解析]由题易知f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76=-316+sin π6=516. 15. [2014·安徽卷] 若直线l 与曲线C 满足下列两个条件:(i)直线l 在点P (x 0,y 0)处与曲线C 相切;(ii)曲线C 在点P 附近位于直线l 的两侧.则称直线l 在点P 处“切过”曲线C .下列命题正确的是________(写出所有正确命题的编号). ①直线l :y =0在点P (0,0)处“切过”曲线C :y =x 3;②直线l :x =-1在点P (-1,0)处“切过”曲线C :y =(x +1)2; ③直线l :y =x 在点P (0,0)处“切过”曲线C :y =sin x ; ④直线l :y =x 在点P (0,0)处“切过”曲线C :y =tan x ; ⑤直线l :y =x -1在点P (1,0)处“切过”曲线C :y =ln x .15.①③④ [解析]对于①,因为y ′=3x 2,y ′x =0=0,所以l :y =0是曲线C :y =x 3在点P (0,0)处的切线,画图可知曲线C 在点P 附近位于直线l 的两侧,①正确;对于②,因为y ′=2(x +1),y ′x =-1=0,所以l :x =-1不是曲线C :y =(x +1)2在点P (-1,0)处的切线,②错误;对于③,y ′=cos x ,y ′x =0=1,所以曲线C 在点P (0,0)处的切线为l :y =x ,画图可知曲线C 在点P 附近位于直线l 的两侧,③正确;对于④,y ′=1cos 2x,y ′x =0=1,所以曲线C 在点P (0,0)处的切线为l :y =x ,画图可知曲线C 在点P 附近位于直线l 的两侧,④正确;对于⑤,y ′=1x ,y ′x =1=1,所以曲线C 在点P (1,0)处切线为l :y =x -1,又由h (x )=x-1-ln x (x >0)可得h ′(x )=1-1x =x -1x ,所以h min (x )=h (1)=0,故x -1≥ln x ,所以曲线C在点P 附近位于直线l 的下侧,⑤错误.16. [2014·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值. 16.解:由三角形面积公式,得12×3×1·sin A =2,故sin A =223. 因为sin 2A +cos 2A =1, 所以cos A =±1-sin 2A =±1-89=±13. ①当cos A =13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×13=8,所以a =2 2.②当cos A =-13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×⎝⎛⎭⎫-13=12,所以a =2 3.17. [2014·安徽卷] 某高校共有学生15000人,其中男生10500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据? (2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图1-4所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.图1-4(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )17.解: (1)300×450015000=90,所以应收集90位女生的样本数据.(2)由频率分布直方图得每周平均体育运动超过4小时的频率为1-2×(0.100+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300位学生中有300×0.75=225(位)的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:结合列联表可算得K 2=300×(165×30-45×60)75×225×210×90=10021≈4.762>3.841.所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.18. [2014·安徽卷] 数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n ·a n ,求数列{b n }的前n 项和S n .18.解: (1)证明:由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n =1,所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2)由(1)得a nn =1+(n -1)·1=n ,所以a n =n 2,从而可得b n =n ·3n .S n =1×31+2×32+…+(n -1)×3n -1+n ×3n ,①3S n =1×32+2×33+…+(n -1)3n +n ×3n +1.②①-②得-2S n =31+32+…+3n -n ·3n +1=3·(1-3n )1-3-n ·3n +1=(1-2n )·3n +1-32,所以S n =(2n -1)·3n +1+34.19. [2014·安徽卷] 如图1-5所示,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .图1-5(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积.19.解: (1)证明:因为BC ∥平面GEFH ,BC ⊂平面PBC ,且平面PBC ∩平面GEFH =GH ,所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为P A =PC ,O 是AC 的中点,所以PO ⊥AC ,同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在平面ABCD 内,所以PO ⊥平面ABCD .又因为平面GEFH ⊥平面ABCD ,且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,所以GK ⊥平面ABCD . 又EF ⊂平面ABCD ,所以GK ⊥EF , 所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4,从而KB =14DB =12OB ,即K 是OB 的中点.再由PO ∥GK 得GK =12PO ,所以G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3,故四边形GEFH 的面积S =GH +EF 2·GK =4+82×3=18.20. [2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0.(1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值.20.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值.21. [2014·安徽卷] 设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |.(1)若|AB |=4,△ABF 2的周长为16,求|AF 2|;(2)若cos ∠AF 2B =35,求椭圆E 的离心率.21.解:(1)由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3,|F 1B |=1.因为△ABF 2的周长为16,所以由椭圆定义可得4a =16,所以|AF 1|+|AF 2|=2a =8. 故|AF 2|=2a -|AF 1|=8-3=5.(2)设|F 1B |=k ,则k >0且|AF 1|=3k ,|AB |=4k .由椭圆定义可得 |AF 2|=2a -3k ,|BF 2|=2a -k . 在△ABF 2中,由余弦定理可得|AB |2=|AF 2|2+|BF 2|2-2|AF 2|·|BF 2·cos ∠AF 2B , 即(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )· (2a -k ),化简可得(a +k )(a -3k )=0,而a +k >0,故a =3k , 于是有|AF 2|=3k =|AF 1|,|BF 2|=5k .因此|BF 2|2=|AF 2|2+|AB |2,可得F 1A ⊥F 2A . 故△AF 1F 2为等腰直角三角形, 从而c =22a ,所以椭圆E 的离心率e =c a =22.。

2014全国统一高考数学真题及逐题详细解析(文科)—江苏卷

2014全国统一高考数学真题及逐题详细解析(文科)—江苏卷

2014年普通高等学校招生全国统一考试(江苏卷)解析版数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A . 2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 . 3. 右图是一个算法流程图,则输出的n 的值是 .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 .6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 . 8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V 的值是 .100 80 90 110 120 底部周长/cm(第6题)(第3题)9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长 为 .10. 已知函数2()1f x x mx =+-,若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 .11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 . 12. 如图,在平行四边形ABCD 中,已知8AB =,5AD =,3CP PD =,2AP BP ⋅=,则AB AD ⋅的值是 .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,21()22f x x x =-+. 若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值; (2)求)265cos(απ-的值.16. (本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,6PA =,8BC =,5DF =.求证:(1) 直线//PA 平面DEF ;(2) 平面⊥BDE 平面ABC .(第16题)PDCEFBA(第12题)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,顶点B的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1) 若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2) 若1F C AB ⊥,求椭圆离心率e 的值.18. (本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区. 规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆. 且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO . (1) 求新桥BC 的长;(2) 当OM 多长时,圆形保护区的面积最大?19. (本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1) 证明:)(x f 是R 上的偶函数;(2) 若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3) 已知正数a 满足:存在),1[0+∞∈x ,使得)3()(0300x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1) 若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”; (2) 设}{n a 是等差数列,其首项11=a ,公差0<d . 若}{n a 是“H 数列”,求d 的值; (3) 证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.数学Ⅱ(附加题)21.[选修4—1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,C 、D 是圆O 上位于AB 异侧的两点. 证明:∠ OCB =∠ D .22.[选修4—2:矩阵与变换](本小题满分10分)已知矩阵A 121x -⎡⎤=⎢⎥⎣⎦,B 1121⎡⎤=⎢⎥-⎣⎦,向量2y ⎡⎤=⎢⎥⎣⎦α,x ,y 为实数.若=A αB α,求x +y 的值. 23.[选修4—4:坐标系与参数方程](本小题满分10分) 在平面直角坐标系xOy 中,已知直线l的参数方程1,2)(;x t y ⎧=⎪⎪⎨⎪=⎪⎩为参数,直线l 与抛物线24y x =相交于A 、B 两点,求线段AB 的长.24.[选修4—4:不等式证明选讲](本小题满分10分) 已知x >0,y >0,证明:22(1)(1)9x y x y xy ++++≥. 25. (本小题满分10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1) 从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2) 从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1、x 2、x 3, 随机变量X 表示x 1、x 2、x 3中的最大数,求X 的概率分布和数学期望E (X ). 26. (本小题满分10分)已知函数sin ()(0)xf x x x=>,设()n f x 是1()n f x -的导数,n ∈*N . (1) 求12πππ2()()222f f +的值;(2) 证明:对于任意n ∈*N,等式1πππ()()444n n nf f -+=都成立.(第21—A 题)参考答案一、选择题 1.【答案】{1,3}- 解析:由题意得{1,3}AB =-【考点】交集、并集、补集 (B). 【答案】}3,1{-【解析】根据集合的交集运算,两个集合的交集就是所有既属于集合A 又属于集合B 的元素组成的集合,从所给的两个集合的元素可知,公共的元素为-1和3,所以答案为}3,1{-【点评】本题重点考查的是集合的运算,容易出错的地方是审错题目,把交集运算看成并集运算。

2014年高考天津卷文科数学真题(word版)及答案

2014年高考天津卷文科数学真题(word版)及答案

绝密★启用前2014年普通高等学校招生全国统一考试(天津卷)数 学(文史类)本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考分式:·如果事件A ,B 互斥,那么 ·圆锥的体积公式=13Sh .()()()P A B P A P B =+. 其中S 表示圆锥的底面面积,·圆柱的体积公式V Sh = h 表示圆锥的高. 其中S 表示圆柱的底面面积, h 表示圆柱的高.一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数734ii+=+ (A )1i -(B )1i -+(C )17312525i + (D )172577i -+ (2)设变量,x y 满足约束条件20,20,1,x y x y y +-≥⎧⎪--≤⎨⎪≥⎩则目标函数2z x y =+的最小值为(A )2 (B )3(C )4(D )5(3)如果命题:0,p x ∀>总有(1)1x x e +>,则p -为(A )00x ∃≤,使得00(1)1x x e +≤ (B )00x ∃>,使得00(1)1xx e +≤ (C )0x ∀>,总有(1)1x x e +≤ (D )0x ∀≤,总有(1)1x x e +≤ (4)设2212log ,log ,,a b c πππ-===则(A )a b c >>(B )b a c >> (C )a c b >> (D )c b a >>(5)设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124S S S ,,成等比数列,则1a =(A )2 (B )-2 (C )12 (D )12- (6)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线平行于直线:210l y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -= (7)如图,△ABC 是圆的内接三角形,∠BAC 的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD ∠平分∠CBF ;②FB 2=FD·FA ;③AE·CE =BE·DE ;④AF·BD =AB·BF . 则所有正确结论的序号是(A )①② (B )③④(C )①②③(D )①②④(8)已知函数()3sin cos (0)f x x x x R ωωω=+>∈,.在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3π,则()f x 最小正周期为 (A )2π (B )23π(C )π(D )2π第(7)题E FDCAB绝密★启用前2014年普通高等学校招生全国统一考试(天津卷)数 学(文史类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2014年高考文科数学三角函数真题附答案

