高一数学函数性质训练-夯实基础
高一数学函数的基本性质试题答案及解析

高一数学函数的基本性质试题答案及解析1.若函数是偶函数,则的增区间是.【答案】或【解析】由条件,得,即,所以原函数为,所以函数的增区间为.【考点】函数的奇偶性与单调性.2.(12分)已知是定义在R上的奇函数,当时,,其中且. (1)求的值;(2)求的解析式;【答案】(1)0(2)【解析】(1)因是奇函数,所以有,所以=0.……4分(2)当时,,,由是奇函数有,,……12分【考点】本小题主要考查利用函数的奇偶性求函数值和函数解析式的求取,考查学生对函数性质的应用能力.点评:对于分段函数,当已知一段函数的表达式要求另一段时,要利用函数的性质,并且要注意“求谁设谁”的原则.3.已知函数是定义在实数集R上的不恒为零的偶函数,且对任意实数都有,则的值是A.B.C.D.【答案】A【解析】令,可得,令,得所以,令,得,同理令可得,所以【考点】本小题主要考查函数的奇偶性和抽象函数的求值问题,考查学生的运算求解能力.点评:解决抽象函数问题,常用的方法是“赋值法”.4.已知函数的定义域为,为奇函数,当时,,则当时,的递减区间是.【答案】【解析】因为为奇函数,所以的图象关于对称,当时,,所以当时,函数的单调递减区间为,因为图象关于对称,所以当时,的递减区间是.【考点】本小题主要考查函数图象和性质的应用,考查学生数形结合思想的应用和推理能力.点评:解决本小题的关键是分析出函数的图象关于对称,在关于对称的两个区间上单调性相同.5.(本小题12分)已知函数,(1)判断函数在区间上的单调性;(2)求函数在区间是区间[2,6]上的最大值和最小值.【答案】(1)函数是区间上的减函数;(2),【解析】(1)设是区间上的任意两个实数,且,则-==.由得,,于是,即.所以函数是区间上的减函数. ……6分(2)由(1)知函数函数在区间的两个端点上分别取得最大值与最小值,即当时,;当时,. ……12分【考点】本小题主要考查利用定义判断函数的单调性和利用函数的单调性求函数的最值,考查学生对定义的掌握和利用能力以及数形结合思想的应用.点评:利用单调性的定义判断或证明函数的单调性时,要把结果划到最简,尽量不要用已知函数的单调性判断未知函数的单调性.6.设偶函数的定义域为,当时是增函数,则的大小关系是()A.B.C.D.【答案】A【解析】因为是偶函数,所以,而当时是增函数,所以.【考点】本小题主要考查函数奇偶性和单调性的综合应用,考查学生的逻辑推理能力.点评:函数的奇偶性和单调性经常结合考查,要熟练准确应用.7.已知是偶函数,且当时,,则当时,【答案】【解析】由题意知,当时,,所以,又因为是偶函数,所以,所以当时,.【考点】本小题主要考查利用函数的奇偶性求函数的解析式,考查学生的运算求解能力.点评:此类问题要注意求谁设谁.8.(本小题满分13分)已知定义域为的函数是奇函数。
新版高一数学必修第一册第三章全部配套练习题(含答案和解析)

新版高一数学必修第一册第三章全部配套练习题(含答案和解析)3.1.1 函数的概念基 础 练巩固新知 夯实基础1.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了2.若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )3.函数f (x )=x -1x -2的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2)D .[1,+∞)4.已知函数f (x )的定义域为[-1,2),则函数f (x -1)的定义域为( )A .[-1,2)B .[0,2)C .[0,3)D .[-2,1)5.函数y =5x +4x -1的值域是( )A .(-∞,5)B .(5,+∞)C .(-∞,5)∪(5,+∞)D .(-∞,1)∪(1,+∞) 6.函数y =x +1的值域为( )A .[-1,+∞)B .[0,+∞)C .(-∞,0]D .(-∞,-1]7.已知函数f (x )=x +1x,则f (2)+f (-2)的值是( )A .-1B .0C .1D .2 8.下列函数完全相同的是( )A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2x D .f (x )=x 2-9x -3,g (x )=x +39.求下列函数的定义域:(1)f (x )=1x +1; (2)y =x 2-1+1-x 2; (3)y =2x +3; (4)y =x +1x 2-1.10.求下列函数的值域:(1)y =2x +1,x ∪{1,2,3,4,5}; (2)y =x 2-4x +6,x ∪[1,5); (3)y =3-5x x -2; (4)y =x -x +1.能 力 练综合应用 核心素养11.已知等腰∪ABC 的周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,此函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5}D.⎩⎨⎧x ⎪⎪⎭⎬⎫52<x <5 12.函数f (x )=1x 2+1(x ∪R )的值域是( )A .(0,1)B .(0,1]C .[0,1)D .[0,1]13.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上 14.函数y =3-2x -x 2+14-x 2的定义域为____________________(用区间表示).15.函数y =1x -2的定义域是A ,函数y =x 2+2x -3的值域是B ,则A ∩B =________________(用区间表示).16.若函数f (2x -1)的定义域为[0,1),则函数f (1-3x )的定义域为________. 17.若函数y =ax 2+2ax +3的值域为[0,+∞),则a 的取值范围是________. 18.已知函数f (x )=x 21+x 2.(1)求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13的值. (2)求证:f (x )+f ⎝⎛⎭⎫1x 是定值.(3)求f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019的值.19.已知函数y =mx 2-6mx +m +8的定义域是R ,求实数m 的取值范围.20.已知函数f (x )=3-x +1x +2的定义域为集合A ,B ={x |x <a }. (1)求集合A ;(2)若A ∪B ,求a 的取值范围;(3)若全集U ={x |x ≤4},a =-1,求∪U A 及A ∩(∪U B ).【参考答案】1. C 解析 根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∪A ,可以是x →x ,x ∪A ,还可以是x →x 2,x ∪A .2. B 解析 A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},C 中图象不表示函数关系,D 中值域不是N ={y |0≤y ≤2}.3. A 解析 由题意知,要使函数有意义,需满足⎩⎪⎨⎪⎧x -1≥0,x -2≠0即x ≥1且x ≠2.4. C 解析 ∪f (x )的定义域为[-1,2),∪-1≤x -1<2,得0≤x <3,∪f (x -1)的定义域为[0,3).5. C 解析 ∪y =5x +4x -1=5(x -1)+9x -1=5+9x -1,且9x -1≠0,∪y ≠5,即函数的值域为(-∞,5)∪(5,+∞).6. B 解析 由于x +1≥0,所以函数y =x +1的值域为[0,+∞).7. B 解析 f (2)+f (-2)=2+12-2-12=0.8. B 解析 A 、C 、D 的定义域均不同.9. 解 (1)要使函数有意义,即分式有意义,则x +1≠0,x ≠-1.故函数的定义域为{x |x ≠-1}.(2)要使函数有意义,则⎩⎪⎨⎪⎧ x 2-1≥0,1-x 2≥0,即⎩⎪⎨⎪⎧x 2≥1,x 2≤1.所以x 2=1,从而函数的定义域为{x |x =±1}={1,-1}. (3)函数y =2x +3的定义域为{x |x ∪R }.(4)因为当x 2-1≠0,即x ≠±1时,x +1x 2-1有意义,所以原函数的定义域是{x |x ≠±1,x ∪R }.10. 解 (1)∪x ∪{1,2,3,4,5},∪(2x +1)∪{3,5,7,9,11},即所求函数的值域为{3,5,7,9,11}.(2)y =x 2-4x +6=(x -2)2+2. ∪x ∪[1,5),∪其图象如图所示, 当x =2时,y =2;当x =5时,y =11. ∪所求函数的值域为[2,11).(3)函数的定义域为{x |x ≠1},y =3-5x x -2=-5(x -2)+7x -2=-5-7x -2,所以函数的值域为{y |y ≠-5}.(4)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域为{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是y =t 2-1-t =⎝⎛⎭⎫t -122-54,又t ≥0,故y ≥-54,所以函数的值域为{y |y ≥-54}. 11. D 解析 ∪ABC 的底边长显然大于0,即y =10-2x >0,∪x <5,又两边之和大于第三边,∪2x >10-2x ,x >52,∪此函数的定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫52<x <5.12. B 解析 由于x ∪R ,所以x 2+1≥1,0<1x 2+1≤1,即0<y ≤1.13. C 解析 当a 在f (x )定义域内时,有一个交点,否则无交点.14. [-1,2)∪(2,3] 解析 使根式3-2x -x 2有意义的实数x 的集合是{x |3-2x -x 2≥0}即{x |(3-x )(x +1)≥0}={x |-1≤x ≤3},使分式14-x 2有意义的实数x 的集合是{x |x ≠±2},所以函数y =3-2x -x 2+14-x 2的定义域是{x |-1≤x ≤3}∩{x |x ≠±2}={x |-1≤x ≤3,且x ≠2}.15. [0,2)∪(2,+∞) 解析 要使函数式y =1x -2有意义,只需x ≠2,即A ={x |x ≠2};函数y =x 2+2x -3=(x +1)2-4≥0,即B ={y |y ≥0},则A ∩B ={x |0≤x <2或x >2}.16. ⎝⎛⎦⎤0,23 解 因为f (2x -1)的定义域为[0,1),即0≤x <1,所以-1≤2x -1<1.所以f (x )的定义域为[-1,1).所以-1≤1-3x <1,解得0<x ≤23.所以f (1-3x )的定义域为⎝⎛⎦⎤0,23. 17. [3,+∞) 解析 函数y =ax 2+2ax +3的值域为[0,+∞),则函数f (x )=ax 2+2ax +3的值域要包括0,即最小值要小于等于0.