2014年高考文科数学三角函数真题附答案

2014年高考文科数学真题(三角函数)一.选择题(共10小题)1.(2014•广西)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣2.(2014•广西)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.3.(2014•河南)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>04.(2014•河南)在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+)④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④ D.①③5.(2014•四川)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动1个单位长度 B.向右平行移动1个单位长度C.向左平行移动π个单位长度 D.向右平行移动π个单位长度6.(2014•陕西)函数f(x)=cos(2x+)的最小正周期是()A.B.πC.2πD.4π7.(2014•辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增8.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()A.﹣B.C.1 D.9.(2014•福建)将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的周期为πC.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点(﹣,0)对称10.(2014•安徽)若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()A.B.C.D.二.填空题(共8小题)11.函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为_________.12.(2014•重庆)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx的图象,则f()=_________.13.(2014•上海)方程sinx+cosx=1在闭区间[0,2π]上的所有解的和等于_________.14.(2014•陕西)设0<θ<,向量=(sin2θ,cosθ),=(1,﹣cosθ),若•=0,则tanθ=_________.15.(2014•山东)函数y=sin2x+cos2x的最小正周期为_________.16.(2014•湖北)在△ABC中,角A,B,C所对的边分别为a,b,c,已知A=,a=1,b=,则B= _________.17.(2014•福建)在△ABC中,A=60°,AC=2,BC=,则AB等于_________.18.(2014•北京)在△ABC中,a=1,b=2,cosC=,则c=_________;sinA=_________.三.解答题(共8小题)19.(2014•广西)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.20.(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.21.(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.22.(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.23.(2014•江西)已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f()=0,其中a∈R,θ∈(0,π).(1)求a,θ的值;(2)若f()=﹣,α∈(,π),求sin(α+)的值.24.(2014•湖南)如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.25.已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).26.(2014•安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA与a的值.2014年高考文科数学真题(三角函数)参考答案与试题解析一.选择题(共10小题)1.(2014•广西)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.2.(2014•广西)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.考点:异面直线及其所成的角.专题:空间角.分析:由E为AB的中点,可取AD中点F,连接EF,则∠CEF为异面直线CE与BD所成角,设出正四面体的棱长,求出△CEF的三边长,然后利用余弦定理求解异面直线CE与BD所成角的余弦值.解答:解:如图,取AD中点F,连接EF,CF,∵E为AB的中点,∴EF∥DB,则∠CEF为异面直线BD与CE所成的角,∵ABCD为正四面体,E,F分别为AB,AD的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF中,由余弦定理得:=.故选:B.点评:本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.3.(2014•河南)若tanα>0,则()A.s inα>0 B.c osα>0 C.s in2α>0 D.c os2α>0考点:三角函数值的符号.专题:三角函数的求值.分析:化切为弦,然后利用二倍角的正弦得答案.解答:解:∵tanα>0,∴,则sin2α=2sinαcosα>0.故选:C.点评:本题考查三角函数值的符号,考查了二倍角的正弦公式,是基础题.4.(2014•河南)在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+)④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③考点:三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:根据三角函数的周期性,求出各个函数的最小正周期,从而得出结论.解答:解:∵函数①y=cos丨2x丨=cos2x,它的最小正周期为=π,②y=丨cosx丨的最小正周期为=π,③y=cos(2x+)的最小正周期为=π,④y=tan(2x﹣)的最小正周期为,故选:A.点评:本题主要考查三角函数的周期性及求法,属于基础题.5.(2014•四川)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动π个单位长度D.向右平行移动π个单位长度考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:直接利用函数图象的平移法则逐一核对四个选项得答案.解答:解:∵由y=sinx到y=sin(x+1),只是横坐标由x变为x+1,∴要得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点向左平行移动1个单位长度.故选:A.点评:本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.是基础题.6.(2014•陕西)函数f(x)=cos(2x+)的最小正周期是()A.B.πC.2πD.4π考点:三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:由题意得ω=2,再代入复合三角函数的周期公式求解.解答:解:根据复合三角函数的周期公式得,函数f(x)=cos(2x+)的最小正周期是π,故选:B.点评:本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.7.(2014•辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:直接由函数的图象平移得到平移后的图象所对应的函数解析式,然后利用复合函数的单调性的求法求出函数的增区间,取k=0即可得到函数在区间[,]上单调递增,则答案可求.解答:解:把函数y=3sin(2x+)的图象向右平移个单位长度,得到的图象所对应的函数解析式为:y=3sin[2(x﹣)+].即y=3sin(2x﹣).由,得.取k=0,得.∴所得图象对应的函数在区间[,]上单调递增.故选:B.点评:本题考查了函数图象的平移,考查了复合函数单调性的求法,复合函数的单调性满足“同增异减”原则,是中档题.8.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()A.﹣B.C.1D.考点:余弦定理;正弦定理.专题:解三角形.分析:根据正弦定理,将条件进行化简即可得到结论.解答:解:∵3a=2b,∴b=,根据正弦定理可得===,故选:D.点评:本题主要考查正弦定理的应用,比较基础.9.(2014•福建)将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的周期为πC.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点(﹣,0)对称考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:利用函数图象的平移法则得到函数y=f(x)的图象对应的解析式为f(x)=cosx,则可排除选项A,B,再由cos=cos(﹣)=0即可得到正确选项.解答:解:将函数y=sinx的图象向左平移个单位,得y=sin(x+)=cosx.即f(x)=cosx.∴f(x)是周期为2π的偶函数,选项A,B错误;∵cos=cos(﹣)=0,∴y=f(x)的图象关于点(﹣,0)、(,0)成中心对称.故选:D.点评:本题考查函数图象的平移,考查了余弦函数的性质,属基础题.10.(2014•安徽)若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()A.B.C.D.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的求值.分析:利用两角和的正弦函数对解析式进行化简,由所得到的图象关于y轴对称,根据对称轴方程求出φ的最小值.解答:解:函数f(x)=sin2x+cos2x=sin(2x+)的图象向右平移φ的单位,所得图象是函数y=sin(2x+﹣2φ),图象关于y轴对称,可得﹣2φ=kπ+,即φ=﹣,当k=﹣1时,φ的最小正值是.故选:C.点评:本题考查三角函数的图象变换,考查正弦函数图象的特点,属于基础题.二.填空题(共8小题)11.函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为1.考点:三角函数的最值.专题:三角函数的求值.分析:展开两角和的正弦,合并同类项后再用两角差的正弦化简,则答案可求.解答:解:∵f(x)=sin(x+φ)﹣2sinφcosx=sinxcosφ+cosxsinφ﹣2sinφcosx=sinxcosφ﹣sinφcosx=sin(x﹣φ).∴f(x)的最大值为1.故答案为:1.点评:本题考查两角和与差的正弦,考查了正弦函数的值域,是基础题.12.(2014•重庆)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx的图象,则f()=.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:哟条件根据函数y=Asin(ωx+φ)的图象变换规律,可得sin(2ωx+φ﹣ω)=sinx,可得2ω=1,且φ﹣ω=2kπ,k∈z,由此求得ω、φ的值,可得f(x)的解析式,从而求得f()的值.解答:解:函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,可得函数y=sin(2ωx+φ)的图象.再把所得图象再向右平移个单位长度得到函数y=sin[2ω(x﹣)+φ)]=sin(2ωx+φ﹣ω)=sinx的图象,∴2ω=1,且φ﹣ω=2kπ,k∈z,∴ω=,φ=,∴f(x)=sin(x+),∴f()=sin(+)=sin=.故答案为:.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于中档题.13.(2014•上海)方程sinx+cosx=1在闭区间[0,2π]上的所有解的和等于.考点:两角和与差的正弦函数;正弦函数的图象.专题:三角函数的求值.分析:由三角函数公式可得sin(x+)=,可知x+=2kπ+,或x+=2kπ+,k∈Z,结合x∈[0,2π],可得x值,求和即可.解答:解:∵sinx+cosx=1,∴sinx+cosx=,即sin(x+)=,可知x+=2kπ+,或x+=2kπ+,k∈Z,又∵x∈[0,2π],∴x=,或x=,∴+=故答案为:点评:本题考查两角和与差的三角函数公式,属基础题.14.(2014•陕西)设0<θ<,向量=(sin2θ,cosθ),=(1,﹣cosθ),若•=0,则tanθ=.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由条件利用两个向量的数量积公式求得2sinθcosθ﹣cos2θ=0,再利用同角三角函数的基本关系求得tanθ解答:解:∵=sin2θ﹣cos2θ=2sinθcosθ﹣cos2θ=0,0<θ<,∴2sinθ﹣c osθ=0,∴tanθ=,故答案为:.点评:本题主要考查两个向量的数量积公式,同角三角函数的基本关系,属于基础题.15.(2014•山东)函数y=sin2x+cos2x的最小正周期为π.考点:二倍角的余弦;两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:利用两角和的正弦公式、二倍角的余弦公式化简函数的解析式为f(x)=sin(2x+),从而求得函数的最小正周期解答:解:∵函数y=sin2x+cos2x=sin2x+=sin(2x+)+,故函数的最小正周期的最小正周期为=π,故答案为:π.点评:本题主要考查两角和的正弦公式、二倍角的余弦公式,正弦函数的周期性,属于基础题.16.(2014•湖北)在△ABC中,角A,B,C所对的边分别为a,b,c,已知A=,a=1,b=,则B=或.考点:余弦定理.专题:三角函数的求值.分析:利用正弦定理列出关系式,将a,sinA,b的值代入求出sinB的值,即可确定出B的度数.解答:解:∵在△ABC中,A=,a=1,b=,∴由正弦定理=得:sinB===,∵a<b,∴A<B,∴B=或.故答案为:或点评:此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.17.(2014•福建)在△ABC中,A=60°,AC=2,BC=,则AB等于1.考点:余弦定理;正弦定理.专题:三角函数的求值.分析:利用余弦定理列出关系式,将AC,BC,以及cosA的值代入即可求出AB的长.解答:解:∵在△ABC中,A=60°,AC=b=2,BC=a=,∴由余弦定理得:a2=b2+c2﹣2bccosA,即3=4+c2﹣2c,解得:c=1,则AB=c=1,故答案为:1点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.18.(2014•北京)在△ABC中,a=1,b=2,cosC=,则c=2;sinA=.考点:余弦定理.专题:三角函数的求值;解三角形.分析:利用余弦定理列出关系式,将a,b,以及cosC的值代入求出c的值,由cosC的值求出sinC的值,再由a,c的值,利用正弦定理即可求出sinA的值.解答:解:∵在△ABC中,a=1,b=2,cosC=,∴由余弦定理得:c2=a2+b2﹣2abcosC=1+4﹣1=4,即c=2;∵cosC=,C为三角形内角,∴sinC==,∴由正弦定理=得:sinA===.故答案为:2;点评:此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.三.解答题(共8小题)19.(2014•广西)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.考点:正弦定理的应用;三角函数中的恒等变换应用.专题:解三角形.分析:由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+B)]=﹣tan(A+B)即可得出.解答:解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=点评:本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.20.(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.考点:余弦定理;正弦定理.专题:三角函数的求值.分析:(Ⅰ)由a+b+c=8,根据a=2,b=求出c的长,利用余弦定理表示出cosC,将三边长代入求出cosC的值即可;(Ⅱ)已知等式左边利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,再利用正弦定理得到a+b=3c,与a+b+c=8联立求出a+b的值,利用三角形的面积公式列出关系式,代入S=sinC求出ab的值,联立即可求出a与b的值.解答:解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.21.(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.考点:正弦定理;两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)已知第二个等式利用正弦定理化简,代入第一个等式表示出a,利用余弦定理表示出cosA,将表示出的a,b代入计算,即可求出cosA的值;(Ⅱ)由cosA的值,利用同角三角函数间的基本关系求出sinA的值,进而利用二倍角的正弦、余弦函数公式求出sin2A与cos2A的值,原式利用两角和与差的余弦函数公式及特殊角的三角函数值化简,将各自的值代入计算即可求出值.解答:解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,代入a﹣c=b,得:a﹣c=c,即a=2c,∴cosA===;(Ⅱ)∵cosA=,A为三角形内角,∴sinA==,∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.点评:此题考查了正弦、余弦定理,同角三角函数间的基本关系,二倍角的正弦、余弦函数公式,以及两角和与差的余弦函数公式,熟练掌握定理及公式是解本题的关键.22.(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.考点:两角和与差的余弦函数;正弦函数的单调性.专题:三角函数的求值.分析:(1)令2kπ﹣≤3x+≤2kπ+,k∈z,求得x的范围,可得函数的增区间.(2)由函数的解析式可得f()=sin(α+),又f()=cos(α+)cos2α,可得sin(α+)=cos (α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα 的值.解答:解:(1)∵函数f(x)=sin(3x+),令2kπ﹣≤3x+≤2kπ+,k∈z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k∈z.(2)由函数的解析式可得f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),∴sinαcos+cosαsin=(cos2α﹣sin2α)•(sinα﹣cosα),即(sinα﹣cosα)=•(cosα﹣sinα)2•(sinα+cosα),又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,此时cosα﹣sinα=﹣.当sinα+cosα≠0时,此时cosα﹣sinα=﹣.综上所述:cosα﹣sinα=﹣或﹣.点评:本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.23.(2014•江西)已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f()=0,其中a∈R,θ∈(0,π).(1)求a,θ的值;(2)若f()=﹣,α∈(,π),求sin(α+)的值.考点:三角函数中的恒等变换应用;函数奇偶性的性质.专题:三角函数的求值.分析:(1)把x=代入函数解析式可求得a的值,进而根据函数为奇函数推断出f(0)=0,进而求得cosθ,则θ的值可得.(2)利用f()=﹣和函数的解析式可求得sin,进而求得cos,进而利用二倍角公式分别求得sinα,cosα,最后利用两角和与差的正弦公式求得答案.解答:解:(1)f()=﹣(a+1)sinθ=0,∵θ∈(0,π).∴sinθ≠0,∴a+1=0,即a=﹣1∵f(x)为奇函数,∴f(0)=(a+2)cosθ=0,∴cosθ=0,θ=.(2)由(1)知f(x)=(﹣1+2cos2x)cos(2x+)=cos2x•(﹣sin2x)=﹣,∴f()=﹣sinα=﹣,∴sinα=,∵α∈(,π),∴cosα==﹣,∴sin(α+)=sinαcos+cosαsin=.点评:本题主要考查了同角三角函数关系,三角函数恒等变换的应用,函数奇偶性问题.综合运用了所学知识解决问题的能力.24.(2014•湖南)如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.考点:余弦定理的应用;正弦定理.专题:解三角形.分析:(Ⅰ)根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.(Ⅱ)利用两角和的余弦公式,结合正弦定理即可得到结论.解答:解:(Ⅰ)设α=∠CED,在△CDE中,由余弦定理得EC2=CD2+ED2﹣2CD•DEcos∠CDE,即7=CD2+1+CD,则CD2+CD﹣6=0,解得CD=2或CD=﹣3,(舍去),在△CDE中,由正弦定理得,则sinα=,即sin∠CED=.(Ⅱ)由题设知0<α<,由(Ⅰ)知cosα=,而∠AEB=,∴cos∠AEB=cos()=cos cosα+sin sinα=,在Rt△EAB中,cos∠AEB=,故BE=.点评:本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.25.已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).考点:两角和与差的正弦函数.专题:三角函数的图像与性质.分析:(1)通过函数f(x)=Asin(x+),x∈R,且f()=,直接求A的值;(2)利用函数的解析式,通过f(θ)﹣f(﹣θ)=,θ∈(0,),求出cosθ,利用两角差的正弦函数求f(﹣θ).解答:解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=,∴f()=Asin(+)=Asin=,∴.(2)由(1)可知:函数f(x)=3sin(x+),∴f(θ)﹣f(﹣θ)=3sin(θ+)﹣3sin(﹣θ+)=3[()﹣()]=3•2sinθcos=3sinθ=,∴sinθ=,∴cosθ=,∴f(﹣θ)=3sin()=3sin()3cosθ=.点评:本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查.26.(2014•安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA与a的值.考点:余弦定理的应用.专题:计算题;解三角形.分析:利用三角形的面积公式,求出sinA=,利用平方关系,求出cosA,利用余弦定理求出a的值.解答:解:∵b=3,c=1,△ABC的面积为,∴=,∴sinA=,又∵sin2A+cos2A=1∴cosA=±,由余弦定理可得a==2或2.点评:本题考查三角形的面积公式、余弦定理,考查学生的计算能力,属于中档题.。

2014全国统一高考数学真题及逐题详细解析(文科)—湖北卷

2014全国统一高考数学真题及逐题详细解析(文科)—湖北卷

2014年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)1.已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A =ð A.{1,3,5,6}B.{2,3,7}C.{2,4,7}D. {2,5,7}2.i 为虚数单位,21i ()1i -=+A.1B.1-C.iD. i -3.命题“x ∀∈R ,2x x ≠”的否定是A.x ∀∉R ,2x x ≠B.x ∀∈R ,2x x =C.x ∃∉R ,2x x ≠D.x ∃∈R ,2x x =4.若变量x ,y 满足约束条件4,2,0,0,x y x y x y +≤⎧⎪-≤⎨⎪≥≥⎩则2x y +的最大值是A.2B.4C.7D.85.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为1p ,点数之和大于5的概率记为2 p ,点数之和为偶数的概率记为3p ,则 A.123p p p << B.213p p p << C.132p p p <<D.312p p p <<6.根据如下样本数据A.0a >,0b <B.0a >,0b >C.0a <,0b <D.0a <,0b >7.在如图所示的空间直角坐标系O-xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2). 给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为图③ 图①图④图② 第7题图A.①和②B.③和①C.④和③D.④和②8.设,a b 是关于t 的方程2cos sin 0t t θθ+=的两个不等实根,则过2(,)A a a ,2(,)B b b 两点的直线与双曲线22221cos sin x y θθ-=的公共点的个数为A.0B.1C.2D.39.已知()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -. 则函数()()+3g x f x x =- 的零点的集合为A. {1,3}B. {3,1,1,3}--C. {23}D. {21,3}-10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也. 又以高乘之,三十六成一. 该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈. 它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么,近似公式2275V L h ≈相当于将圆锥体积公式中的π近似取为A.227 B.258 C.15750 D .35511311.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测. 若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.12.若向量(1,3)OA =-,||||OA OB =,0OA OB ⋅=, 则||AB =________.13. 在△ABC 中,角A,B,C 所对的边分别为,,a b c .已知,1,6A a b π===,B = .14.阅读如图所示的程序框图,运行相应的程序,若输入n 的值为9,则输出S 的值为________.15.如图所示,函数()y f x =的图象由两条射线和三条线段组成. 若x ∀∈R ,()>(1)f x f x -,则正实数a 的取值范围为____.16.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为2760001820vF v v l=++.(Ⅰ)如果不限定车型, 6.05l =,则最大车流量为________辆/小时;(Ⅱ)如果限定车型,5l =, 则最大车流量比(Ⅰ)中的最大车流量增加______辆/小时. 17.已知圆22:1O x y +=和点(2,0)A -,若定点(,0)B b (2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则 (Ⅰ)b =________; (Ⅱ)λ=________.18.某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:ππ()10sin 1212f t t t =-,[0,24)t ∈. (Ⅰ)求实验室这一天上午8时的温度; (Ⅱ)求实验室这一天的最大温差.第14题图19.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得n S 60800n >+?若存在,求n 的最小值;若不存在,说明理由.20.如图,在正方体1111ABCD A B C D -中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,1DD , 1BB ,11A B ,11A D 的中点. 求证:(Ⅰ)直线1BC ∥平面EFPQ ; (Ⅱ)直线1AC ⊥平面PQMN . 21.π为圆周率,e 2.71828=为自然对数的底数.(Ⅰ)求函数ln ()xf x x=的单调区间; (Ⅱ)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数.22.在平面直角坐标系xOy 中,点M 到点(1,0)F 的距离比它到y 轴的距离多1.记点M 的轨迹为C .(Ⅰ)求轨迹C 的方程;(Ⅱ)设斜率为k 的直线l 过定点(2,1)P -. 求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.参考答案1.C [解析] 由A ={1,3,5,6},U ={1,2,3,4,5,6,7},得U A =ð{2,4,7}.故选C. 2.B 解析:因为122)11(2-=-=+-iii i ,故选B. 3.D 解析:全称命题的否定为特称命题,“不等于”的否定词是“等于”,故选DD [解析] 特称命题的否定方法是先改变量词,然后否定结论,故命题“∀x ∈R,x 2≠x ”的否定是“∃x 0∈R,x 20=x 0”. 故选D.4.C 解析:由约束条件作出可行域为如图所示的四边形OABC,由42x y x y +=⎧⎨-=⎩得B(3,1),由图可知,当目标函数2x y z +=,过B 时z 取最大值2317⨯+=,故选C5.C 解析:“观察掷两枚质地均匀的骰子向上的点数”这个试验包含36个基本事件,其中“向上的点数之和不超过5”包含10个基本事件,“点数之和为偶数”包含两次点数都为偶数或都为奇数共18个基本事件,所以1321101826,,1363636p p p p ===-=,故选C 6.A 解析:依题意,画散点图知,回归直线斜率小于0,纵截距大于0,即0<b ,0>a .选A A [解析] 作出散点图如下:由图像不难得出,回归直线y ^=bx +a 的斜率b <0,截距a >0,所以a >0,b <0.故选A7.D [解析] 由三视图可知,该几何体的正视图显然是一个直角三角形(三个顶点坐标分别是(0,0,2),(0,2,0),(0,2,2))且内有一虚线(一锐角顶点与一直角边中点的连线),故正视图是④;俯视图是一个斜三角形,三个顶点坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.故选D 解析:题中所给4点依次为下图中的D 1,B,侧面BC 1的中心,B 1,所以正视图和俯视图 分别为④和②,故选D8.A 解析:由题意知s i n 0,c o s θθ≠≠, 22sin cos 0sin cos 0a ab b θθθθ⎧+=⎪⎨+=⎪⎩,故直线方程为sin cos 0x y θθ+=,为双曲线22221cos sin x y θθ-=的渐近线方程,故选A9.D 解析:因为当0x ≥时,2()=3f x x x -,所以0x <时,0x ->,2()()(3)f x f x x x =--=-+2233-33g()000x x x x x x x x x ⎧⎧-=--=-=⇔⎨⎨≥<⎩⎩或,解得132x x x ===-或或故选D 10.B 解析:设圆锥底面圆的半径为r ,高为h ,依题意,22221112(2)3121275r h r h L h L h ππππ===,所以121275π=,即π的近似值为258,故选BB [解析] 设圆锥的底面圆半径为r ,底面积为S ,则L =2πr .由题意得136L 2h ≈13Sh ,代入S =πr 2化简得π≈3.类比推理,若V ≈275L 2h 时,π≈258.故选B. 11. 1800解析:设乙设备生产的产品总数为x 件,则8050=48004800x-,解得1800x =12.解析:2222220AB OB OA OA OA OB OB OA =-=++===13.233B ππ=或解析:由正弦定理得sinB sin 6b A a π===,又,(,)6b a B ππ>∴∈,故233B ππ=或 14.1067解析:11212912+122+1+2+292+1+2+2...2+9k S k S k S ======++时;时;...时;10k =时跳出循环,输出91292(21)9(19)2+1+2+2...2+91067212S -+=++=+=-15. 1(0,)6解析: 2x a ≥时()3f x x a =-,由3x a a -=得4x a =,如图,要使()>(1)f x f x -,只需4(2)1a a --<,解得16a <又0a >,故a 得范围是1(0,)616. (Ⅰ)1900(Ⅱ)100解析:(Ⅰ) 6.05l =时,12760007600019001211820 6.051818v F v v v v v v==≤=++⨯+++当121v v=,即11v =时取等号,最大车流量为1900辆/小时; (Ⅱ)5l =时2276000760002000100182051818v F v v v v v v==≤=++⨯+++,当100v v=,即10v =时取等号, 因为2120001900100F F -=-=故最大车流量比(Ⅰ)中的最大车流量增加100辆/小时17.(1) 12- (2) 12解析:设(,)M x y ,由条件得22222221()[(2)y ]x y x b y x λ⎧+=⎪⎨-+=++⎪⎩(0,2)b λ≥≠-恒成立 消去y 并整理得:222(42)(b 1)5b x λλ+=+-恒成立,当且仅当222420(0,2)(b 1)50b b λλλ⎧+=⎪≥≠-⎨+-=⎪⎩, 解得11,22b λ=-=另解:“对圆O 上任意一点M ,都有||||MB MA λ=”转化为“满足条件||||MB MA λ=的动点(,)M x y 的轨迹是圆22:1O x y += 由条件得22222()[(2)y ]x b y x λ-+=++整理得:2222222b 2b 42011x y x λλλλ+-+-+=--, 由圆心为(0,0)半径r=1得22222222b 201(0,2)b 2b 4()111b λλλλλλλ⎧+=⎪⎪-≥≠-⎨+-⎪-=⎪--⎩,解得11,22b λ=-= 18.解析:(Ⅰ)ππ(8)108sin 81212f =⨯-⨯()()2π2π10sin33=- 110()102=-=.故实验室上午8时的温度为10 ℃. (Ⅱ)因为π1πππ()10sin )=102sin()12212123f t t t t =-+-+, 又024t ≤<,所以πππ7π31233t ≤+<,ππ1sin()1123t -≤+≤.当2t =时,ππsin()1123t +=;当14t =时,ππsin()1123t +=-.于是()f t 在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.19.解析:(Ⅰ)设数列{}n a 的公差为d ,依题意,2,2d +,24d +成等比数列,故有2(2)2(24)d d +=+, 化简得240d d -=,解得0d =或d =4. 当0d =时,2n a =;当d =4时,2(1)442n a n n =+-⋅=-,从而得数列{}n a 的通项公式为2n a =或42n a n =-.(Ⅱ)当2n a =时,2n S n =. 此时260800n n <+,故不存在正整数n ,使得60800n S n >+成立. 当42n a n =-时,2[2(42)]22n n n S n +-==.由2260800n n >+,得2304000n n -->, 解得40n >或10n <-(舍),此时存在正整数n ,使得60800n S n >+成立,n 的最小值为41. 综上,当2n a =时,不存在满足题意的n ;当42n a n =-时,存在满足题意的n ,其最小值为4120.解析:证明:(Ⅰ)连接AD 1,由1111ABCD A B C D -是正方体,知AD 1∥BC 1,因为F ,P 分别是AD ,1DD 的中点,所以FP ∥AD 1. 从而BC 1∥FP .而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1BC ∥平面EFPQ . (Ⅱ)如图,连接AC ,BD ,则AC BD ⊥.由1CC ⊥平面ABCD ,BD ⊂平面ABCD ,可得1CC BD ⊥. 又1ACCC C =,所以BD ⊥平面1ACC .而1AC ⊂平面1ACC ,所以1BD AC ⊥.第20题解答图QBEM N ACD 1C F 1D1A1BP因为M ,N 分别是11A B ,11A D 的中点,所以MN ∥BD ,从而1MN AC ⊥. 同理可证1PN AC ⊥. 又PNMN N =,所以直线1AC ⊥平面PQMN .21.解析:(Ⅰ)函数()f x 的定义域为()∞0,+. 21ln ()xf x x -'=. 令1ln 0x -=,得 x e = 若0e x <<,则()0f x '>;若e x >,则()0f x '<故函数()f x 的单调递增区间为(0,e),单调递减区间为(e,)+∞. (Ⅱ)因为e 3π<<,所以eln 3eln π<,πln e πln 3<,即e e ln 3ln π<,ππln e ln 3<. 于是根据函数ln y x =,e x y =,πx y =在定义域上单调递增,可得 e e 33ππ<<,3ππe e 3<<.故这6个数的最大数在3π与π3之中,最小数在e 3与3e 之中. 由e 3π<<及(Ⅰ)的结论,得(π)(3)(e)f f f <<,即ln πln3lneπ3e<<. 由ln πln3π3<,得3πln πln 3<,所以π33π>; 由ln 3ln e3e<,得e 3ln 3ln e <,所以e 33e <. 综上,6个数中的最大数是π3,最小数是e 3.22.解析:(Ⅰ)设点(,)M x y ,依题意得||||1MF x =+,||1x +, 化简得22(||)y x x =+.故点M 的轨迹C 的方程为24,0,0,0.x x y x ≥⎧=⎨<⎩(Ⅱ)在点M 的轨迹C 中,记1:C 24y x =,2:C 0(0)y x =<. 依题意,可设直线l 的方程为1(2).y k x -=+由方程组21(2),4,y k x y x -=+⎧⎨=⎩ 可得244(21)0.ky y k -++= ①(1)当0k =时,此时 1.y = 把1y =代入轨迹C 的方程,得14x =. 故此时直线:1l y =与轨迹C 恰好有一个公共点1(,1)4.(2)当0k ≠时,方程①的判别式为216(21)k k ∆=-+-. ② 设直线l 与x 轴的交点为0(,0)x ,则 由1(2)y k x -=+,令0y =,得021k x k+=-. ③ (ⅰ)若00,0,x ∆<⎧⎨<⎩ 由②③解得1k <-,或12k >.即当1(,1)(,)2k ∈-∞-+∞时,直线l 与1C 没有公共点,与2C 有一个公共点, 故此时直线l 与轨迹C 恰好有一个公共点.(ⅱ)若00,0,x ∆=⎧⎨<⎩ 或00,0,x ∆>⎧⎨≥⎩ 由②③解得1{1,}2k ∈-,或102k -≤<.即当1{1,}2k ∈-时,直线l 与1C 只有一个公共点,与2C 有一个公共点.当1[,0)2k ∈-时,直线l 与1C 有两个公共点,与2C 没有公共点.故当11[,0){1,}22k ∈--时,直线l 与轨迹C 恰好有两个公共点.(ⅲ)若00,0,x ∆>⎧⎨<⎩ 由②③解得112k -<<-,或102k <<.即当11(1,)(0,)22k ∈--时,直线l 与1C 有两个公共点,与2C 有一个公共点, 故此时直线l 与轨迹C 恰好有三个公共点. 综合(1)(2)可知,当1(,1)(,){0}2k ∈-∞-+∞时,直线l 与轨迹C 恰好有一个公共点; 当11[,0){1,}22k ∈--时,直线l 与轨迹C 恰好有两个公共点;当11(1,)(0,)22k ∈--时,直线l 与轨迹C 恰好有三个公共点.。