则{ a >0,Δ=4a 2-12a ≥0,解得a ≥3.所以a 的取值范围是[3,+∞).18. 解 (1)因为f (x )=x 21+x 2,所以f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1,f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)证明:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝⎛⎭⎫1x =1,所以f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1,…,f (2019)+f ⎝⎛⎭⎫12019=1. 所以f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019=2018. 19. 解 ∪当m =0时,y =8,其定义域是R .∪当m ≠0时,由定义域为R 可知,mx 2-6mx +m +8≥0对一切实数x 均成立,于是有⎩⎪⎨⎪⎧m >0,Δ=(-6m )2-4m (m +8)≤0,解得0<m ≤1.由∪∪可知,m ∪[0,1]. 20. 解 (1)使3-x 有意义的实数x 的集合是{x |x ≤3},使1x +2有意义的实数x 的集合是{x |x >-2}. 所以,这个函数的定义域是{x |x ≤3}∩{x |x >-2}={x |-2<x ≤3}.即A ={x |-2<x ≤3}. (2)因为A ={x |-2<x ≤3},B ={x |x <a }且A ∪B ,所以a >3.(3)因为U ={x |x ≤4},A ={x |-2<x ≤3},所以∪U A =(-∞,-2]∪(3,4]. 因为a =-1,所以B ={x |x <-1},所以∪U B =[-1,4],所以A ∩∪U B =[-1,3].3.1.2 函数的表示法基 础 练巩固新知 夯实基础1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速行驶.与以上事件吻合得最好的图象是( )2.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( )A .3x +2B .3x -2C .2x +3D .2x -33.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ∪[-1,0],x 2+1,x ∪0,1],则函数f (x )的图象是( )4.已知函数y =f (x )的对应关系如下表,函数y =g (x )的图象是如图的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f [g (2)]的值为( )A .3B .2C .1D .0 5.函数f (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A.RB.[0,+∞)C.[0,3]D.{x |0≤x ≤2或x =3} 6.设f (x )=⎩⎪⎨⎪⎧x +1,x >0,1,x =0,-1,x <0,则f (f (0))等于( )A.1B.0C.2D.-17.已知f (2x +1)=3x -2且f (a )=4,则a 的值为________.8.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.9.已知二次函数f (x )满足f (0)=0,且对任意x ∪R 总有f (x +1)=f (x )+x +1,求f (x ).10 (1)已知f (x +1x )=x 2+1x2,求f (x )的解析式.(2)已知f (x )满足2f (x )+f (1x )=3x ,求f (x )的解析式.(3)已知f (x )+2f (-x )=x 2+2x ,求f (x )的解析式.能 力 练综合应用 核心素养11.如果f ⎝⎛⎭⎫1x =x1-x ,则当x ≠0,1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1 12.已知x ≠0时,函数f (x )满足f (x -1x )=x 2+1x 2,则f (x )的表达式为( )A .f (x )=x +1x (x ≠0) B .f (x )=x 2+2(x ≠0)C .f (x )=x 2(x ≠0)D .f (x )=(x -1x)2(x ≠0)13.已知函数y =⎩⎪⎨⎪⎧x 2+1,x ≤0,-2x ,x >0,则使函数值为5的x 的值是( )A.-2或2B.2或-52C.-2D.2或-2或-5214.若f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( )A .3x +2B .3x -2C .2x +3D .2x -3 15.已知f (x -1)=x 2,则f (x )的解析式为( )A .f (x )=x 2+2x +1B .f (x )=x 2-2x +1C .f (x )=x 2+2x -1D .f (x )=x 2-2x -116.已知f (n )=⎩⎪⎨⎪⎧n -3,n ≥10,f f n +5,n <10,则f (8)=________.17.已知函数y =f (x )满足f (x )=2f (1x )+x ,则f (x )的解析式为____________.18. 已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域.19.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.【参考答案】1. C 解析 先分析小明的运动规律,再结合图象作出判断.距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.2. B 解析 设f (x )=kx +b (k ≠0),∪2f (2)-3f (1)=5,2f (0)-f (-1)=1,∪⎩⎪⎨⎪⎧ k -b =5k +b =1,∪⎩⎪⎨⎪⎧k =3b =-2,∪f (x )=3x -2. 3. A 解析 当x =-1时,y =0,排除D ;当x =0时,y =1,排除C ;当x =1时,y =2,排除B. 4. B 解析 由函数g (x )的图象知,g (2)=1,则f [g (2)]=f (1)=2.5. D 解析 当0≤x ≤1时,f (x )∪[0,2],当1<x <2时,f (x )=2,当x ≥2时,f (x )=3, ∪值域是{x |0≤x ≤2或x =3}.6. C7. 5 解析 ∪f (2x +1)=3x -2=32(2x +1)-72,∪f (x )=32x -72,∪f (a )=4,即32a -72=4,∪a =5.8. 解 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∪⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∪f (x )=2x +7. 9. 解 设f (x )=ax 2+bx +c (a ≠0),∪f (0)=c =0,∪f (x +1)=a (x +1)2+b (x +1)+c =ax 2+(2a +b )x +a +b , f (x )+x +1=ax 2+bx +x +1=ax 2+(b +1)x +1.∪⎩⎪⎨⎪⎧2a +b =b +1,a +b =1. ∪⎩⎨⎧a =12,b =12.∪f (x )=12x 2+12x .10. 解 (1)∪f (x +1x )=x 2+1x 2=(x +1x )2-2,且x +1x ≥2或x +1x ≤-2,∪f (x )=x 2-2(x ≥2或x ≤-2).(2)∪2f (x )+f (1x )=3x ,∪把∪中的x 换成1x ,得2f (1x )+f (x )=3x .∪, ∪×2-∪得3f (x )=6x -3x ,∪f (x )=2x -1x (x ≠0).(3)以-x 代x 得:f (-x )+2f (x )=x 2-2x .与f (x )+2f (-x )=x 2+2x 联立得:f (x )=13x 2-2x .11. B 解析 令1x =t ,则x =1t ,代入f ⎝⎛⎭⎫1x =x 1-x ,则有f (t )=1t1-1t =1t -1,故选B. 12. B 解析 ∪f (x -1x )=x 2+1x 2=(x -1x)2+2,∪f (x )=x 2+2(x ≠0).13. C14. B 解析 设f (x )=ax +b ,由题设有⎩⎪⎨⎪⎧ 2(2a +b )-3(a +b )=5,2(0·a +b )-(-a +b )=1.解得⎩⎪⎨⎪⎧a =3,b =-2.所以选B.15. A 解析 令x -1=t ,则x =t +1,∪f (t )=f (x -1)=(t +1)2=t 2+2t +1,∪f (x )=x 2+2x +1.16. 7 解析 因为8<10,所以代入f (n )=f (f (n +5)),即f (8)=f (f (13));因为13>10,所以代入f (n )=n -3,得f (13)=10,故得f (8)=f (10)=10-3=7.17. f (x )=-x 2+23x (x ≠0) 解析 ∪f (x )=2f (1x )+x ,∪∪将x 换成1x ,得f (1x )=2f (x )+1x .∪由∪∪消去f (1x ),得f (x )=-23x -x3,即f (x )=-x 2+23x(x ≠0).18.解 (1)∪当0≤x ≤2时,f (x )=1+x -x 2=1;∪当-2<x <0时,f (x )=1+-x -x2=1-x .所以f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,1-x ,-2<x <0.(2)函数f (x )的图象如图所示.(3)由函数f (x )的图象知,f (x )在(-2,2]上的值域为[1,3).19 .解 因为对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1). 又f (0)=1,∪f (x )=x (x +1)+1=x 2+x +1.3.2.1 第1课时 函数的单调性基 础 练巩固新知 夯实基础1.函数f (x )的定义域为(a ,b ),且对其内任意实数x 1,x 2均有(x 1-x 2)(f (x 1)-f (x 2))<0,则f (x )在(a ,b )上( ) A .增函数B .减函数C .不增不减函数D .既增又减函数2.若函数f (x )在区间(a ,b )上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,b )∪(b ,c )上( )A .必是增函数B .必是减函数C .是增函数或减函数D .无法确定单调性3.如果函数f (x )在[a ,b ]上是增函数,那么对于任意的x 1,x 2∪[a ,b ](x 1≠x 2),下列结论中不正确的是( ) A.f x 1-f x 2x 1-x 2>0B .(x 1-x 2)[f (x 1)-f (x 2)]>0C .若x 1<x 2,则f (a )<f (x 1)<f (x 2)<f (b ) D.x 1-x 2f x 1-f x 2>0 4.对于函数y =f (x ),在给定区间上有两个数x 1,x 2,且x 1<x 2,使f (x 1)<f (x 2)成立,则y =f (x )( )A .一定是增函数B .一定是减函数C .可能是常数函数D .单调性不能确定5.下列函数中,在(-∞,0]内为增函数的是( ) A .y =x 2-2 B .y =3xC .y =1+2xD .y =-(x +2)26.已知函数f (x )=x 2+bx +c 的图象的对称轴为直线x =1,则( )A .f (-1)<f (1)<f (2)B .f (1)<f (2)<f (-1)C .f (2)<f (-1)<f (1)D .f (1)<f (-1)<f (2)7.若函数f (x )=2x 2-mx +3,当x ∪[-2,+∞)时是增函数,当x ∪(-∞,-2)时是减函数,则f (1)=________.8.已知函数f (x )=⎩⎪⎨⎪⎧(a -3)x +5,x ≤1,2a x ,x >1是R 上的减函数,则实数a 的取值范围是 。
高一数学基础训练(函数性质)(2)

第一部分:函数性质的基础知识一、奇偶性1、奇偶性的判断方法:先考察定义域是否关于原点对称,再利用()f x -与()f x 的关系进行判断①()f x 为奇函数⇔()()()()()01()f x f x f x f x f x f x --=-⇔-+=⇔=- ②()f x 为偶函数⇔()()()()()01()f x f x f x f x f x f x --=⇔--=⇔=2、图象特征:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;3、奇函数在原点两侧的单调性相同,偶函数在y 轴两侧的单调性相反;4、若奇函数f (x )的定义域包括0,则有f (0)=0;5、特殊结论:奇+奇=奇,偶+偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇.6、对称性:(1)若函数f (x )满足()()f a x f a x -=+,则函数f (x )的图像关于直线x a =对称; (2)若函数f (x )满足()(2)f x f a x =-,则函数f (x )的图像关于直线x a =对称; 二、周期性周期性:若对定义域中的任意x ,都有()()f x f x T =+(T 为非0常数) ,则()x f 是以T 为周期的周期函数。
如:正弦函数sin y x =是周期为2π的周期函数 三、单调性1、熟记几个常用函数的单调性:(1)一次函数、反比例函数、二次函数、指数函数、对数函数(2)几个特殊函数:y =3y x =,1y x x=+,||y x = 2、用定义证明及判断函数单调性的步骤:①在所研究区间内任取x 1<x 2;②作差比较f (x 1)和f (x 2)的大小关系;③判断并下结论; 3、用导数法判断函数单调性的步骤:①求定义域;②求导数'()f x ;③由'()0f x >求增区间,由'()0f x <求减区间; 4、复合函数单调性的判断:常用换元法,对函数y =f [g (x )],设t =g (x ),则y =f (t ) 如果y =f (t )和t =g (x )的单调性相同,则原函数y =f [g (x )]是增函数 如果y =f (t )和t =g (x )的单调性相反,则原函数y =f [g (x )]是减函数 5、几个特殊结论:增+增=增,减+减=减,增-减=增,减-增=减注意:讨论函数的单调性必须在函数的定义域或给定的区间内进行。
高一知识点训练数学

高一知识点训练数学在高一学年,数学是一门非常重要的学科,它不仅是一种工具,还是一种逻辑思维的训练方法。
通过学习数学,我们可以培养自己的逻辑思维能力,提高解决问题的能力。
下面,我将通过对高一数学的知识点进行训练,来巩固我们的数学基础。
一、整式与分式1. 整式的定义整式是指只包含有限项的多项式,其中项是由常数和变量的积组成。
2. 整式的分类整式可分为单项式、多项式和常数。
3. 分式的定义分式是指由两个整式通过除法运算得到的式子。
4. 分式的性质- 分式的分母不能为0。
- 分式的分子和分母可以进行约分。
- 分式可以进行加、减、乘、除运算。
二、函数与方程1. 函数的定义函数是一种关系,它将一个自变量的值映射到一个因变量的值。
2. 函数的性质- 函数可以表示为映射图、列表、公式等形式。
- 函数的定义域和值域是它的重要属性。
- 函数的图像可以通过绘制函数的关系来表示。
3. 方程的定义方程是指在等式中含有未知数的代数式。
4. 方程的解与解集解是使方程成立的未知数的值。
解集是所有解的集合。
三、三角函数1. 三角函数的定义三角函数是描述角度与边长之间关系的函数。
2. 常用三角函数常用的三角函数包括正弦函数、余弦函数和正切函数等。
3. 三角函数的性质- 三角函数的定义域是所有实数。
- 三角函数是周期函数,其周期为2π。
四、数列与数列求和1. 数列的定义数列是按照一定规律排列的一组数。
2. 等差数列等差数列是指数列中相邻项之差为常数的数列。
3. 等差数列的性质- 等差数列可以通过公式an = a1 + (n-1)d来表示。
- 等差数列的前n项和可以通过公式Sn = (a1 + an) * n/2来计算。
五、平面解析几何1. 平面直角坐标系平面直角坐标系由两个相互垂直的数轴组成,分别称为x轴和y轴。
2. 点的坐标表示点在平面直角坐标系中的位置可以用坐标表示。
3. 直线的表示直线可以通过点斜式、一般式和截距式来表示。
4. 圆的表示圆可以通过圆心坐标和半径来表示。
正切函数的性质与图象(分层练习)高一数学精品同步课堂(人教A版2019必修第一册)

5.4.3 正切函数的性质与图象基 础 练巩固新知 夯实基础1.函数tan 4y x π⎛⎫=- ⎪⎝⎭的定义域为( )A .3+,4xx k k Z ππ⎧⎫≠∈⎨⎬⎩⎭∣ B .3+2,4xx k k Z ππ⎧⎫≠∈⎨⎬⎩⎭∣ C .,4xx k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭∣ D .2,4xx k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭∣ 2.函数()2tan 24x f x π⎛⎫=+ ⎪⎝⎭的最小正周期为( )A .2π B .πC .2πD .4π3.已知13122,log 3,tan53a b c -===︒,则( ) A .a b c <<B .b a c <<C .a c b <<D .c b a <<4.若函数f (x )=tan(ωx +π4)(ω>0)的最小正周期为π,则 ( )A. f (2)>f (0)>f (-π5) B. f (0)>f (2)>f (-π5) C. f (0)>f (-π5)>f (2) D. f (-π5)>f (0)>f (2)5.(多选)下列关于函数y =tan (x +π3)的说法正确的是( )A.在区间(-π6,5π6)上单调递增 B.最小正周期是πC.图象关于点(π6,0)成中心对称 D.图象关于直线x =π6成轴对称 6.已知函数f (x )=x +tan x +1,若f (a )=2,则f (-a )的值为________. 7.求y =3-tan x 的定义域.8.根据正切函数的图象,写出使不等式3+√3tan 2x ≥0成立的x 的取值集合.9.设函数f (x )=tan ⎝⎛⎭⎫x 2-π3.(1)求函数f (x )的周期,对称中心; (2)作出函数f (x )在一个周期内的简图.能 力 练综合应用 核心素养10.函数()()2ln 2tan f x x x x =-++的定义域是( )A .ππ0,,222⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭B .()0,2C .()(),02,-∞+∞D .π,π2⎛⎫ ⎪⎝⎭11.已知函数y =tan ωx 在⎝⎛⎭⎫-π2,π2内是减函数,则( ) A .0<ω≤1 B .-1≤ω<0 C .ω≥1 D .ω≤-112.函数()tan 23f x x π⎛⎫=- ⎪⎝⎭的最小正周期是( )A .2πB .πC .4πD .2π 13.已知函数()tan 3f x x x =,若对任意,66x ππ⎛⎫∈- ⎪⎝⎭,()f x a >恒成立,则a 的取值范围是( )A .53,⎛-∞ ⎝⎦B .53,⎛-∞ ⎝⎭C .3,⎛-∞ ⎝⎦D .3,⎛-∞ ⎝⎭14.(多选)已知函数f (x )={tanx ,tanx >sinx ,sinx ,tanx ≤sinx ,则 ( )A. f (x )的值域为(-1,+∞)B. f (x )的单调递增区间为[kπ,kπ+π2)(k ∈Z)C.当且仅当k π-π2<x ≤k π(k ∈Z)时,f (x )≤0 D. f (x )的最小正周期是2π15.已知函数y =-tan 2x +4tan x +1,x ∈[-π4,π4],则其值域为 .16.函数f (x )=lg tan x +1tan x -1为________函数(填“奇”或“偶”).17.函数tan 216y x π⎛⎫=-+ ⎪⎝⎭的图象的对称中心的坐标为___________.18.若函数tan 4y x πω⎛⎫=+ ⎪⎝⎭在,33ππ⎡⎤-⎢⎥⎣⎦上单调递减,且在,33ππ⎡⎤-⎢⎥⎣⎦3ω=___________.【参考答案】1.A 解析:由()()3424x k k Z x k k Z πππππ-≠+∈⇒≠+∈,故选:A 2.C 解析:函数()2tan 24x f x π⎛⎫=+ ⎪⎝⎭的最小正周期为212ππ=.故选:C.3.B 解析:∵1030221a -<=<=,1122log 31log 0b =<=,tan531tan 45c ︒>︒==,b ac ∴<<.故选:B.4.C 解析:由函数f (x )=tan (ωx +π4)(ω>0)的最小正周期为π,可得πω=π,解得ω=1,即f (x )=tan (x +π4),令-π2+k π<x +π4<π2+k π,k ∈Z,得-3π4+k π<x <π4+k π,k ∈Z,当k =1时,π4<x <5π4,即函数f (x )在(π4,5π4)上单调递增,又f (0)=f (π),f (-π5)=f (-π5+π)=f (4π5),且54π>π>4π5>2>π4,所以f (0)>f (-π5)>f (2).故选C .5.BC 解析: 令k π-π2<x +π3<k π+π2,k ∈Z,得k π-5π6<x <k π+π6,k ∈Z,显然(-π6,5π6)不满足上述关系式,故A 中说法错误;显然该函数的最小正周期为π,故B 中说法正确;令x +π3=kπ2,k ∈Z,得x =kπ2-π3,k ∈Z,当k =1时,得x =π6,故C 中说法正确;正切曲线没有对称轴,因此函数y =tan (x +π3)的图象也没有对称轴,故D 中说法错误.