2014年高考数学文科(高考真题+模拟新题)分类汇编:统计

2014年高考数学文科(高考真题+模拟新题)分类汇编:统计

数学I单元统计I1 随机抽样3.[2014·重庆卷] 某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150C.200 D.2503.A[解析] 由题意,得703500=n3500+1500,解得n=100.11.[2014·湖北卷] 甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.11.1800[解析] 设乙设备生产的产品总数为n,则80-50n=804800,解得n=1800.3.[2014·湖南卷] 对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p33.D[解析] 不管是简单随机抽样、系统抽样还是分层抽样,它们都是等概率抽样,每个个体被抽中的概率均为n N.2.、[2014·四川卷] 在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本2.A[解析] 根据抽样统计的概念可知,统计分析的对象全体叫做“总体”.故选A.9.[2014·天津卷] 某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.9.60[解析] 由分层抽样方法可得,从一年级本科生中抽取的学生人数为300×44+5+5+6=60.15.、[2014·天津卷] 某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:现从这6).(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.15.解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M发生的概率P(M)=615=25.I2 用样本估计总体17.、[2014·安徽卷] 某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图1-4所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.图1-4(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d)17.解:(1)300×450015 000=90,所以应收集90位女生的样本数据.(2)由频率分布直方图得每周平均体育运动超过4小时的频率为1-2×(0.100+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300位学生中有300×0.75=225(位)的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:结合列联表可算得K 2=300×(165×30-45×60)275×225×210×90=10021≈4.762>3.841.所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.18.[2014·北京卷] 从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图(如图1-6).图1-6(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组.(只需写出结论)18.解:(1)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有6+2+2=10(名),所以样本中的学生课外阅读时间少于12小时的频率是1-10100=0.9.故从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9.(2)课外阅读时间落在组[4,6)内的有17人,频率为0.17,所以a =频率组距=0.172=0.085.课外阅读时间落在组[8,10)内的有25人,频率为0.25,所以b =频率组距=0.252=0.125.(3)样本中的100名学生课外阅读时间的平均数在第4组.20.,[2014·福建卷] 根据世行2013年新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为1035~4085美元为中等偏下收入国家;人均GDP 为4085~12 616美元为中等偏上收入国家;人均GDP 不低于12 616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:(1)(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.20.解:(1)设该城市人口总数为a ,则该城市人均GDP 为8000×0.25a +4000×0.30a +6000×0.15a +3000×0.10a +10 000×0.20aa=6400(美元).因为6400∈[4085,12 616),所以该城市人均GDP 达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有的基本事件是:{A ,B},{A ,C},{A ,D},{A ,E},{B ,C},{B ,D},{B ,E},{C ,D},{C ,E},{D ,E},共10个.设事件M 为“抽到的2个行政区人均GDP 都达到中等偏上收入国家标准”, 则事件M 包含的基本事件是:{A ,C},{A ,E},{C ,E},共3个.所以所求概率为P (M )=310.6.[2014·广东卷] 为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .25D .206.C [解析] 由题意得,分段间隔是100040=25.17.、[2014·湖南卷] 某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ).其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平.(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率. 17.解:(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为x 甲=1015=23,方差为s 2甲=115⎣⎡⎦⎤⎝⎛⎭⎫1-232×10+⎝⎛⎭⎫0-232×5=29. 乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为x 乙=915=35,方差为s2乙=115⎣⎡⎦⎤⎝⎛⎭⎫1-352×9+⎝⎛⎭⎫0-352×6=625.因为x甲>x乙,s2甲<s2乙,所以甲组的研发水平优于乙组.(2)记E={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),共7个,故事件E发生的频率为715.将频率视为概率,即得所求概率为P(E)=715.6.[2014·江苏卷] 为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图1-2所示,则在抽测的60株树木中,有____株树木的底部周长小于100 cm.图1-26.24[解析] 由频率分布直方图可得,数据在[80,90]的频率为0.015×10=0.15,数据在[90,100]的频率为0.025×10=0.25.又样本容量为60株,故所求为(0.15+0.25)×60=24(株).19.[2014·新课标全国卷Ⅱ] 某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.19.解:(1)由所给茎叶图知,将50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本的中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.(注:考生利用其他统计量进行分析,结论合理的同样给分.)18.[2014·全国新课标卷Ⅰ] 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在答题卡上作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均值及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?18.解:(1)频率分布直方图如下:(2)质量指标值的样本平均数为x =80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100. 质量指标值的样本方差为s 2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.8=0.68. 由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.8.[2014·山东卷] 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17].将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,图1-2是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )图1-2A .6B .8C .12D .188.C [解析] 因为第一组与第二组共有20人,并且根据图像知第一组与第二组的频率之比是0.24∶0.16=3∶2,所以第一组的人数为20×35=12.又因为第一组与第三组的频率之比是0.24∶0.36=2∶3 ,所以第三组有 12÷23=18人.因为第三组中没有疗效的人数为6,所以第三组中有疗效的人数是18-6=12.16.,[2014·山东卷] 海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A ,B ,C 各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.16.解:(1)因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是:50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为:A ;B 1,B 2,B 3;C 1,C 2.则抽取的这2件商品构成的所有基本事件为:{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3}{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的. 记事件D 为“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个.所以P (D )=415,即这2件商品来自相同地区的概率为415.9.[2014·陕西卷] 某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10,其均值和方差分别为x -和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A.x -,s 2+1002B.x -+100,s 2+1002 C.x -,s 2 D.x -+100,s 29.D [解析] 由题目中所给的数据可知x x 1+x 2+x 3+…+x 1010,不妨设这10位员工下月工资的均值为y -,则y -=(x 1+x 2+x 3+…+x 10)+100010=x -+100,易知方差没发生变化.2.、[2014·四川卷] 在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是( )A .总体B .个体C .样本的容量D .从总体中抽取的一个样本2.A [解析] 根据抽样统计的概念可知,统计分析的对象全体叫做“总体”.故选A. 17.、[2014·重庆卷] 20名学生某次数学考试成绩(单位:分)的频率分布直方图如图1-3所示.(1)求频率分布直方图中a 的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.17.解:(1)据直方图知组距为10,由(2a+3a+7a+6a+2a)×10=1,解得a=1200=0.005.(2)成绩落在[50,60)中的学生人数为2×0.005×10×20=2.成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(3)记成绩落在[50,60)中的2人为A1,A2,成绩落在[60,70)中的3人为B1,B2,B3,则从成绩在[50,70)的学生中任选2人的基本事件共有10个,即(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3).其中2人的成绩都在[60,70)中的基本事件有3个,即(B1,B2),(B1,B3),(B2,B3).故所求概率为P=310.I3 正态分布I4 变量的相关性与统计案例17.、[2014·安徽卷] 某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图1-4所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.图1-4(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d)17.解:(1)300×450015 000=90,所以应收集90位女生的样本数据.(2)由频率分布直方图得每周平均体育运动超过4小时的频率为1-2×(0.100+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300位学生中有300×0.75=225(位)的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:结合列联表可算得K 2=300×(165×30-45×60)75×225×210×90=10021≈4.762>3.841.所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.6.[2014·得到的回归方程为y =bx +a ,则( ) A .a >0,b <0 B .a >0,b >0 C .a <0,b <0 D .a <0,b >0 6.A [解析]由图像不难得出,回归直线y =bx +a 的斜率b <0,截距a >0,所以a >0,b <0.故选A.7.[2014·江西卷] 某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1 表2表3A .成绩B .视力C .智商D .阅读量7.D [解析] 通过计算可得,表1中的χ2≈0.009,表2中的χ2≈1.769,表3中的χ2=1.300,表4中的χ2≈23.481,故选D.18.、[2014·辽宁卷] 某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行(1)习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:χ2=n (n 11n 22-n 12n 21)2n 1+n 2++,18.解:(1)将2×2列联表中的数据代入公式计算,得χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2=100×(60×10-20×10)270×30×80×20=10021≈4.762.由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,b 3),(a 1,b 1,b 2),(a 1,b 1,b 3),(a 1,b 2,b 3),(a 2,b 1,b 2),(a 2,b 1,b 3),(a 2,b 2,b 3),(b 1,b 2,b 3)},其中a i 表示喜欢甜品的学生,i =1,2,b j 表示不喜欢甜品的学生,j =1,2,3. Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A 表示“3人中至多有1人喜欢甜品”这一事件,则A ={(a 1,b 1,b 2),(a 1,b 1,b 3),(a 1,b 2,b 3),(a 2,b 1,b 2),(a 2,b 1,b 3),(a 2,b 2,b 3),(b 1,b 2,b 3)}.事件A 由7个基本事件组成,因而P (A )=710.I5 单元综合17.[2014·广东卷] 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差. 1.[2014·株洲模拟]由K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),得K 2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 1.A [解析] 因为7.8>6.635,所以选项A 正确.2.[2014·济南期末] 为了调查城市PM2.5的情况,按地域把48个城市分成大型、中型、小型三组,相应的城市数分别为8,16,24.若用分层抽样的方法抽取12个城市,则应抽取的中型城市数为( )A .3B .4C .5D .6图X33­12.B [解析] 根据分层抽样的特点可知,抽样比例为1248=14,则应抽取的中型城市数为16×14=4.3.[2014·长沙四校联考] 为了了解某同学的数学学习情况,对他的6次数学测试成绩(满分100分)进行统计,作出的茎叶图如图X33­1所示,则下列关于该同学数学成绩的说法正确的是( )A .中位数为83B .众数为85C .平均数为85D .方差为193.C [解析] 易知该同学的6次数学测试成绩的中位数为84,众数为83,平均数为85.8.[2014·湖南长郡中学月考] 为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算K 2=8.01,则认为“喜欢乡村音乐与性别有关系”的把握性约为( )A.0.1% B .1% C .99% D .99.9%8.C [解析] 因为K 2=8.01>6.635,所以有99%以上的把握认为“喜欢乡村音乐与性别有关系”.9.[2014·衡阳模拟] 已知某总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表中第1行的第5列和第6列的数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08 B .9.D [解析] 从随机数表第1行的第5列和第6列的数字开始由左到右依次选取两个数字,依次为65,72,08,02,63,14,07,02,43,69,97,28,01,98,…,其中08,02,14,07,01符合条件,故选D.10.[2014·湖南师大附中月考] 某厂对一批元件的长度(单位:mm)进行抽样检测,得到如图X33­2所示的频率分布直方图.若长度在区间[90,96)内的元件为合格品,则估计这批产品的合格率是( )A .70%B .75%C .80%D .85%图X33­210.C [解析] 易知在区间[90,96)内的直方图的面积S =1-(0.027 5+0.027 5+0.0450)×2=0.8,故合格率是80%.。

2014年高考数学文科(高考真题+模拟新题)分类汇编:三角函数(解析版)

2014年高考数学文科(高考真题+模拟新题)分类汇编:三角函数(解析版)

数 学C 单元 三角函数C1 角的概念及任意角的三角函数 2.[2014·全国卷] 已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35 D .-452.D [解析] 根据题意,cos α=-4(-4)2+32=-45.C2 同角三角函数的基本关系式与诱导公式 18.,,[2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.18.解:方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4=-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1 =2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .2.、[2014·全国新课标卷Ⅰ] 若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0 2.C [解析]因为sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C. 17.,,[2014·山东卷] △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积. 17.解:(1)在△ABC 中, 由题意知,sin A =1-cos 2A =33. 又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63.由正弦定理可得,b =a sin Bsin A=3³6333=3 2. (2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B ),所以sin C =sin[π-(A +B )] =sin(A +B )=sin A cos B +cos A sin B =33³⎝⎛⎭⎫-33+63³63=13.因此△ABC 的面积S =12ab sin C =12³3³32³13=322.C3 三角函数的图象与性质 16.、[2014·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值. 16.解: 由三角形面积公式,得12³3³1²sin A =2,故sin A =2 23. 因为sin 2A +cos 2A =1, 所以cos A =±1-sin 2A =±1-89=±13. ①当cos A =13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2³1³3³13=8,所以a =2 2.②当cos A =-13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2³1³3³⎝⎛⎭⎫-13=12,所以a =2 3.7.[2014·福建卷] 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f (x )的图像,则下列说法正确的是( )A .y =f (x )是奇函数B .y =f (x )的周期为πC .y =f (x )的图像关于直线x =π2对称D .y =f (x )的图像关于点⎝⎛⎭⎫-π2,0对称7.D [解析] 将函数y =sin x 的图像向左平移π2个单位后,得到函数y =f (x )=sin ⎝⎛⎭⎫x +π2的图像,即f (x )=cos x .由余弦函数的图像与性质知,f (x )是偶函数,其最小正周期为2π,且图像关于直线x =k π(k ∈Z )对称,关于点⎝⎛⎭⎫π2+k π,0(k ∈Z )对称,故选D.图1-25.、[2014·江苏卷] 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.5.π6 [解析] 将x =π3分别代入两个函数,得到sin ⎝⎛⎭⎫2³π3+φ=12,解得23π+φ=π6+2k π(k ∈Z )或23π+φ=5π6+2k π(k ∈Z ),化简解得φ=-π2+2k π(k ∈Z )或φ=π6+2k π(k ∈Z ).又φ∈[0,π),故φ=π6.7.[2014·全国新课标卷Ⅰ] 在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③7.A [解析] 函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎫2x +π6的最小正周期为π,③正确;函数y =tan ⎝⎛⎭⎫2x -π4的最小正周期为π2,④不正确.C4 函数sin()y A x ωϕ=+的图象与性质8.[2014·天津卷] 已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3C .πD .2π 8.C [解析] ∵f (x )=2sin ⎝⎛⎭⎫ωx +π6=1,∴sin ⎝⎛⎭⎫ωx +π6=12,∴ωx 1+π6=π6+2k 1π(k 1∈Z )或 ωx 2+π6=5π6+2k 2π(k 2∈Z ),则ω(x 2-x 1)=2π3+2(k 2-k 1)π.又∵相邻交点距离的最小值为π3,∴ω=2,∴T =π.7.[2014·安徽卷] 若将函数f (x )=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π47.C [解析] 方法一:将f (x )=2sin ⎝⎛⎭⎫2x +π4的图像向右平移φ个单位,得到y =2sin ⎝⎛⎭⎫2x +π4-2φ的图像,由所得图像关于y 轴对称,可知sin ⎝⎛⎭⎫π4-2φ=±1,即sin ⎝⎛⎭⎫2φ-π4=±1,故2φ-π4=k π+π2,k ∈Z ,即φ=k π2+3π8,k ∈Z ,又φ>0,所以φmin =3π8.13.[2014·重庆卷] 将函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________.13.22[解析] 函数f (x )=sin(ωx +φ)图像上每一点的横坐标缩短为原来的一半,得到y =sin(2ωx +φ)的图像,再向右平移π6个单位长度,得到y =sin2ωx -π6+φ=sin ⎝⎛⎭⎫2ωx -ωπ3+φ的图像.由题意知sin ⎝⎛⎭⎫2ωx -ωπ3+φ=sin x ,所以2ω=1,-ωπ3+φ=2k π(k ∈Z ),又-π2≤φ≤π2,所以ω=12,φ=π6,所以f (x )=sin ⎝⎛⎭⎫12x +π6,所以f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫12³π6+π6=sin π4=22.16.[2014·北京卷] 函数f (x )=3sin ⎝⎛⎭⎫2x +π6的部分图像如图1-4所示.图1-4(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值.16.解:(1)f (x )的最小正周期为π. x 0=7π6,y 0=3.(2)因为x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0.于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.18.,,[2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.18.解:方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4 =-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1 =2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .9.、[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定9.D [解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AD 是直线l 3,则DD 1是直线l 4,此时l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,A 1D 1是直线l 3,则C 1D 1是直线l 4,此时l 1⊥l 4.故l 1与l 4的位置关系不确定.18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.18.解:(1)f (8)=10-3cos ⎝⎛⎭⎫π12³8-sin ⎝⎛⎭⎫π12³8=10-3cos 2π3-sin 2π3=10-3³⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.11.[2014·辽宁卷] 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减D .在区间⎣⎡⎦⎤-π6,π3上单调递增11.B [解析] 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,得到y =3sin ⎝⎛⎭⎫2x -23π的图像 ,函数单调递增,则-π2+2k π≤2x -23π≤π2+2k π,k ∈Z ,即π12+k π≤x ≤7π12+k π,k ∈Z ,即函数y =3sin ⎝⎛⎭⎫2x -23π的单调递增区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z ,当k =0时,可知函数在区间⎣⎡⎦⎤π12,7π12上单调递增.14.[2014·新课标全国卷Ⅱ] 函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________. 14.1 [解析] f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ),其最大值为1.7.[2014·全国新课标卷Ⅰ] 在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③7.A [解析] 函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎫2x +π6的最小正周期为π,③正确;函数y =tan ⎝⎛⎭⎫2x -π4的最小正周期为π2,④不正确.12.,[2014·山东卷] 函数y =32sin 2x +cos 2x 的最小正周期为________. 12.π [解析] 因为y =32sin 2x +1+cos 2x 2= sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .2.[2014·陕西卷] 函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是( )A.π2 B .π C .2π D .4π 2.B [解析] T =2π2=π.4.[2014·浙江卷] 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( )A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位4.A [解析] y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4=2cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12,故将函数y =2cos 3x 的图像向右平移π12个单位可以得到函数y =sin 3x +cos 3x 的图像,故选A.3.[2014·四川卷] 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( )A .向左平行移动1个单位长度B .向右平行移动1个单位长度C .向左平行移动π个单位长度D .向右平行移动π个单位长度3.A [解析] 由函数y =sin x 的图像变换得到函数y =sin(x +1)的图像,应该将函数y =sin x 图像上所有的点向左平行移动1个单位长度,故选A.17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.C5 两角和与差的正弦、余弦、正切 9.、[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定9.D [解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AD 是直线l 3,则DD 1是直线l 4,此时l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,A 1D 1是直线l 3,则C 1D 1是直线l 4,此时l 1⊥l 4.故l 1与l 4的位置关系不确定.16.、[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322. (1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ.18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.18.解:(1)f (8)=10-3cos ⎝⎛⎭⎫π12³8-sin ⎝⎛⎭⎫π12³8=10-3cos 2π3-sin 2π3=10-3³⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. 19.、、[2014·湖南卷] 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC=7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-419.解:设∠CED =α.(1)在△CDE 中,由余弦定理,得 EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC ,于是由题设知,7=CD 2+1+CD ,即CD 2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CDsin α.于是,sin α=CD ²sin 2π3EC =2³327=217,即sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin 2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α=-12³277+32³217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE,故BE =2cos ∠AEB =2714=47.16.、[2014·江西卷] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值. 16.解:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数.又θ∈(0,π),得θ=π2,所以f (x )=-sin 2x ²(a +2cos 2x ).由f ⎝⎛⎭⎫π4=0得-(a +1)=0,即a =-1.(2)由(1)得,f (x )=-12sin 4x .因为f ⎝⎛⎭⎫α4=-12sin α=-25,所以sin α=45,又α∈⎝⎛⎭⎫π2,π,从而cos α=-35,所以有sin ⎝⎛⎭⎫α+π3=sin αcos π3+cos αsin π3=4-3 310.18.、[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .18.解:由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C . 因为tan A =13,所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C )]=-tan(A+C)=tan A+tan C tan A tan C-1=-1,所以B=135°.14.[2014·新课标全国卷Ⅱ] 函数f(x)=sin(x+φ)-2sin φcos x的最大值为________.14.1[解析] f(x)=sin(x+φ)-2sin φcos x=sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x-φ),其最大值为1.17.,,[2014·山东卷] △ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cos A=63,B=A+π2.(1)求b的值;(2)求△ABC的面积.17.解:(1)在△ABC中,由题意知,sin A=1-cos2A=33.又因为B=A+π2,所以sin B=sin⎝⎛⎭⎫A+π2=cos A=63.由正弦定理可得,b=a sin Bsin A=3³6333=3 2.(2)由B=A+π2得cos B=cos⎝⎛⎭⎫A+π2=-sin A=-33.由A+B+C=π,得C=π-(A+B),所以sin C=sin[π-(A+B)]=sin(A+B)=sin A cos B+cos A sin B=33³⎝⎛⎭⎫-33+63³63=13.因此△ABC的面积S=12ab sin C=12³3³32³13=322.8.、[2014·四川卷] 如图1-3所示,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高度是60 m,则河流的宽度BC等于()图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m8.C [解析] 由题意可知,AC =60sin 30°=120.∠BAC =75°-30°=45°,∠ABC =180°-45°-30°=105°,所以sin ∠ABC =sin105°=sin(60°+45°)=sin 60°cos 45°+cos 60°sin 45°=6+24.在△ABC 中,由正弦定理得AC sin ∠ABC =BC∠BAC,于是BC =120³222+64=240 22+6=120(3-1)(m).故选C.17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.18.、[2014·重庆卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8.(1)若a =2,b =52,求cos C 的值;(2)若sin A cos 2B 2+sin B cos 2A2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值.18.解:(1)由题意可知c =8-(a +b )=72.