故选BC . 6. 0 解析:设g (x )=x +tan x ,显然g (x )为奇函数.∵f (a )=g (a )+1=2,∴g (a )=1,∴f (-a )=g (-a )+1=-g (a )+1=0. 7. 解:由3-tan x ≥0得,tan x ≤ 3.结合y =tan x 的图象可知,在⎝⎛⎭⎫-π2,π2上,满足tan x ≤3的角x 应满足-π2<x ≤π3, 所以函数y =3-tan x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪k π-π2<x ≤k π+π3,k ∈Z . 8. 解:如图所示,在同一平面直角坐标系中画出函数y =tan x ,x ∈(-π2,π2)的图象和直线y =-√3.由图得,在区间(-π2,π2)内,不等式tan x ≥-√3的解集是{x|-π3≤x <π2},∴在函数y =tan x 的定义域x x ≠kπ+π2,k ∈Z 内,不等式tan x ≥-√3的解集是{x|kπ-π3≤x <kπ+π2,k ∈Z}.令k π-π3≤2x <k π+π2(k ∈Z),得kπ2-π6≤x <kπ2+π4(k ∈Z),∴使不等式3+√3tan 2x ≥0成立的x 的取值集合是{x|kπ2-π6≤x <kπ2+π4,k ∈Z}.9. 解:(1)∵ω=12,∴周期T =πω=π12=2π.令x 2-π3=k π2(k ∈Z ),则x =k π+2π3(k ∈Z ), ∴f (x )的对称中心是⎝⎛⎭⎫k π+2π3,0(k ∈Z ). (2)令x 2-π3=0,则x =2π3;令x 2-π3=π2,则x =5π3;令x 2-π3=-π2,则x =-π3. ∴函数y =tan ⎝⎛⎭⎫x 2-π3的图象与x 轴的一个交点坐标是⎝⎛⎭⎫2π3,0,在这个交点左,右两侧相邻的两条渐近线方程分别是x =-π3,x =5π3,从而得到函数y =f (x )在一个周期⎝⎛⎭⎫-π3,5π3内的简图(如图).10.A 解析:由题意得()220ππ2x x x k k Z ⎧-+>⎪⎨≠+∈⎪⎩, 解得02x <<且π2x ≠,则()f x 的定义域为ππ0,,222⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.故选:A . 11.B 解析:∵y =tan ωx 在⎝⎛⎭⎫-π2,π2内是减函数,∴ω<0且T =π|ω|≥π.∴|ω|≤1,即-1≤ω<0. 12.D 解析:函数()tan 23f x x π⎛⎫=- ⎪⎝⎭的图象是由tan 2y x =的图象先向右平移6π个单位长度,再把x 轴下方的图象翻折到x 轴上方得到,故()tan 23f x x π⎛⎫=- ⎪⎝⎭的最小正周期与tan 2y x =的相同,为2π,故选:D.13.A 解析:由对任意,66x ππ⎛⎫∈- ⎪⎝⎭,()f x a >恒成立,则只要min ()f x a >即可,因为函数tan y x =和3y x=在,66ππ⎛⎫- ⎪⎝⎭上都是增函数,所以函数()tan 3f x x x =,在,66x ππ⎛⎫∈- ⎪⎝⎭上是增函数,所以53()tan 3sin 666f x f πππ⎛⎫⎛⎫⎛⎫>-=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以53a ≤故选:A. 14.AD 解析:当tan x >sin x ,即k π<x <k π+π2(k ∈Z)时, f (x )=tan x ∈(0,+∞);当tan x ≤sin x ,即k π-π2<x ≤k π(k ∈Z)时,f (x )=sin x ∈(-1,1).综上, f (x )的值域为(-1,+∞),故A 正确;f (x )的单调递增区间是(2kπ-π2,2kπ+π2)和2k π+π,2k π+3π2(k ∈Z),故B 错误;当x ∈(2kπ+π2,2kπ+π)(k ∈Z)时,f (x )>0,故C 错误;结合f (x )的图象可知f (x )的最小正周期是2π,故D 正确.故选AD .15.[-4,4] 解析:∵-π4≤x ≤π4,∴-1≤tan x ≤1.令tan x =t ,则t ∈[-1,1]. ∴y =-t 2+4t +1=-(t -2)2+5,t ∈[-1,1].易知函数在[-1,1]上单调递增,∴当t =-1,即x =-π4时,y min =-4,当t =1,即x =π4时,y max =4.故所求函数的值域为[-4,4]. 16. 奇 解析:由tan x +1tan x -1>0,得tan x >1或tan x <-1.∴函数定义域为⎝⎛⎭⎫k π-π2,k π-π4∪⎝⎛⎭⎫k π+π4,k π+π2(k ∈Z )关于原点对称. f (-x )+f (x )=lg tan -x +1tan -x -1+lg tan x +1tan x -1=lg ⎝ ⎛⎭⎪⎫-tan x +1-tan x -1·tan x +1tan x -1=lg1=0. ∴f (-x )=-f (x ),∴f (x )是奇函数.17.,1124k ππ⎛⎫+ ⎪⎝⎭k Z ∈ 解析:令26x π-=2k π (k Z ∈),得412k x ππ=+ (k Z ∈),∴对称中心的坐标为(,1)()412k k Z π+∈π. 18.14- 解析:因为函数tan 4y x πω⎛⎫=+ ⎪⎝⎭在,33ππ⎡⎤-⎢⎥⎣⎦上单调递减,所以0ω<,23ππω≥,则302ω-≤<,又因为函数在,33ππ⎡⎤-⎢⎥⎣⎦3所以,343k k Z πππωπ-+=+∈,即13,4k k Z ω=--∈,所以14ω=-.。
高一数学《函数》专题训练材料(含答案)

高一数学《函数》专题训练材料(学生版)一、函数概念相关 1、解析式相关①若函数f (x )=21x 2-x+a 的定义域和值域均为[1,b ](b >1),求a 、b 的值.②给出下列两个条件:(1)f(x+1)=x+2x ;(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.③已知f (x )是一次函数,且满足3f (x+1)-2f (x-1)=2x+17,求f (x );已知f (x )满足2f (x )+f (x1)=3x ,求f (x ).2、定义域求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()( ⑤373132+++-=x x y2、值域① 求13+--=x x y 的值域 ②求函数x x y -+=142的值域③求函数66522-++-=x x x x y 的值域3、复合函数①已知函数分别由下表给出,则满足f(g(x))>g(f(x))的x 值是②已知函数)(x f 的定义域为)23,21(-∈x ,求)0)(()()(>+=a axf ax f xg 的定义域。
②若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域③已知函数2)3()2(2-+--=-a x a ax x f (a 为负整数)的图象经过点R m m ∈-),0,2(,设)()()()],([)(x f x pg x F x f f x g +==.问是否存在实数)0(<p p 使得)(x F 在区间)]2(,(f -∞上是减函数,且在区间)0),2((f 上是减函数?并证明你的结论。
4、分段函数①设函数f(x)=⎪⎩⎪⎨⎧>≤--0,0,1221x x x x 若f(x 0)>1,求x 0的取值范围。
新版高一数学必修第一册第四章全部配套练习题(含答案和解析)

新版高一数学必修第一册第四章全部配套练习题(含答案和解析)4.1 指 数基 础 练巩固新知 夯实基础1.下列各式中正确的个数是( )①n a n =(na )n =a (n 是奇数且n >1,a 为实数); ②n a n =(na )n =a (n 是正偶数,a 是实数); ③3a 3+b 2=a +b (a ,b 是实数). A .0 B .1 C .2 D .3 2.化简3a a 的结果是( )A .aB .a 21 C .a2 D .a 31 3.4(-2)4运算的结果是( ) A .2B .-2C .±2D .不确定4.614- 3338+30.125的值为________. 5.化简(π-4)2+3(π-4)3的结果为________. 6.若x <0,则|x |-x 2+x 2|x |=________. 7.写出使下列各式成立的x 的取值范围: (1) 3⎝⎛⎭⎫1x -33=1x -3; (2)(x -5)(x 2-25)=(5-x )x +5.8.(1)化简:3xy 2·xy -1·xy ·(xy )-1(xy ≠0); (2)计算:221-+(-4)02+12-1-(1-5)0·832.能 力 练综合应用 核心素养9.下列各式成立的是( ) A.3m 2+n 2=(m +n )32B .(ba )2=a 21b 21C.6(-3)2=(-3)31D.34=23110.x -2+x 2=22且x >1,则x 2-x-2的值为( )A .2或-2B .-2 C. 6 D .2 11.设a 21-a21-=m ,则a 2+1a等于( )A .m 2-2B .2-m 2C .m 2+2D .m 212.如果x =1+2b ,y =1+2-b ,那么用x 表示y 等于( ) A.x +1x -1 B.x +1x C.x -1x +1 D.x x -113.若a >0,且a x =3,a y =5,则a22yx +=________.14.已知a ∈R ,n ∈N *,给出四个式子:①6(-2)2n ;②5a 2;③6(-3)2n +1;④9-a 4,其中没有意义的是________.(只填式子的序号即可)15.若代数式2x -1+2-x 有意义,化简4x 2-4x +1+24(x -2)4.16.根据已知条件求下列值:(1)已知x =12,y =23,求x +y x -y -x -y x +y 的值;(2)已知a ,b 是方程x 2-6x +4=0的两根,且a >b >0,求a -ba +b的值.【参考答案】1. B 解析 对①,由于n 是大于1的奇数,故①正确;对①,由于n 是偶数,故na n 中a 可取任意实数,而(na )n 中a 只能取非负数,故①错误;对①,b 2=|b |,故结果错误. 2. B 解析 原式=321aa =323a =a 21. 3. A 解析 根据根式的性质得4-24=|-2|=2,选A.4. 32解析 原式=f(522)- 错误!+ 错误! =错误!-错误!+错误!=错误!.5. 0 解析 原式=|π-4|+π-4=4-π+π-4=0.6. 1 解析 ①x <0,①原式=-x -(-x )+-x-x =-x +x +1=1.7. 解 (1)由于根指数是3,故1x -3有意义即可,此时x -3≠0,即x ≠3.(2)①x -5x 2-25=x -52x +5=(5-x )x +5,①⎩⎪⎨⎪⎧x +5≥0x -5≤0,①-5≤x ≤5.8.