由余弦定理得cos C =a 2+b 2-c 22ab=22+⎝⎛⎭⎫522-⎝⎛⎭⎫7222³2³52=-15. (2)由sin A cos 2B 2+sin B cos 2A2=2sin C 可得sin A ²1+cos B 2+sin B ²1+cos A2=2sin C ,化简得sin A +sin A cos B +sin B +sin B cos A =4sin C .因为sin A cos B +cos A sin B =sin(A +B )=sin C ,所以sin A +sin B =3sin C . 由正弦定理可知a +b =3c .又a +b +c =8,所以a +b =6.由于S =12ab sin C =92sin C ,所以ab =9,从而a 2-6a +9=0,解得a =3,所以b =3.C6 二倍角公式 18.,,[2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.18.解:方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4 =-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sinπ4+1=2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .14.、[2014·全国卷] 函数y =cos 2x +2sin x 的最大值为________.14.32 [解析] 因为y =cos 2x +2sin x =1-2sin x 2+2sin x =-2⎝⎛⎭⎫sin x -122+32,所以当sinx =12时函数y =cos 2x +2sin x 取得最大值,最大值为32. 16.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.16.43 [解析] 如图所示,根据题意知,OA ⊥P A ,OA =2,OP =10,所以P A =OP 2-OA 2=2 2,所以tan ∠OP A =OA P A =22 2=12,故tan ∠APB =2tan ∠OP A 1-tan 2∠OP A =43,即l 1与l 2的夹角的正切值等于43.2.、[2014·全国新课标卷Ⅰ] 若tan α>0,则( ) A .sin α>0 B .cos α>0 C .sin 2α>0 D .cos 2α>0 2.C [解析]因为sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C. 17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.C7 三角函数的求值、化简与证明16.、[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322. (1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ.18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.18.解:(1)f (8)=10-3cos ⎝⎛⎭⎫π12³8-sin ⎝⎛⎭⎫π12³8=10-3cos 2π3-sin 2π3=10-3³⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. 5.、[2014·江苏卷] 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.5.π6 [解析] 将x =π3分别代入两个函数,得到sin ⎝⎛⎭⎫2³π3+φ=12,解得23π+φ=π6+2k π(k ∈Z )或23π+φ=5π6+2k π(k ∈Z ),化简解得φ=-π2+2k π(k ∈Z )或φ=π6+2k π(k ∈Z ).又φ∈[0,π),故φ=π6.15.[2014·江苏卷] 已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin ⎝⎛⎭⎫π4+α的值; (2)求cos ⎝⎛⎭⎫5π6-2α的值. 15.解: (1)因为α∈⎝⎛⎭⎫π2,π,sin α=55,所以cos α=-1-sin 2α=-2 55.故sin ⎝⎛⎭⎫π4+α=sin π4cos α+cos π4sin α=22³⎝⎛⎭⎫-2 55+22³55=-1010. (2)由(1)知sin 2α=2sin αcos α=2³55³ ⎝⎛⎭⎫-2 55=-45,cos 2α=1-2sin 2α=1-2³⎝⎛⎭⎫552=35,所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α= ⎝⎛⎭⎫-32³35+12³⎝⎛⎭⎫-45=-4+3 310.16.、[2014·江西卷] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值. 16.解:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数.又θ∈(0,π),得θ=π2,所以f (x )=-sin 2x ²(a +2cos 2x ).由f ⎝⎛⎭⎫π4=0得-(a +1)=0,即a =-1.(2)由(1)得,f (x )=-12sin 4x .因为f ⎝⎛⎭⎫α4=-12sin α=-25,所以sin α=45,又α∈⎝⎛⎭⎫π2,π,从而cos α=-35,所以有sin ⎝⎛⎭⎫α+π3=sin αcos π3+cos αsin π3=4-3 310.17.、[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →²BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.17.解:(1)由BA →²BC →=2,得c ·a cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B , 又b =3,所以a 2+c 2=9+2³2=13.联立⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2. 因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223.由正弦定理,得sin C =c b sin B =23³223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C = 13³79+2 23³4 29=2327.21.、[2014·辽宁卷] 已知函数f (x )=π(x -cos x )-2sin x -2,g (x )=(x -π)1-sin x1+sin x+2xπ-1.证明: (1)存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0;(2)存在唯一x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0,且对(1)中的x 0,有x 0+x 1>π.21.证明:(1)当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=π+πsin x -2cos x >0,所以f (x )在区间⎝⎛⎭⎫0,π2上为增函数.又f (0)=-π-2<0,f ⎝⎛⎭⎫π2=π22-4>0,所以存在唯一x 0∈⎝⎛⎫0,π2,使f (x 0)=0.(2)当x ∈⎣⎡⎦⎤π2,π时,化简得g (x )=(π-x )·cos x 1+sin x +2xπ-1.令t =π-x 则t ∈⎣⎡⎦⎤0,π2.记u (t )=g (π-t )=-t cos t 1+sin t -2πt +1,则u ′(t )=f (t )π(1+sin t ).由(1)得,当t ∈(0,x 0)时,u ′(t )<0;当t ∈⎝⎛⎭⎫x 0,π2时,u ′(t )>0.所以在⎝⎛⎭⎫x 0,π2上u (t )为增函数,由u ⎝⎛⎭⎫π2=0知,当t ∈⎣⎡⎭⎫x 0,π2时,u (t )<0,所以u (t )在⎣⎡⎭⎫x 0,π2上无零点.在(0,x 0)上u (t )为减函数,由u (0)=1及u (x 0)<0知存在唯一t 0∈(0,x 0),使u (t 0)=0.于是存在唯一t 0∈⎝⎛⎭⎫0,π2,使u (t 0)=0.设x 1=π-t 0∈⎝⎛⎭⎫π2,π,则g (x 1)=g (π-t 0)=u (t 0)=0.因此存在唯一的x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0.由于x 1=π-t 0,t 0<x 0,所以x 0+x 1>π.12.,[2014·山东卷] 函数y =32sin 2x +cos 2x 的最小正周期为________. 12.π [解析] 因为y =32sin 2x +1+cos 2x 2= sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.16.[2014·天津卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 a -c =66b ,sin B =6sin C .(1)求cos A 的值;(2)求cos ⎝⎛⎭⎫2A -π6的值.16.解:(1)在△ABC 中,由b sin B =csin C,及sin B =6sin C ,可得b =6c .又由a -c =66b ,有a =2c . 所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64. (2)在△ABC 中,由cos A =64,可得sin A =104.于是cos 2A =2cos 2A -1=-14,sin 2A =2sin A ²cos A =154. 所以cos ⎝⎛⎭⎫2A -π6=cos 2A ²cos π6+sin 2A ²sin π6=15-38.C8 解三角形18.[2014·浙江卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin 2A -B2+4sin A sin B =2+ 2.(1)求角C 的大小;(2)已知b =4,△ABC 的面积为6,求边长c 的值. 18.解:(1)由已知得2[1-cos(A -B )]+4sin A sin B =2+2, 化简得-2cos A cos B +2sin A sin B =2, 故cos(A +B )=-22, 所以A +B =3π4,从而C =π4.(2)因为S △ABC =12ab sin C ,由S △ABC =6,b =4,C =π4,得a =3 2.由余弦定理c 2=a 2+b 2-2ab cos C ,得c =10. 16.、[2014·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值. 16.解: 由三角形面积公式,得12³3³1²sin A =2,故sin A =2 23. 因为sin 2A +cos 2A =1, 所以cos A =±1-sin 2A =±1-89=±13. ①当cos A =13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2³1³3³13=8,所以a =2 2.②当cos A =-13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2³1³3³⎝⎛⎭⎫-13=12,所以a =2 3.12.[2014·北京卷] 在△ABC 中,a =1,b =2,cos C =14,则c =________;sin A =________.12.2158 [解析] 由余弦定理得c 2=a 2+b 2-2ab cos C =1+4-2³2³1³14=4,即c =2;cos A =b 2+c 2-a 22bc =4+4-12³2³2=78,∴sin A =1-⎝⎛⎭⎫782=158.14.[2014·福建卷] 在△ABC 中,A =60°,AC =2,BC =3,则AB 等于________.14.1 [解析] 由BC sin A =ACsin B ,得sin B =2sin 60°3=1,即B =90°,所以△ABC 为以AB ,BC 为直角边的直角三角形, 则AB =AC 2-BC 2=22-(3)2=1,即AB 等于1.7.、[2014·广东卷] 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件 7.A [解析] 设R 是三角形外切圆的半径,R >0,由正弦定理,得a =2R sin A ,b =2R sin B .故选A.∵sin ≤A sin B ,∴2R sin A ≤2R sin B ,∴a ≤b .同理也可以由a ≤b 推出sin A ≤sin B .13.[2014·湖北卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a=1,b =3,则B =________.13.π3或2π3 [解析] 由正弦定理得a sin A =b sin B ,即1sin π6=3sin B,解得sin B =32.又因为b >a ,所以B =π3或2π3.19.、、[2014·湖南卷] 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC=7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-419.解:设∠CED =α.(1)在△CDE 中,由余弦定理,得EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC ,于是由题设知,7=CD 2+1+CD ,即CD 2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CDsin α.于是,sin α=CD ²sin 2π3EC =2³327=217,即sin ∠CED =217. (2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin 2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α=-12³277+32³217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE,故BE =2cos ∠AEB =2714=47.14.、[2014·江苏卷] 若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是______.14.6-24[解析] 设△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,则由正弦定理得a +2b =2c .故cos C =a 2+b 2-c22ab=a 2+b 2-⎝ ⎛⎭⎪⎫a +2b 222ab=34a 2+12b 2-22ab 2ab =34a 2+12b 22ab -24≥234a 2²12b 22ab -24=6-24,当且仅当3a 2=2b 2,即a b =23时等号成立.18.、、、[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-618.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 5.[2014·江西卷] 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )A .-19 B.13 C .1 D.725.D [解析] 由正弦定理得,原式=2b 2-a 2a 2=2⎝⎛⎭⎫b a 2-1=2³⎝⎛⎭⎫322-1=72. 17.、[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →²BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.17.解:(1)由BA →²BC →=2,得c ·a cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B , 又b =3,所以a 2+c 2=9+2³2=13.联立⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2.因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223.由正弦定理,得sin C =c b sin B =23³223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C = 13³79+2 23³4 29=2327. 18.、[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .18.解:由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C . 因为tan A =13,所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C )] =-tan(A +C ) =tan A +tan Ctan A tan C -1=-1,所以B =135°. 17.[2014·新课标全国卷Ⅱ] 四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积. 17.解:(1)由题设及余弦定理得 BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,故C =60°,BD =7.(2)四边形ABCD 的面积S =12AB ²DA sin A +12BC ²CD sin C =⎝⎛⎭⎫12³1³2+12³3³2sin 60°=2 3. 16.[2014·全国新课标卷Ⅰ] 如图1-3,为测量山高MN ,选择A 和另一座山的山顶C为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°,以及∠MAC =75°,从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.图1-316.150 [解析] 在Rt △ABC 中,BC =100,∠CAB =45°,所以AC =100 2.在△MAC中,∠MAC =75°,∠MCA =60°,所以∠AMC =45°,由正弦定理有AM sin ∠MCA =ACsin ∠AMC ,即AM =sin 60°sin 45°³100 2=1003,于是在Rt △AMN 中,有MN =sin 60°³1003=150 .17.,,[2014·山东卷] △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积. 17.解:(1)在△ABC 中,。

2014年高考广西文科数学试题及答案(word解析版)

2014年高考广西文科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(广西卷)数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年广西,文1,5分】设集合{12468}{123567}M N ==,,,,,,,,,,,则M N 中元素的个数为( )(A )2 (B)3 (C )5 (D)7 【答案】B【解析】{}1,2,6M N =,所以M N 中元素的个数为3,故选B .【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. (2)【2014年广西,文2,5分】已知角α的终边经过点(43)-,,则cos α=( )(A )45 (B )35 (C)35- (D )45-【答案】D【解析】由三角函数定义知4cos 5==-,故选D .【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.(3)【2014年广西,文3,5分】不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )(A ){|21}x x -<<- (B ){|10}x x -<< (C ){|01}x x << (D){|1}x x > 【答案】C【解析】由()20x x +>得0x >或2x <-;由1x <得11x -<<,所以不等式组的解集为{}01x x <<,故选C . 【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题.(4)【2014年广西,文4,5分】已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )(A )16( (C )13(D【答案】B【解析】如图,取AD 的中点F ,连接EF 、CF .因为E 、F 分别是AB 、AD 的中点,所以=1//2EF BD ,故CEF ∠或其补角是异面直线CE 、BD 所成的角.设正四面体ABCD的棱长为a ,易知CE CF =,12EF a =.在CEF △中,由余弦定理可得22212cos a CEF ⎫⎫⎛⎫+-⎪⎪ ⎪⎪⎪∠=故选B . 【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.(5)【2014年广西,文5,5分】函数)()ln11y x =>-的反函数是( )(A )()()311x y e x =->-(B)()()311x y e x =->-(C)()()31x y e x =-∈R (D )()()31x y e x =-∈R【答案】D 【解析】由)ln1y=1e y =,即()3e 1y x =-,又由1x >-可知y ∈R ,所以原函数的反函数为()()3e 1y y y =-∈R ,故选D .【点评】本题考查反函数解析式的求解,属基础题.FE DCBA(6)【2014年广西,文6,5分】已知,a b 为单位向量,其夹角为60,则(2)-⋅=a b b ( )(A)—1 (B )0 (C)1 (D )2 【答案】B【解析】()2222211cos 6010-⋅=⋅-=⨯⨯⨯-=a b b a b b ,故选B .【点评】本题主要考查两个向量的数量积的定义,属于基础题.(7)【2014年广西,文7,5分】有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )(A )60种 (B )70种 (C )75种 (D )150种 【答案】C【解析】根据题意,先从6名男医生中选2人,有2615C =种选法,再从5名女医生中选出1人,有155C =种选法,则不同的选法共有15×5=75种,故选C .【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.(8)【2014年广西,文8,5分】设等比数列{}n a 的前n 项和为n S ,若24315S S ==,,则6S =( )(A )31 (B )32 (C )63 (D)64 【答案】C【解析】由等比数列的性质得()()242264S S S S S -=⋅-,即()2612315S =⨯-,解得663S =,故选C . 【点评】本题考查等比数列的性质,得出2S ,42S S -,64S S -成等比数列是解决问题的关键,属基础题.(9)【2014年广西,文9,5分】已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F ,离心率为33,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为43,则C 的方程为( ) (A )22132x y += (B )2213x y += (C )221128x y += (D )221124x y +=【答案】A【解析】∵1AF B ∆的周长为43,∴443a =,∴3a =,∵离心率为33,∴1c =,∴222b a c =-=,∴椭圆C 的方程为22132x y+=,故选A .【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题. (10)【2014年广西,文10,5分】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )(A )814π (B )16π (C)9π (D )274π【答案】A【解析】设球的半径为R ,则∵棱锥的高为4,底面边长为2,∴()()22242R R =-+,∴94R =,∴球的表面积为2981444ππ⎛⎫⋅= ⎪⎝⎭,故选A .【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.(11)【2014年广西,文11,5分】双曲线C :22221(00)x y a b a b-=>>,的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( )(A )2 (B)22 (C )4 (D)42 【答案】C【解析】由已知得2c e a ==,所以12a c =,故2232b c a c =-=,从而双曲线的渐进线方程为3by x x a=±=±,由焦点到渐进线的距离为3,得332c=,解得2c =,故24c =,故选C .【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.(12)【2014年广西,文12,5分】奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )(A )2- (B)1- (C)0 (D)1 【答案】D【解析】由()2f x +是偶函数可得()()22f x f x -+=+,又由()f x 是奇函数得()()22f x f x -+=-,所以()()22f x f x +=-,()()4f x f x +=,故()f x 是以4为周期的周期函数, 所以()()()924111f f f =⨯+==,又()f x 是定义在R 上的奇函数,所以()00f =, 所以()()800f f ==,故()()891f f +=,故选D .【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.第II 卷(共100分)二、填空题:本大题共4小题,每小题5分. (13)【2014年广西,文13,5分】6(2)x -的展开式中3x 的系数为 (用数字作答). 【答案】160【解析】通项()()66166C 22C r r r r rr r T x x --+=⋅⋅-=-⋅,令63r -=,得3r =,所以3x 的系数为()3362C 160-=-. 【点评】本题考查二项式定理的应用,关键要得到()62x -的展开式的通项.(14)【2014年广西,文14,5分】函数cos22sin y x x =+的最大值为 .【答案】32【解析】221312sin 2sin 2sin 22y x x x ⎛⎫=-+=--+ ⎪⎝⎭,因为1sin 1x -,所以当1sin 2x =时,max 32y =.【点评】本题主要考查二倍角的余弦公式,二次函数的性质应用,正弦函数的值域,属于基础题.(15)【2014年广西,文15,5分】设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .【答案】5【解析】由约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩作出可行域如图,联立023x y x y -=⎧⎨+=⎩,解得()1,1C .化目标函数4z x y =+为直线方程的斜截式,得144zy x =-+.由图可知,当直线144zy x =-+过C 点时,直线在y 轴上的截距最大,z 最大.此时max 1415z =+⨯=.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.(16)【2014年广西,文16,5分】直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为()1,3,则1l 与2l的夹角的正切值等于____________. 【答案】43【解析】设1l 与2l 的夹角为2θ,由于1l 与2l 的交点()1,3A 在圆的外部,且点A 与圆心O 之间的距离为:1910OA =+=,圆的半径为2r =,∴2sin 10r OA θ==,22cos 10θ=,sin 1tan cos 2θθθ==, 22tan 14tan 211tan 314θθθ===--.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.三、解答题:本大题共6题,共75分.(17)【2014年广西,文17,10分】数列{}n a 满足12211222n n n a a a a a ++===-+,,.(1)设1n n n b a a +=-,证明{}n b 是等差数列; (2)求{}n a 的通项公式.解:(1)由2122n n n a a a ++=-+得,2112n n n n a a a a +++-=-+,即12n n b b +=+.又1211b a a =-=.所以{}n b 是首项为1,公差为2的等差数列.(2)由(1)得()121n b n =+-,即121n n a a n +-=-.于是()()11121nnk k k k a a k +==-=-∑∑,所以211n a a n +-=,211n a n a +=+.又11a =,所以{}n a 的通项公式为2122n a n n +=-+.【点评】本题考查了等差数列的定义、通项公式、前n 项和公式,及累加法求数列的通项公式和转化思想,属于中档题.(18)【2014年广西,文18,12分】ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知3cos 2cos a C c A =,1tan 3A =,求B .解:根据正弦定理,由3cos 2cos 3sin cos 2sin cos a C c A A C C A =⇒=sin sin 323tan 2tan cos cos A CA C A C⇒⨯=⨯⇒=因为1tan 3A =,所以1132tan tan 32C C ⨯=⇒=,所以11tan tan 32tan()1111tan tan 132A C A C A C +++===--⨯ 因为0A C π<+<,所以4A C π+=,由三角形的内角和可得344B πππ=-=.【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.(19)【2014年广西,文19,12分】如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B 的距离为3,求二面角1A AB C --的大小. 解:解法一: (1)因为1A D ⊥平面ABC ,1A D ⊆平面11AAC C ,故平面11AA C C ⊥平面ABC . 又BC AC ⊥,所以BC ⊥平面11AA C C .连结1A C .因为侧面11AA C C 为菱形,故11AC A C ⊥. 由三垂线定理得11AC A B ⊥.(2)BC ⊥平面11AA C C ,BC ⊆平面11BCC B ,故平面11AA C C ⊥平面11BCC B .作11A E CC ⊥,E 为垂足,则1A E ⊥平面11BCC B .又直线1//A A 平面11BCC B ,因而1A E 为直线1A A与平面11BCC B 的距离,13A E =.因为1A C 为11A CC ∠的平分线,故113A D A E ==.作DF AB ⊥, F 为垂足,连结1A F .由三垂线定理得1A F AB ⊥,故1A FD ∠为二面角1A AB C --的平面角.由22111AD AA A D =-=得D 为C A 中点,15=25AC BC DF AB ⨯⨯=,11tan 15A D A FD DF ∠==. 所以二面角1A AB C --的大小为arc tan 15. 解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角 坐标系C xyz -,由题设知1A D 与x 轴平行,z 轴在平面11AA C C 内(1)设1(,0,)A a c ,由题设有2,(2,0,0),(0,1,0)a A B ≤,则(2,1,0),(2,0,0)AB AC =-=-,1(2,0,)AA a c =-,111(4,0,),(,1,)AC AC AA a c BA a c =+=-=-………………2分由221||2(2)2AA a c =⇒-+=,即2240a a c -+=①于是221140AC BA a a c ⋅=-+=,所以11AC A B ⊥. ……………………5分 (2)设平面11BCC B 的法向量(,,)m x y z =,则1,m CB m BB ⊥⊥,所以10,0m CB m BB ⋅=⋅=,因11(0,1,0),(2,0,)CB BB AA a c ===-,所以0(2)0y a x cz =⎧⎨-+=⎩,令x c =,则2z a =-,(,0,2)m c a ∴=-, 点A 到平面11BCC B的距离为2|||cos ,|2||CA m cCA m CA c m c⋅⋅<>=====,又依题设,A 到平面11BCC B 3c =代入①解得3a =(舍去)或1a = ……8分 于是1(AA =-,设平面1ABA 的法向量(,,)n p q r =,则1,n AA n AB ⊥⊥所以10,0n AA n AB ⋅=⋅=,所以0202p r p p q q p⎧⎧-==⎪⎪⇒⎨⎨-+=⎪⎩⎪=⎩,令p =,则1,(3,2q r n ===,又(0,0,1)p =为平面ABC的法向量,故1cos ,4||||(n p n p n p ⋅<>===⋅,所以二面角1A AB C --的大小为1arccos 4. ………………………………………………………12分【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题. (20)【2014年广西,文20,12分】设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.60.50.50.4、、、,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.解:记i A 表示事件:同一工作日乙、丙中恰有i 人需使用设备,0,1,2i =,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备(1)122D A B C A B A B C =⋅⋅+⋅+⋅⋅,22()0.6,()0.4,()0.5,0,1,2ii P B P C P A C i ====, 所以122()()P D P A B C A B A B C =⋅⋅+⋅+⋅⋅122()()()P A B C P A B P A B C =⋅⋅+⋅+⋅⋅122()()()()()()()()P A P B P C P A P B P A P B P C =++0.31=.(2)由(1)知,若2k =,则()0.310.1P F =>.又2E B C A =⋅⋅,()()()()()220.06P E P B C A P B P C P A =⋅⋅==.若3k =,则()0.60.1F =<.所以k 的最小值时为3.【点评】本题主要考查相互独立事件的概率乘法公式,体现了分类讨论的数学思想,属于中档题. (21)【2014年广西,文21,12分】函数32()+33(0)f x ax x x a =+≠.(1)讨论()f x 的单调性; (2)若()f x 在区间(12),是增函数,求a 的取值范围.解:(1)()363f x ax x '=++,()0f x '=的判别式()361a ∆=-.(i )若1a ,则()0f x ',且当且仅当1a =,1x =-.故此时()f x 在R 上是增函数. (ii )由于0a ≠,故当1a <时,()0f x '=有两个根:1x ,2x .若01a <<,则当()2,x x ∈-∞或()1,x x ∈+∞时,()0f x '>,故()f x 在()2,x -∞,()1,x +∞上是增函数;当()21,x x x ∈时,()0f x '<,故()f x 在()21,x x 上是减函数;若0a <,则当()1,x x ∈-∞或()2,x +∞时,()0f x '<,故()f x 在()1,x -∞,()2,x +∞上是减函数; 当()21,x x x ∈时,()0f x '>,故()f x 在()12,x x 上是增函数.(2)当0a >,0x >时,()23630f x ax x '=++>,故当0a >时,()f x 在区间()1,2上是增函数.当0a <时,()f x 在区间()1,2上是增函数当且仅当()10f '且()20f ',解得504a -<.综上,a 的取值范围是()5,00,4⎡⎤-+∞⎢⎥⎣⎦.【点评】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.(22)【2014年广西,文22,12分】已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l '与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.解:(1)设()0,4Q x ,代入22y px =得08x p =.所以8PQ P=,0822p p QF x p =+=+.由题设得85824p p p +=+,解得2p =-(舍去)或2p =.所以C 的方程为24y x =.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为()10x my m =+≠.代入24y x =得2440y my --=.设()11,A x y ,()22,B x y ,则124y y m +=,124y y =-.故AB 的中点为()221,2D m m +,()21241AB y m =-=+.又l '的斜率为m -,所以l '的方程为2123x y m m=-++. 将上式代入24y x =,并整理得()2244230y y m m +-+=.设()33,M x y ,()44,N x y ,则344y y +=-,()234423y y m ⋅=-+.故MN 中点为222223,E m mm ⎛⎫++- ⎪⎝⎭,(234241m MN y m +-=.由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于12AE BE MN ==,从而2221144AB DE MN +=,即()()()2222222244121224122m m m m m m m ++⎛⎫⎛⎫+++++=⎪ ⎪⎝⎭⎝⎭. 化简得210m -=,解得1m =或1m =-.所求直线l 的方程为10x y --=或10x y +-=.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了分类讨论的数学思想,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试文科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A=﹛-2,0,2﹜,B=﹛x |2x -x -20=﹜,则A B= (A) ∅ (B ){}2 (C ){}0 (D) {}2- (2)131ii+=- (A )12i + (B )12i -+ (C )1-2i (D) 1-2i -(3)函数()f x 在0x=x 处导数存在,若p :f ‘(x 0)=0;q :x=x 0是()f x 的极值点,则(A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是 q 的充分条件 (D) p 既不是q 的充分条件,也不是q 的必要条件(4)设向量a ,b 满足a ·b=(A )1 (B ) 2 (C )3 (D) 5(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =(A ) ()1n n + (B )()1n n - (C )()12n n + (D)()12n n -(6)如图,网格纸上正方形小格的边长为1(表示1cm ), 图中粗线画出的是某零件的三视图,该零件 由一个底面半径为3cm ,高为6c m 的圆柱 体毛坯切削得到,则切削掉部分的体积与 原来毛坯体积的比值为(A )1727 (B ) 59 (C )1027(D) 13(7)正三棱柱111ABC A B C -的底面边长为2,D 为BC 中点,则三棱锥11DC B A -的体积为(A )3 (B )32(C )1 (D)(8)执行右面的程序框图,如果如果输入的x ,t均为2,则输出的S=(A )4 (B )5 (C )6 (D )7(9)设x ,y 满足的约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB =(A (B )6 (C )12 (D )(11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ (12)设点0(x ,1)M ,若在圆22:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C )⎡⎣ (D ) ⎡⎢⎣⎦第Ⅱ卷本卷包括必考题和选考题两部分。