解 (1)原式=[xy 2·(xy -1) 21]31·(xy )21·(xy )-1=x 31·y 32|x |61|y |61-·|x |21-·|y |21-=x 31·|x |31-=⎩⎪⎨⎪⎧1, x >0-1, x <0. (2)原式=12+12+2+1-22=22-3. 9. D 解析 被开方数是和的形式,运算错误,A 选项错;(b a )2=b 2a 2,B 选项错;6-32>0,(-3)31<0,C 选项错.故选D.10.D 解析因为x -2+x 2=22且x >1,所以x 2>x -2,x 2-x -2>0,故x 2-x -2=x 2+x-22-4=8-4=2.11. C 解析 将a 21-a 21-=m 平方得(a 21-a21-)2=m 2,即a -2+a -1=m 2,所以a +a -1=m 2+2,即a +1a=m 2+2①a 2+1a=m 2+2. 12. D 解析 由x =1+2b ,得2b =x -1,y =1+2-b =1+12b =1+1x -1=x x -1.13. 9 5 解析 a22yx +=(a x )2·(a y )21=32·521=9 5.14. ① 解析 ①中,(-2)2n >0,①6-22n 有意义;①中,根指数为5,①5a 2有意义;①中,(-3)2n +1<0,①6-32n +1没有意义;①中,根指数为9,①9-a 4有意义.15.解 由2x -1+2-x 有意义,则⎩⎪⎨⎪⎧2x -1≥0,2-x ≥0,即12≤x ≤2.故4x 2-4x +1+24x -24=2x -12+24x -24=|2x -1|+2|x -2|=2x -1+2(2-x )=3.16.解 (1)x +y x -y -x -yx +y=错误!-错误!=错误!. 将x =12,y =23代入上式得:原式=4 12×2312-23=413-16=-2413=-83; (2)①a ,b 是方程x 2-6x +4=0的两根,①⎩⎪⎨⎪⎧a +b =6ab =4,①a >b >0,①a >b . ⎝ ⎛⎭⎪⎫a -b a +b 2=a +b -2ab a +b +2ab =6-246+24=210=15, ①a -ba +b=15=55.4.2 第1课时 指数函数及其性质基 础 练巩固新知 夯实基础1.下列函数中,指数函数的个数为( )①y =⎝⎛⎭⎫12x -1;①y =a x (a >0,且a ≠1);①y =1x;①y =⎝⎛⎭⎫122x -1. A .0个 B .1个 C .3个D .4个2.当x ①[-2,2)时,y =3-x -1的值域是( )A .(-89,8]B .[-89,8]C .(19,9)D .[19,9]3.函数y =2x -1的定义域是( )A .(-∞,0)B .(-∞,0]C .[0,+∞)D .(0,+∞)4.函数f (x )=a x 与g (x )=-x +a 的图象大致是( )5.函数y =a x -5+1(a ≠0)的图象必经过点________.6.若函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,-2-x ,x >0,则函数f (x )的值域是________.7.函数f (x )=a x -1(a >0,且a ≠1)的定义域是(-∞,0],求实数a 的取值范围.8.已知函数f (x )=a x -1(x ≥0)的图象经过点(2,12),其中a >0且a ≠1.(1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域.能 力 练综合应用 核心素养9.函数y =5-|x |的图象是( )10.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .311.函数f (x )=a x-b的图象如图所示,其中a ,b 均为常数,则下列结论正确的是( )A.a >1,b <0B.a >1,b >0C.0<a <1,b >0D.0<a <1,b <012.若函数f (x )=(a 2-2a +2)(a +1)x 是指数函数,则a =________.13.已知函数f (x )=a x +b (a >0,且a ≠1),经过点(-1,5),(0,4),则f (-2)的值为________. 14.方程|2x -1|=a 有唯一实数解,则a 的取值范围是________. 15.求函数y =(12)x 2-2x +2(0≤x ≤3)的值域.16.已知-1≤x ≤2,求函数f (x )=3+2×3x +1-9x 的最大值和最小值.【参考答案】1. B 解析 由指数函数的定义可判定,只有①正确.2. A 解析 y =3-x -1,x ①[-2,2)上是减函数,①3-2-1<y ≤32-1,即-89<y ≤8.3. C 解析 由2x -1≥0,得2x ≥20,①x ≥0.4. A 解析 当a >1时,函数f (x )=a x 单调递增,当x =0时,g (0)=a >1,此时两函数的图象大致为选项A.5. (5,2) 解析 指数函数的图象必过点(0,1),即a 0=1,由此变形得a 5-5+1=2,所以所求函数图象必过点(5,2).6. (-1,0)①(0,1) 解析 由x <0,得0<2x <1;由x >0,①-x <0,0<2-x <1,①-1<-2-x <0,①函数f (x )的值域为(-1,0)①(0,1).7.解 由题意,当x ≤0时,a x ≥1,所以0<a <1,故实数a 的取值范围是0<a <1. 8.解 (1)①f (x )的图象过点(2,12),①a 2-1=12,则a =12.(2)由(1)知,f (x )=(12)x -1,x ≥0.由x ≥0,得x -1≥-1,于是0<(12)x -1≤(12)-1=2,所以函数y =f (x )(x ≥0)的值域为(0,2]. 9. D 解析 当x >0时,y =5-|x |=5-x =(15)x ,又原函数为偶函数,故选D.10. A 解析 依题意,f (a )=-f (1)=-21=-2,①2x >0,①a ≤0,①f (a )=a +1=-2,故a =-3,所以选A.11. D 解析 从曲线的变化趋势,可以得到函数f (x )为减函数,从而有0<a <1;从曲线位置看,是由函数y =a x(0<a <1)的图象向左平移|-b |个单位长度得到,所以-b >0,即b <0. 12. 1 解析 由指数函数的定义得⎩⎪⎨⎪⎧a 2-2a +2=1,a +1>0,a +1≠1,解得a =1.13. 7 解析 由已知得⎩⎪⎨⎪⎧a -1+b =5,a 0+b =4,解得⎩⎪⎨⎪⎧a =12,b =3,所以f (x )=⎝⎛⎭⎫12x+3,所以f (-2)=⎝⎛⎭⎫12-2+3=4+3=7 14. a ≥1或a =0 解析 作出y =|2x -1|的图象,如图, 要使直线y =a 与图象的交点只有一个,①a ≥1或a =0.15. 解 令t =x 2-2x +2,则y =(12)t ,又t =x 2-2x +2=(x -1)2+1,①0≤x ≤3,①当x =1时,t min =1,当x =3时,t max =5.故1≤t ≤5,①(12)5≤y ≤(12)1,故所求函数的值域[132,12].16. 解 设t =3x ,①-1≤x ≤2,①13≤t ≤9,则f (x )=g (t )=-(t -3)2+12,故当t =3,即x =1时,f (x )取得最大值12;当t =9,即x =2时,f (x )取得最小值-24.4.2 第2课时 指数函数及其性质的应用基 础 练巩固新知 夯实基础1.若(12)2a +1<(12)3-2a ,则实数a 的取值范围是( )A .(1,+∞)B .(12,+∞) C .(-∞,1)D .(-∞,12)2.若函数f (x )=(1-2a )x 在实数集R 上是减函数,则实数a 的取值范围是( )A.⎝⎛⎭⎫12,+∞B.⎝⎛⎭⎫0,12C.⎝⎛⎭⎫-∞,12 D.⎝⎛⎭⎫-12,12 3.设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=( )A .e -x -1 B .e -x +1 C .-e -x -1D .-e -x +14.函数y =a x 在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是( )A .6B .1C .3 D.325.函数y =12221-+⎪⎭⎫ ⎝⎛x x 的值域是( )A .(-∞,4)B .(0,+∞)C .(0,4]D .[4,+∞)6.满足方程4x +2x -2=0的x 值为________. 7.比较下列各组数的大小:(1)0.7-0.3与0.7-0.4;(2)2.51.4与1.21.4; (3)1.90.4与0.92.4.8.已知函数f (x )=⎝⎛⎭⎫13ax 2-4x +3.(1)若a =-1时,求函数f (x )的单调增区间; (2)如果函数f (x )有最大值3,求实数a 的值.能 力 练综合应用 核心素养9.函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x <0,a x ,x ≥0(a >0,且a ≠1)是R 上的减函数,则a 的取值范围是( )A .(0,1) B.⎣⎡⎭⎫13,1 C.⎝⎛⎦⎤0,13 D.⎝⎛⎦⎤0,23 10.若函数f (x )=a |2x -4|(a >0,a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]11.已知函数f (x )=a 2-x (a >0且a ≠1),当x >2时,f (x )>1,则f (x )在R 上( )A .是增函数B .是减函数C .当x >2时是增函数,当x <2时是减函数D .当x >2时是减函数,当x <2时是增函数12.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( )A .2 B.154 C .174 D .a 213.已知a =5-12,函数f (x )=a x ,若实数m 、n 满足f (m )>f (n ),则m 、n 的关系为( ) A .m +n <0B .m +n >0C .m >nD .m <n14.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是________________.15.函数y =32x +2·3x -1,x ①[1,+∞)的值域为______________.16.用清水漂洗衣服,若每次能洗去污垢的34,要使存留污垢不超过原来的1%,则至少要漂洗________次.17. 已知f (x )=x (12x -1+12).(1)求f (x )的定义域;(2)判断f (x )的奇偶性,并说明理由; (3)求证:f (x )>0.18. 已知定义域为R 的函数f (x )=b -2x2x +a 是奇函数.(1)求a ,b 的值;(2)用定义证明f (x )在(-∞,+∞)上为减函数.(3)若对于任意t ①R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的范围.【参考答案】1. B 解析 ①函数y =(12)x 在R 上为减函数,①2a +1>3-2a ,①a >12.2. B 解析 由已知,得0<1-2a <1,解得0<a <12,即实数a 的取值范围是⎝⎛⎭⎫0,12.故选B. 3. D 解析 由题意知f (x )是奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,-x >0,则f (-x )=e -x -1=-f (x ),得f (x )=-e -x +1.故选D.4. C 解析 函数y =a x 在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a 0+a 1=3,解得a =2,因此函数y =2ax -1=4x -1在[0,1]上是单调递增函数,当x =1时,y max =3.5. C 解析 设t =x 2+2x -1,则y =(12)t .因为t =(x +1)2-2≥-2,y =(12)t 为关于t 的减函数,所以0<y =(12)t ≤(12)-2=4,故所求函数的值域为(0,4].6. 0 解析 设t =2x (t >0),则原方程化为t 2+t -2=0,①t =1或t =-2.①t >0,①t =-2舍去.①t =1,即2x =1,①x =0. 7.解 (1)①y =0.7x 在R 上为减函数,又①-0.3>-0.4,①0.7-0.3<0.7-0.4.(2)在同一坐标系中作出函数y =2.5x 与y =1.2x 的图象,如图所示.由图象可知2.51.4>1.21.4.(3)①1.90.4>1.90=1,0.92.4<0.90=1,①1.90.4>0.92.4. 8. 解 (1)当a =-1时,f (x )=⎝⎛⎭⎫13-x 2-4x +3, 令g (x )=-x 2-4x +3=-(x +2)2+7,由于g (x )在(-2,+∞)上递减,y =⎝⎛⎭⎫13x在R 上是减函数, ①f (x )在(-2,+∞)上是增函数,即f (x )的单调增区间是(-2,+∞).(2)令h (x )=ax 2-4x +3,f (x )=⎝⎛⎭⎫13h (x ),由于f (x )有最大值3,所以h (x )应有最小值-1;因此必有⎩⎪⎨⎪⎧a >0,12a -164a=-1,解得a =1,故当f (x )有最大值3时,a 的值为1. 9. B 解析 由单调性定义,f (x )为减函数应满足:⎩⎪⎨⎪⎧0<a <1,3a ≥a 0,即13≤a <1,故选B.10. B 解析 由f (1)=19得a 2=19,所以a =13(a =-13舍去),即f (x )=(13)|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减. 11. A 解析 令2-x =t ,则t =2-x 是减函数,因为当x >2时,f (x )>1,所以当t <0时,a t >1.所以0<a <1,所以f (x )在R 上是增函数,故选A.12. B 解析 ①f (x )是奇函数,g (x )是偶函数,①由f (x )+g (x )=a x -a -x +2,①得f (-x )+g (-x )=-f (x )+g (x )=a -x -a x +2,① ①+①,得g (x )=2,①-①,得f (x )=a x -a -x .又g (2)=a ,①a =2,①f (x )=2x -2-x ,①f (2)=22-2-2=154.13. D 解析 ①0<5-12<1,①f (x )=a x =(5-12)x,且f (x )在R 上单调递减,又①f (m )>f (n ),①m <n . 14.(-∞,-1) 解析 ①f (x )是定义在R 上的奇函数,①f (0)=0.当x <0时,f (x )=-f (-x )=-(1-2x )=2x -1.当x >0时,由1-2-x <-12,(12)x >32,得x ①①;当x =0时,f (0)=0<-12不成立;当x <0时,由2x -1<-12,2x <2-1,得x <-1.综上可知x ①(-∞,-1).15.[14,+∞) 解析]令3x =t ,由x ①[1,+∞),得t ①[3,+∞).①y =t 2+2t -1=(t +1)2-2≥(3+1)2-2=14.故所求函数的值域为[14,+∞).16. 4 解析 经过第一次漂洗,存留量为总量的14;经过第二次漂洗,存留量为第一次漂洗后的14,也就是原来的⎝⎛⎭⎫142,经过第三次漂洗,存留量为原来的⎝⎛⎭⎫143,…,经过第x 次漂洗,存留量为原来的⎝⎛⎭⎫14x ,故解析式为y =⎝⎛⎭⎫14x .由题意,⎝⎛⎭⎫14x ≤1100,4x ≥100,2x ≥10,①x ≥4,即至少漂洗4次. 17. (1)解 由于2x -1≠0和2x ≠20,故x ≠0,所以函数f (x )的定义域为{x ①R |x ≠0}. (2)解 函数f (x )是偶函数.理由如下:由(1)知函数f (x )的定义域关于原点对称,因为f (x )=x (12x -1+12)=x 2·2x +12x -1,所以f (-x )=-x 2·2-x +12-x -1=-x 2·2-x +1·2x 2-x-1·2x=-x 2·1+2x 1-2x =x 2·2x +12x -1=f (x ),所以f (x )为偶函数.(3)证明 由(2)知f (x )=x 2·2x +12x -1.对于任意x ①R ,都有2x +1>0,若x >0,则2x>20,所以2x-1>0,于是x 2·2x +12x -1>0,即f (x )>0,若x <0,则2x<20,所以2x-1<0,于是x 2·2x +12x -1>0,即f (x )>0,综上知:f (x )>0.18.解 (1)①f (x )为R 上的奇函数,①f (0)=0,b =1.又f (-1)=-f (1),得a =1.(2)任取x 1,x 2①R ,且x 1<x 2,则f (x 1)-f (x 2)=122112212211+--+-x x x x =)12)(12()12)(21()12)(21(211221+++--+-x x x x x x =)12)(12()22(22112++-x x x x ①x 1<x 2,①1222xx->0,又(12x+1)(22x+1)>0,f (x 1)-f (x 2)>0①f (x )为R 上的减函数.(3)①t ①R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,①f (t 2-2t )<-f (2t 2-k ) ①f (x )是奇函数,①f (t 2-2t )<f (k -2t 2),①f (x )为减函数,①t 2-2t >k -2t 2. 即k <3t 2-2t 恒成立,而3t 2-2t =3(t -13)2-13≥-13.①k <-13.4.3.1 对数的概念基 础 练巩固新知 夯实基础1.有以下四个结论:①lg(lg 10)=0;①ln(ln e)=0;①若10=lg x ,则x =10;①若e =ln x ,则x =e2.其中正确的是( ) A.①① B.①① C.①① D.①①2.ln e 等于( )A.0B.12 C.1 D.2 3.已知log x 16=2,则x 等于( )A.±4B.4C.256D.2 4.若log 3(a +1)=1,则log a 2+log 2(a -1)=________. 5.=________.6.将下列指数式化成对数式,对数式化成指数式. (1)35=243;(2)2-5=132; (3)log 1381=-4;(4)log 2128=7.7.已知6a =8,试用a 表示下列各式. ①log 68;①log 62;①log 26.8.求下列各式中的x 的值.(1)log x 27=32; (2)log 2x =-23; (3)log x (3+22)=-2; (4)log 5(log 2x )=0;能 力 练综合应用 核心素养9.设a =log 310,b =log 37,则3a -b 的值为( )A.107B.710C.1049D.491010.1)log (3t -= 等于( )A.-2B.-4C.2D.411.已知log 3(log 5a )=log 4(log 5b )=0,则ab 的值为( ) A.1 B.-1 C.5D.1512.方程3log 2x =127的解是________. 13.若log (1-x )(1+x )2=1,则x =________.14.求32log 92log 3223-++的值.15.若x =log 43,求(2x -2-x )2的值.16.已知x =log 23,求23x -2-3x2x -2-x.【参考答案】1.C 解析 lg(lg 10)=lg 1=0,ln(ln e)=ln 1=0,故①①正确;若10=lg x ,则x =1010,故①错误;若e =ln x ,则x =e e ,故①错误.2. B 解析 设ln e =x ,则e x=e =12e ,①x =12.3. B 解析 ①log x 16=2,①x 2=16,①x =±4,注意到x >0,①x =4.4. 1 解析 由log 3(a +1)=1得a +1=3,即a =2,所以log a 2+log 2(a -1)=log 22+log 21=1+0=1.5. 8 解析 设t =,则(3)t =81,4233t =,t2=4,t =8.6.解 (1)log 3243=5;(2)log 2132=-5;(3)⎝⎛⎭⎫13-4=81;(4)27=128. 7.解 ①log 68=a .①由6a=8得6a=23,即362a = ,所以log 62=a3.①由362a =得326a= ,所以log 26=3a .8.解 (1)由log x 27=32,得x 32=27,①x =2723=32=9.(2)由log 2x =-23,得2-23=x ,①x =1322=322.(3)由log x (3+22)=-2,得3+22=x -2,①x =(3+22)-12=2-1. (4)由log 5(log 2x )=0,得log 2x =1.①x =21=2. 9. A 解析 3a -b =3a ÷3b =3log 310÷3log 37=10÷7=107.10. A 解析 3-22=2-22+1=(2)2-22+12=(2-1)2=⎝ ⎛⎭⎪⎫12+12=(2+1)-2.设1)log (3t -=,则(2+1)t=3-22=(2+1)-2,①t =-2. 11. A 解析 由log 3(log 5a )=0得log 5a =1,即a =5,同理b =5,故ab =1. 12. 18 解析 3log 2x =3-3,①log 2x =-3,x =2-3=18.13. -3 解析 由题意知1-x =(1+x )2,解得x =0或x =-3.验证知,当x =0时,log (1-x )(1+x )2无意义, 故x =0时不合题意,应舍去.所以x =-3.14.解 32232log 92log 3log 322log 9323223-++=⨯+=4×3+99=12+1=13.15. 解析 (2x -2-x )2=(2x )2-2+(2-x )2=4x +14x -244log 3log 31424=+- =3+13-2=43.16.