第13题~第21题为必考题,每个考试考生都必须做答。

第22题~第24题为选考题,考生根据要求做答。

二、填空题:本大概题共4小题,每小题5分。

(13)甲、已两名元动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为_______. (14)函数)sin()(ϕ+=x x f —2ϕsin x cos 的最大值为_________. (15)已知函数()f x 的图像关于直线x =2对称,)3(f =3,则=-)1(f _______.(16)数列{}na满足1+na=n a-11,2a=2,则1a=_________.三、解答题:解答应写出文字说明过程或演算步骤。

(17)(本小题满分12分)四边形ABCD的内角A与C互补,AB=1,BC=3, CD=DA=2.(I)求C和BD;(II)求四边形ABCD的面积。

(18)(本小题满分12分)如图,四凌锥p—ABCD中,底面ABCD为矩形,PA上面ABCD,E为PD的点。

(I)证明:PP//平面AEC;(II)设置AP=1,AD=3,三凌P-ABD的体积V=43,求A到平面PBC的距离。

(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民。

根据这50位市民(I )分别估计该市的市民对甲、乙部门评分的中位数; (II )分别估计该市的市民对甲、乙部门的评分做于90的概率; (III )根据茎叶图分析该市的市民对甲、乙两部门的评价。

(20)(本小题满分12分)设F 1 ,F 2分别是椭圆C :12222=+by a x (a>b>0)的左,右焦点,M 是C上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N 。

(I )若直线MN 的斜率为43,求C 的离心率;(II )若直线MN 在y 轴上的截距为2且|MN|=5|F 1N|,求a ,b 。

(21)(本小题满分12分)已知函数f (x )=3232x x ax -++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为-2.(I)求a;(II)证明:当时,曲线()y kx=-只有一个交点。

=与直线2y f x请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号。

(22)(本小题满分10分)选修4-1:几何证明选讲如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(I)BE=EC;(II)AD·DE=2PB2。

(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极π]。

坐标系,半圆C的极坐标方程为p=2cosθ,θ∈[0,2(I)求C的参数方程;(II)设点D在C上,C在D处的切线与直线l:y=3x+2垂直,根据(I)中你得到的参数方程,确定D的坐标。

(24)(本小题满分10分)选修4-5:不等式选讲 设函数f (x )=|x+a1|+|x-a|(a>0)。

(I )证明:f (x )≥2;(II )若f (3)<5,求a 的取值范围。

新课标II 文科数学参考答案一、选择题(1)B (2)B (3)C (4)A (5)A (6)C (7)C (8)D (9)B (10)C (11)D (12)A 二、填空题(13) 31 (14) 1 (15)3 (16)21三、解答题 (17)解:(I )由题设及余弦定理得,c o s 1213cos ·2222C C CD BC CD BC BD -=-+= ①。

C A DA AB DA AB BD cos 45cos ·2222+=-+= ②由①,②得。

,故760,21cos =︒==BD C C (II) 四边形ABCD 的面积。

)(3260sin 23212121sin ·21sin ·21=︒⨯⨯+⨯⨯=+=C CD BC DA AB S (18)解:(I )。

平面所以,平面,平面。

的中点,所以为又的中点。

为为矩形,所以因为。

,连结的交点为与设AEC PB AEC PB AEC EO PB EO PD E BD O ABCD EO O AC BD ////⊄⊂(II)。

,可得由,234363··61====AB V AB AD AB PA V。

的距离为到平面所以,,又平面,故,所以平面由题设知,于交作1313313133·PBC A PB AB PA AH PBC AH AH BC PAB BC H PB PB AH ==⊥⊥⊥⊥(19)解:(I )由所给茎叶图知,50位市民对家部门评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75。

50位市民对乙部门的评分由小到大排序,排在25,26位的是66,68,故样本中位数为6726866=+,所以该市对乙部门评分的中位数的估计值是67。

(II )由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为16.05081.0505==,,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16。

(III )由所给茎叶图知,市民对甲部门的评分的智能个位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出 对甲部门的评分标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评分较高、评价较为一致,对乙部门的评价较低、评价差异较大。

(注:考生利用其他统计量进行分析,结论合理的同样给分。

) (20)解: (I )。

的离心率为故(舍去),,,解得带入将,),,(及题设知根据212ac21a c ac 3b 2c -a b ac 3b 2ab c b -a c 22222222C M -====== (II ),,即故的中点,)是线段,(轴的交点与所以直线轴,的中点,为由题意,原点a 4b 4ab 20y y //2212221==MF D MF MF F F O ①⎪⎩⎪⎨⎧==⎩⎨⎧==<==1-y c 23x 2y 2-c x -c -2,0y y x N |N |2|D ||N |5|MN |1111111111,即,,)(则),由题意知,(设,得由F F F带入,的方程,得1b 1a 4c 9222=+C ②将①及22b -a =c 带入②得,1414)4(922=+-aa a a。

,,故,解得72b 7a 28a 4b 72=====a(21)解:(I )。

,所由题设得。

)的切线方程为,)在点((曲线,1a 2-a 2-220y 63)('2==+==+-=ax y x f a x x x f (II )由(I )知,23)(23++-=x x x x f ,设4)1(32)()(22+-+-=+-=x k x x kx x f x g , 由题设知01>-k ,当0≤x 时,)(,0163)('2x g k x x x g >-+-=单调递增,4)0(,01)1(=<-=-g k g , 所以0)(=x g 在],(o -∞有唯一实根。

)()1()()(,43)(022x h x k x h x g x x x h x >-+=+-=>则时,令当,,单调递增,所以单调递减,在在0)2()()(),2()2,0()(),2(363)('2=≥>+∞-=-=h x h x g x h x x x x x h所以没有实根,在),0(0)(+∞=x g综上,0)(=x g 在R 有唯一实根,即曲线)(x f y =与直线2-=kx y 只有一个交点。

相关文档
最新文档