解 由x =log 23,得2x =3,①2-x =12x =13,①23x =(2x )3=33=27,2-3x =123x =127, ∴23x-2-3x2x -2-x=27-1273-13=272-13×27-9=72872=919.4.3.2 对数的运算基 础 练巩固新知 夯实基础1.若a>0,且a≠1,则下列说法正确的是( )A .若M =N ,则log a M =log a NB .若log a M =log a N ,则M =NC .若log a M 2=log a N 2,则M =ND .若M =N ,则log a M 2=log a N 2 2.log 29log 23=( ) A.12B .2 C.32 D.923.(多选题)下列等式不成立的是( )A .ln e =1B .13a 2=a -23C .lg(MN )=lg M +lg ND .log 2(-5)2=2log 2(-5)4.设a =log 32,则log 38-2log 36用a 表示的形式是( )A .a -2B .3a -(1+a)2C .5a -2D .-a 2+3a -15.计算:2713 +lg4+2lg5-e ln3=__ __.6.lg 5+lg 20的值是________.7.若log a b·log 3a =4,则b 的值为________.8.溶液的酸碱度是通过pH 刻画的,已知某溶液的pH 等于-lg[H +],其中[H +]表示该溶液中氢离子的浓度(单位:mol/L),若某溶液的氢离子的浓度为10-5 mol/L ,则该溶液的pH 为__ __.9.已知log a 2=m ,log a 3=n .(1)求a 2m-n的值;(2)求log a 18.能 力 练综合应用 核心素养10.若ab>0,给出下列四个等式:①lg(ab)=lga +lgb; ①lg ab =lga -lgb ;①12lg ⎝⎛⎭⎫a b 2=lg a b ;①lg(ab)=1log ab 10. 其中一定成立的等式的序号是( )A .①①①①B .①①C .①①D .①11.已知2a =5b =M ,且2a +1b=2,则M 的值是( )A .2B .2 5C .±25D .40012.已知2x =3,log 483=y ,则x +2y 的值为( )A .3B .8C .4D .log 4813.若x log 34=1,则4x +4-x 的值为( )A .83B .103 C .2D .114.若lg2=a ,lg3=b ,则lg12lg15等于( ) A .2a +b 1+a +b B .2a +2b 1+a +b C .2a +b 2-a +b D .2a +b1-a +b15.(多选题)设a ,b ,c 都是正数,且4a =6b =9c ,那么( )A .ab +bc =2acB .ab +bc =acC .2c =2a +1bD .1c =2b -1a16.lg 52+2lg2-(12)-1=__ __.17.若log a x =2,log b x =3,log c x =6,则log abc x =_ _. 18.求下列各式的值:(1)2log 525+3log 264; (2)lg(3+5+3-5); (3)(lg5)2+2lg2-(lg2)2.19.设a ,b 是方程2(lgx)2-lgx 4+1=0的两个实根,求lg(ab)·(log a b +log b a)的值.【参考答案】1. B [解析] 在A 中,当M =N≤0时,log a M 与log a N 均无意义,因此log a M =log a N 不成立,故A 错误;在B 中,当log a M =log a N 时,必有M>0,N>0,且M =N ,因此M =N 成立,故B 正确;在C 中,当log a M 2=log a N 2时,有M≠0,N≠0,且M 2=N 2,即|M|=|N|,但未必有M =N ,例如M =2,N =-2时,也有log a M 2=log a N 2,但M≠N ,故C 错误;在D 中,若M =N =0,则log a M 2与log a N 2均无意义,因此log a M 2=log a N 2不成立,故D 错误.2. B [解析] 原式=log 29log 23=log 232log 23=2.3.CD [解析] 根据对数式的运算,可得ln e =1,故A 成立;由根式与指数式的互化可得13a 2=a -23 ,故B 成立;取M =-2,N =-1,发现C 不成立;log 2(-5)2=log 252=2log 25, 故D 不成立,故选CD .4. A [解析] ①a =log 32,①log 38-2log 36=3log 32-2(log 32+1)=3a -2(a +1)=a -2.5. 2 [解析] 2713 +lg4+2lg5-e ln3=(33)13 +(lg4+lg25)-e ln3=3+2-3=2. 6. 1 [解析] lg 5+lg 20=lg 100=lg10=1.7. 81 [解析] log a b·log 3a =lgb lga ·lga lg3=lgblg3=4,所以lgb =4lg3=lg34,所以b =34=81.8. 5 [解析] 由题意可知溶液的pH 为-lg[H +]=-lg10-5=5.9. [解析] (1)因为log a 2=m ,log a 3=n ,所以a m =2,a n =3.所以a 2m -n =a 2m ÷a n =22÷3=43.(2)log a 18=log a (2×32)=log a 2+log a 32=log a 2+2log a 3=m +2n .10. D [解析] ①ab>0,①a>0,b>0或a<0,b<0,①①①中的等式不一定成立;①ab>0,①a b >0,12lg ⎝⎛⎭⎫a b 2=12×2lgab =lg ab ,①①中等式成立;当ab =1时,lg(ab)=0,但log ab 10无意义,①①中等式不成立.故选D.11. B [解析] ①2a =5b =M ,①a =log 2M =lg M lg2,b =log 5M =lg Mlg5,①1a =lg2lg M ,1b =lg5lg M ,①2a +1b =2lg2lg M +lg5lg M =lg4+lg5lg M =lg20lg M =2, ①2lg M =lg20,①lg M 2=lg20,①M 2=20,①M >0,①M =2 5.12. A [解析] x +2y =log 23+2log 483=log 49+log 4(83)2=log 4(9×649)=log 464=3,故选A .13.B [解析] 由x log 34=1得x =log 43,所以4x +4-x =3+13=103,故选B .14. D [解析]lg12lg15=lg3+2lg2lg3+1-lg2=2a +b 1-a +b. 15. AD [解析] 由a ,b ,c 都是正数,可设4a =6b =9c =M ,①a =log 4M ,b =log 6M ,c =log 9M ,则1a =log M 4,1b =log M 6,1c =log M 9,①log M 4+log M 9=2log M 6,①1c +1a =2b,即1c =2b -1a,去分母整理得ab +bc =2ac ,故选AD . 16. -1 [解析] lg 52+2lg2-(12)-1=lg 52+lg4-2=-1. 17. 1 [解析] ①log a x =1log x a =2,①log x a =12.同理log x c =16,log x b =13. ①log (abc )x =1log x abc =1log x a +log x b +log x c=1. 18.[解] (1)①2log 525=2log 552=4log 55=4,3log 264=3log 226=18log 22=18,①2log 525+3log 264=4+18=22.(2)原式=12lg(3+5+3-5)2=12lg(3+5+3-5+29-5)=12lg10=12. (3)(lg5)2+2lg2-(lg2)2=(lg5)2-(lg2)2+2lg2=(lg5+lg2)(lg5-lg2)+2lg2=lg10(lg5-lg2)+2lg2=lg5+lg2=lg10=1.19.[解] 原方程可化为2(lgx)2-4lgx +1=0.设t =lgx ,则方程化为2t 2-4t +1=0,①t 1+t 2=2,t 1·t 2=12. 又①a ,b 是方程2(lgx)2-lgx 4+1=0的两个实根,①t 1=lga ,t 2=lgb ,即lga +lgb =2,lga·lgb =12. ①lg(ab)·(log a b +log b a)=(lga +lgb)·⎝⎛⎭⎫lgb lga +lga lgb =(lga +lgb)·(lgb )2+(lga )2lga·lgb=(lga +lgb)·(lga +lgb )2-2lga·lgblga·lgb =2×22-2×1212=12, 即lg(ab)·(log a b +log b a)=12.。
高一数学《函数的基本性质》知识点及对应练习(详细答案)

函数的基本性质一、函数的有关概念1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域.概念重点疑点:对于定义域中任何x ,都有唯一确定的y=f (x )与x 相对应。
即在直角坐标系中的图像,对于任意一条x=a (a 是函数的定义域)的直线与函数y=f (x )只有一个交点;例1、下列对应关系中,x 为定义域,y 为值域,不是函数的是()A.y=x 2+x3 B.y= C.|y|=x D.y=8x 解:对于|y|=x ,对于任意非零x ,都有两个y 与x 对应,所以|y|=x 不是函数。
图像如下图,x=2的直线与|y|=x 的图像有两个交点。
故答案选C 例2、下列图象中表示函数图象的是()(A ) (B) (C ) (D)解析:对于任意x=a 的直线,只有C 选项的图形与x=a 的直线只有一个交点,即对于定义域中任何x ,都有唯一确定的y=f (x )与x 相对应。
故选C 。
x y 0 x y 0 x y 0xy注意:1、如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;2、函数的定义域、值域要写成集合或区间的形式.定义域补充:能使函数式有意义的实数x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于 1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零(7)实际问题中的函数的定义域还要保证实际问题有意义.(注意:求出不等式组的解集即为函数的定义域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数定义域1、函数x x x y +-=)1(的定义域为A .{}0≥x x B .{}1≥x x C .{}{}01 ≥x x D .{}10≤≤x x2、函数x x y +-=1的定义域为A .{}1≤x x B .{}0≥x x C .{}01≤≥x x x 或 D .{}10≤≤x x3、若函数)(x f y =的定义域是[]2,0,则函数1)2()(-=x x f x g 的定义域是A .[]1,0 B .[)1,0 C .[)(]4,11,0 D .()1,04、函数的定义域为)4323ln(1)(22+--++-=x x x x xx f A .(][)+∞-∞-,24, B .()()1,00,4 - C .[)(]1,00,4 - D .[)()1,00,4 -5、函数)20(3)(≤<=x x f x 的反函数的定义域为A .()+∞,0 B .(]9,1 C .()1,0 D .[)+∞,96、函数41lg)(--=x xx f 的定义域为 A .()4,1 B .[)4,1 C .()()+∞∞-,41, D .(]()+∞∞-,41,7、函数21lg )(x x f -=的定义域为A .[]1,0 B .()1,1- C .[]1,1- B .()()+∞-∞-,11,8、已知函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则=N MA .{}1->x x B .{}1<x x C .{}11<<-x x D .Φ9、函数)13lg(13)(2++-=x xx x f 的定义域是A .⎪⎭⎫ ⎝⎛+∞-,31 B .⎪⎭⎫ ⎝⎛-1,31 C .⎪⎭⎫⎝⎛-31,31 D .⎪⎭⎫ ⎝⎛-∞-31,10、函数的定义域2log 2-=x y 是A .()+∞,3 B .[)+∞,3 C .()+∞,4 D .[)+∞,411、函数的定义域xy 2log =是A .(]1,0 B .()+∞,0 C .()+∞,1 D .[)+∞,112、函数)1(log 12)(2---=x x x f 的定义域为 .函数与值域练习题一、填空题1、定义在R 上的函数()f x 满足()()()2(,),(1)2f x y f x f y xy x y R f +=++∈=,则(0)f = ,(2)f -= 。
2、若211(1)3x f x -⎛⎫+= ⎪⎝⎭,则()f x = ,函数()f x 的值域为 。
3、对任意的x,y 有()()2()()f x y f x y f x f y ++-=⋅,且(0)0f >,则(0)f = ,(1)(1)f f --= 。
4、函数21()()f x x x -=+的值域为 。
5、二次函数(]247,0,3y x x x =-+-∈的值域为 。
6、已知函数1)6g x =+,则()g x 的最小值是 。
7、函数y =的值域是 。
8、函数2y x =+的值域是 。
9、函数()log (1)xa f x a x =++在[]0,1上的最大值与最小值之和为a ,则a = 。
二、解答题 1、设函数()y f x =是定义在(0,)+∞上的减函数,并满足1()()(),() 1.3f xy f x f y f =+= (1)求(1)f 的值;(2)若存在实数m ,使得()2f m =,求m 的值; (3)如果()(2)2f x f x +-<,求x 的取值范围。
2、若()f x 是定义在(0,)+∞上的增函数,且()()x f f x f y y ⎛⎫=- ⎪⎝⎭。
(1)求(1)f 的值;(2)解不等式:(1)0f x -<;(3)若(2)1f =,解不等式1(3)()2f x f x+-<3、二次函数()f x 满足(1)()2f x f x x +-=,且(0)1f =。
(1)求()f x 的解析式;(2)设函数()2g x x m =+,若()()f x g x >在R 上恒成立,求实数m 的取值范围。
函数性质---单调性、奇偶性练习题1.已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( ) A . 1 B . 2 C . 3 D . 43.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a fB .)23(-f <)252(2++a a fC .)23(-f ≥)252(2++a a fD .)23(-f ≤)252(2++a a f4.如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是( )A .增函数且最小值是5-B .增函数且最大值是5-C .减函数且最大值是5-D .减函数且最小值是5-5.设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数。
7.函数x x x f -=2)(的单调递减区间是_______________。
8.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x = . 9.若函数2()1x af x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为________.10.设()f x 是R 上的奇函数,且当[)0,x ∈+∞时,()(1f x x =,则当(,0)x ∈-∞时()f x =_____________。
11.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或B .{}|303x x x <-<<或C .{}|33x x x <->或D .{}|3003x x x -<<<<或12.若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 . 13.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(],40-∞ B .[40,64] C .(][),4064,-∞+∞ D .[)64,+∞ 14.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( )A .3a ≤-B .3a ≥-C .5a ≤D .3a ≥ 15.若函数2()(32)f x k k x b =-++在R 上是减函数,则k 的取值范围为__________。
16.已知5)2(22+-+=x a x y 在区间(4,)+∞上是增函数,则a 的范围是( ) A.2a ≤- B.2a ≥- C.6-≥a D.6-≤a18.已知3()4f x ax bx =+-其中,a b 为常数,若(2)2f -=,则(2)f 的值等于( ) A .2- B .4- C .6- D .10- 21.若1()2ax f x x +=+在区间(2,)-+∞上是增函数,则a 的取值范围是 。
22.已知函数()f x 的定义域为()1,1-,且同时满足下列条件:(1)()f x 是奇函数; (2)()f x 在定义域上单调递减;(3)2(1)(1)0,f a f a -+-<求a 的取值范围。
24.设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数, ()g x 是奇函数, 且1()()1f xg x x +=-,求()f x 和()g x 的解析式. 函数的性质练习题一、选择题(每小题5分,共50分)1、已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 2、已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .103、函数1111)(22+++-++=x x x x x f 是()A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数 4、在区间上为增函数的是( )A .B .C .D .5、函数在和都是增函数,若,且那么( )A .B .C .D .无法确定6、.函数在区间是增函数,则的递增区间是 ( )A .B .C .D .7、已知函数f(x)是定义在R 上的奇函数,g(x)是定义在R 的偶函数,且f(x)-g(x)=1-x 2-x 3,则g(x)的解析式为( )A.1-x 2B.2-2x 2C.x 2-1D.2x 2-2 8、函数,是( )A .偶函数B .不具有奇偶函数C 奇函数.D .与有关9、定义在R 上的偶函数,满足,且在区间上为递增,则( )A .B .C .D .10、已知在实数集上是减函数,若,则下列正确的是 ( )A .B .C .D .二、填空题(每小题5分,共10分)11、已知函数f(x)=-x 2+ax-3在区间(-∞,-2]上是增函数,则a 的取值范围为 12、函数,单调递减区间为 ,最大值为 .三、解答题(第13、14每题13分,第15题14分,共40分)13、已知,求函数得单调递减区间.14、已知,,求.15、设函数y =F (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足F (x 1·x 2)=F (x 1)+F (x 2),求证F (x )是偶函数.函数性质练习题答案1、解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A2、解析:f (x )+8=x 5+ax 3+bx 为奇函数,f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26.法二:f (x )+f (-x )+16=0,f (2)=-f (-2)-16=-26 答案:A 3、解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴当x <0时,f (x )=-f (-x )=-(x 2+2x )=-x 2-2x =x (-x -2).∴,,)0()0()2()2()(<≥---=⎩⎨⎧x x x x x x x f 即f (x )=x (|x |-2) 答案:D4、B (考点:基本初等函数单调性)5、D (考点:抽象函数单调性)6、B (考点:复合函数单调性)7、C8、C (考点:函数奇偶性)9、A (考点:函数奇偶、单调性综合) 10、C (考点:抽象函数单调性)11、[-4,+∞) 12、和,(考点:函数单调性,最值)13、解: 函数,,故函数的单调递减区间为.(考点:复合函数单调区间求法)14、解: 已知中为奇函数,即=中,也即,,得,.(考点:函数奇偶性,数学整体代换的思想)15、解析:由x 1,x 2∈R 且不为0的任意性,令x 1=x 2=1代入可证, F (1)=2F (1),∴F (1)=0. 又令x 1=x 2=-1,∴F [-1×(-1)]=2F (1)=0, ∴F (-1)=0.又令x 1=-1,x 2=x ,∴F (-x )=F (-1)+F (x )=0+F (x )=F (x ),即F (x )为偶函数.点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x 1=x 2=1,x 1=x 2=-1或x 1=x 2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.。